Back to Journals » Drug Design, Development and Therapy » Volume 12

Glycyrrhizic acid ameliorates myocardial ischemic injury by the regulation of inflammation and oxidative state

Authors Xu CL, Liang CH, Sun WX, Chen JD, Chen XH

Received 10 February 2018

Accepted for publication 28 March 2018

Published 18 May 2018 Volume 2018:12 Pages 1311—1319


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Anastasios Lymperopoulos

Chongli Xu,1,2 Caihong Liang,2 Weixin Sun,3 Jiandong Chen,3 Xiaohu Chen3

1Nanjing University of Chinese Medicine, Nanjing 210029, People’s Republic of China; 2Jiangnin Hospital of Nanjing, Nanjing 211100, People’s Republic of China; 3Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China

Background: Glycyrrhizic acid (GA), a bioactive triterpenoid saponin isolated from the roots of licorice plants (Glycyrrhiza glabra), has been shown to exert a variety of pharmacological activities and is considered to have potential therapeutic applications. The purpose of the present study was to investigate the cardioprotective effect of GA on myocardial ischemia (MI) injury rats induced by isoproterenol (ISO), and explore the potential mechanisms underlying these effects.
Materials and methods: The rats were randomized into five groups: control, ISO, ISO+diltiazem (10 mg/kg), ISO+GA (10 mg/kg), and ISO+GA (20 mg/kg). Electrocardiogram and histopathological examination were performed. Markers of cardiac marker enzymes (creatine kinase-MB, lactate dehydrogenase), oxidative stress (superoxide dismutase, malondialdehyde [MDA]), and inflammation (TNF-α, IL-1β, and IL-6) were also measured in each group. Proteins involved in NF-κB and Nrf-2/HO-1 pathway were detected by Western blot.
Results: GA decreased the ST elevation induced by MI, decreased serum levels of creatine kinase, lactate dehydrogenase, malondialdehyde, IL-6, IL-1β, and TNF-α, and increased serum superoxide dismutase and malondialdehyde activities. Furthermore, GA increased the protein levels of Nrf-2 and HO-1 and downregulated the phosphorylation of IκB, and NF-κB p65 in ISO-induced MI.
Conclusion: These observations indicated that GA has cardioprotective effects against MI, and these effects might be related to the activation of Nrf-2/HO-1 and inhibition of NF-κB signaling pathway in the myocardium.

Keywords: glycyrrhizic acid, myocardial ischemia, Nrf-2/HO-1, oxidative stress, inflammation

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]