Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Gold nanoparticles as physiological markers of urine internalization into urothelial cells in vivo

Authors Hudoklin S, Zupančič D, Makovec D, Kreft ME, Romih R

Received 22 February 2013

Accepted for publication 7 April 2013

Published 14 October 2013 Volume 2013:8(1) Pages 3945—3953

DOI https://doi.org/10.2147/IJN.S44363

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Samo Hudoklin,1 Daša Zupancic,1 Darko Makovec,2 Mateja Erdani Kreft,1 Rok Romih1

1Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 2Department for Materials Synthesis, Jozef Stefan Institute, Ljubljana, Slovenia

Background: Urothelial bladder is the reservoir of urine and the urothelium minimizes the exchange of urine constituents with this tissue. Our aim was to test 1.9 nm biocompatible gold nanoparticles as a novel marker of internalization into the urothelial cells under physiological conditions in vivo.
Methods: We compared normal and neoplastic mice urothelium. Neoplastic lesions were induced by 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water for 10 weeks. Nanoparticles, intravenously injected into normal and BBN-treated mice, were filtered through the kidneys and became constituents of the urine within 90 minutes after injection.
Results: Gold nanoparticles were densely accumulated in the urine, while their internalization into urothelial cells depended on the cell differentiation stage. In the terminally differentiated superficial urothelial cells of normal animals, nanoparticles were occasionally found in the endosomes, but not in the fusiform vesicles. Regions of exfoliated cells were occasionally found in the normal urothelium. Superficial urothelial cells located next to exfoliated regions contained gold nanoparticles in the endosomes and in the cytosol beneath the apical plasma membrane. The urothelium of BBN-treated animals developed flat hyperplasia with moderate dysplasia. The superficial cells of BBN-treated animals were partially differentiated as demonstrated by the lack of fusiform vesicles. These cells contained the gold nanoparticles distributed in the endosomes and throughout their cytosol.
Conclusion: Gold nanoparticles are a valuable marker to study urine internalization into urothelial cells in vivo. Moreover, they can be used as a sensitive marker of differentiation and functionality of urothelial cells.

Keywords: urinary bladder, urothelial plaques, membrane internalization, gold nanoparticles, cancer models, electron microscopy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease

Herrán E, Requejo C, Ruiz-Ortega JA, Aristieta A, Igartua M, Bengoetxea H, Ugedo L, Pedraz JL, Lafuente JV, Hernández RM

International Journal of Nanomedicine 2014, 9:2677-2687

Published Date: 27 May 2014

Advances in drug delivery via electrospun and electrosprayed nanomaterials

Zamani M, Prabhakaran MP, Ramakrishna S

International Journal of Nanomedicine 2013, 8:2997-3017

Published Date: 9 August 2013

Process optimization and evaluation of novel baicalin solid nanocrystals

Yue PF, Li Y, Wan J, Wang Y, Yang M, Zhu WF, Wang CH, Yuan HL

International Journal of Nanomedicine 2013, 8:2961-2973

Published Date: 9 August 2013

Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

Mozafari M, Salahinejad E, Shabafrooz V, Yazdimamaghani M, Vashaee D, Tayebi L

International Journal of Nanomedicine 2013, 8:1665-1672

Published Date: 26 April 2013

Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

Grazú V, Silber AM, Moros M, Asín L, Torres TE, Marquina C, Ibarra MR, Goya GF

International Journal of Nanomedicine 2012, 7:5351-5360

Published Date: 8 October 2012

A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer

Deng L, Ke X, He Z, Yang D, Gong H, Zhang Y, Jing X, Yao J, Chen J

International Journal of Nanomedicine 2012, 7:5053-5065

Published Date: 19 September 2012

Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring

Tai-Ping Sun, Hsiu-Li Shieh, Congo Tak-Shing Ching, et al

International Journal of Nanomedicine 2010, 5:343-349

Published Date: 4 May 2010