Back to Journals » International Journal of Nanomedicine » Volume 14

Green nanotechnology: a review on green synthesis of silver nanoparticles — an ecofriendly approach

Authors Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, Bilal M, Omer M, Alamzeb M, Salman SM, Ali S

Received 5 January 2019

Accepted for publication 26 March 2019

Published 10 July 2019 Volume 2019:14 Pages 5087—5107


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Thomas J. Webster

Shabir Ahmad,1 Sidra Munir,1 Nadia Zeb1,2 Asad Ullah,1 Behramand Khan,1 Javed Ali,3 Muhammad Bilal,3 Muhammad Omer,4 Muhammad Alamzeb,5 Syed Muhammad Salman,1 Saqib Ali5

1Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; 2Department of Chemistry, Government Girls Degree College, Peshawar, Pakistan; 3Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan; 4Institute of Chemical Sciences, University of Swat, Swat, 19201, Pakistan; 5Department of Chemistry, University of Kotli 11100, Azad Jammu and Kashmir, Pakistan

Background: Nanotechnology explores a variety of promising approaches in the area of material sciences on a molecular level, and silver nanoparticles (AgNPs) are of leading interest in the present scenario. This review is a comprehensive contribution in the field of green synthesis, characterization, and biological activities of AgNPs using different biological sources.
Methods: Biosynthesis of AgNPs can be accomplished by physical, chemical, and green synthesis; however, synthesis via biological precursors has shown remarkable outcomes. In available reported data, these entities are used as reducing agents where the synthesized NPs are characterized by ultraviolet-visible and Fourier-transform infrared spectra and X-ray diffraction, scanning electron microscopy, and transmission electron microscopy.
Results: Modulation of metals to a nanoscale drastically changes their chemical, physical, and optical properties, and is exploited further via antibacterial, antifungal, anticancer, antioxidant, and cardioprotective activities. Results showed excellent growth inhibition of the microorganism.
Conclusion: Novel outcomes of green synthesis in the field of nanotechnology are appreciable where the synthesis and design of NPs have proven potential outcomes in diverse fields. The study of green synthesis can be extended to conduct the in silco and in vitro research to confirm these findings.

Keywords: green synthesis, plant mediated synthesis, silver bioactivity, microorganism

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]