Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene

Authors Gurunathan S, Han JW, Park JH, Eppakayala V, Kim J

Received 25 August 2013

Accepted for publication 11 November 2013

Published 7 January 2014 Volume 2014:9(1) Pages 363—377


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Sangiliyandi Gurunathan, Jae Woong Han, Jung Hyun Park, Vasuki Eppakayala, Jin-Hoi Kim

Department of Animal Biotechnology, Konkuk University, Seoul, South Korea

Background: Graphene is a novel two-dimensional planar nanocomposite material consisting of rings of carbon atoms with a hexagonal lattice structure. Graphene exhibits unique physical, chemical, mechanical, electrical, elasticity, and cytocompatible properties that lead to many potential biomedical applications. Nevertheless, the water-insoluble property of graphene restricts its application in various aspects of biomedical fields. Therefore, the objective of this work was to find a novel biological approach for an efficient method to synthesize water-soluble and cytocompatible graphene using Ginkgo biloba extract (GbE) as a reducing and stabilizing agent. In addition, we investigated the biocompatibility effects of graphene in MDA-MB-231 human breast cancer cells.
Materials and methods: Synthesized graphene oxide (GO) and GbE-reduced GO (Gb-rGO) were characterized using various sequences of techniques: ultraviolet-visible (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. Biocompatibility of GO and Gb-rGO was assessed in human breast cancer cells using a series of assays, including cell viability, apoptosis, and alkaline phosphatase (ALP) activity.
Results: The successful synthesis of graphene was confirmed by UV-vis spectroscopy and FTIR. DLS analysis was performed to determine the average size of GO and Gb-rGO. X-ray diffraction studies confirmed the crystalline nature of graphene. SEM was used to investigate the surface morphologies of GO and Gb-rGO. AFM was employed to investigate the morphologies of prepared graphene and the height profile of GO and Gb-rGO. The formation of defects in Gb-rGO was confirmed by Raman spectroscopy. The biocompatibility of the prepared GO and Gb-rGO was investigated using a water-soluble tetrazolium 8 assay on human breast cancer cells. GO exhibited a dose-dependent toxicity, whereas Gb-rGO-treated cells showed significant biocompatibility and increased ALP activity compared to GO.
Conclusion: In this work, a nontoxic natural reducing agent of GbE was used to prepare soluble graphene. The as-prepared Gb-rGO showed significant biocompatibility with human cancer cells. This simple, cost-effective, and green procedure offers an alternative route for large-scale production of rGO, and could be used for various biomedical applications, such as tissue engineering, drug delivery, biosensing, and molecular imaging.

Keywords: alkaline phosphatase activity, atomic force microscopy, biocompatibility, cell viability, graphene, Fourier-transform infrared spectroscopy, scanning electron microscopy, Raman spectroscopy, UV-visible spectroscopy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3)

Zhang XF, Huang FH, Zhang GL, Bai DP, Massimo DF, Huang YF, Gurunathan S

International Journal of Nanomedicine 2017, 12:7551-7575

Published Date: 13 October 2017

Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells

Bai D, Zhang X, Zhang G, Huang Y, Gurunathan S

International Journal of Nanomedicine 2017, 12:6521-6535

Published Date: 5 September 2017

Silver nanoparticles cause complications in pregnant mice

Zhang XF, Park JH, Choi YJ, Kang MH, Gurunathan S, Kim JH

International Journal of Nanomedicine 2015, 10:7057-7071

Published Date: 13 November 2015

Effects of silver nanoparticles on neonatal testis development in mice

Zhang XF, Gurunathan S, Kim JH,

International Journal of Nanomedicine 2015, 10:6243-6256

Published Date: 5 October 2015

Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy

Gurunathan S, Han JW, Park JH, Kim E, Choi YJ, Kwon DN, Kim JH

International Journal of Nanomedicine 2015, 10:6257-6276

Published Date: 5 October 2015

Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells

Zhang XF, Choi YJ, Han JW, Kim ES, Park JH, Gurunathan S, Kim JH

International Journal of Nanomedicine 2015, 10:1335-1357

Published Date: 16 February 2015

An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231)

Gurunathan S, Han J, Park JH, Kim JH

International Journal of Nanomedicine 2014, 9:1783-1797

Published Date: 8 April 2014

Green chemistry approach for the synthesis of biocompatible graphene

Gurunathan S, Han JW, Kim JH

International Journal of Nanomedicine 2013, 8:2719-2732

Published Date: 31 July 2013

Green synthesis of graphene and its cytotoxic effects in human breast cancer cells

Gurunathan S, Han JW, Eppakayala V, Kim JH

International Journal of Nanomedicine 2013, 8:1015-1027

Published Date: 10 March 2013

Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH

International Journal of Nanomedicine 2012, 7:5901-5914

Published Date: 30 November 2012

Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model

Muthu Irulappan Sriram, Selvaraj Barath Mani Kanth, Kalimuthu Kalishwaralal, et al

International Journal of Nanomedicine 2010, 5:753-762

Published Date: 24 September 2010

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010