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Abstract: The current treatment for coronary restenosis following balloon angioplasty
involves the use of a mechanical or a drug-eluting stent. Despite the high usage of
commercially-available drug-eluting stents in the cardiac field, there are a number of
limitations. This review will present the background of restenosis, go briefly into the molecular
and cellular mechanisms of restenosis, the use of mechanical stents in coronary restenosis,
and will provide an overview of the drugs and genes tested to treat restenosis. The primary
focus of this article is to present a comprehensive overview on the use of nanoparticulate
delivery systems in the treatment of restenosis both in-vitro and in-vivo. Nanocarriers have
been tested in a variety of animal models and in human clinical trials with favorable results.
Polymer-based nanoparticles, liposomes, and micelles will be discussed, in addition to the
findings presented in the field of cardiovascular drug targeting. Nanocarrier-based delivery
presents a viable alternative to the current stent based therapies.
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Introduction
In 2004, cardiovascular diseases were the number one cause of death in the United
States according to the National Center for Health Statistics (Lethbridge-Cejku et al
2006). Over 24 million people in the United States have been diagnosed with some
type of heart disease. (Lethbridge-Cejku et al 2006). Atherosclerosis is a condition
where plaque forms on the arterial vessel wall. The plaque occludes the vessel,
increasing the chance of a clot causing an obstruction to blood flow. When located in
the heart, the obstruction leads to ischemia, myocardioal infarction, and can lead to
death. Removal of the plaque is currently performed by invasive techniques, such as
percutaneous transluminal coronary angioplasty (PTCA), atherectomy, and stenting.
These techniques all can lead to a complication called restenosis, where the vessel
closes upon itself again, in a different mechanism to atherosclerosis. The placement of
stents has become the treatment of choice compared to PTCA due to its lower percent-
age of restenosis (Kastrati et al 2001). Alternatively, bypass surgery can be used to
remove the occluded artery and replace it with a blood vessel from another part of the
body, usually the saphenous vein from the leg. Stenting has been compared to bypass
surgery and has shown similar results after a one-year follow up with significantly
lower cost (Serruys et al 2001).

Coronary restenosis is caused by an injury to the arterial vessel wall that induces
a series of events leading to restenosis based on the three main procedures used to
remove plaque. PTCA is where a small balloon is inserted into the effected blood
vessel. The balloon is then inflated and compresses the atherosclerotic plaque, this
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procedure is also called balloon angioplasty. Another
procedure is called atherectomys; this is where the plaque is
scraped, brushed, and vacuumed out. Arterial wall damage
occurs during the mechanical scraping and brushing stage
resulting in denudation. The final cause of restenosis is due
to the insertion of a stent at the site of the atherosclerotic
plaque. This fine metal wire tube was designed to reduce
restenosis caused by balloon angioplasty. Restenotic lesions
caused by stents and angioplasty are very different at the
molecular level, though clinically the pathological outcome
is the same (Scott 2006).

Definition of restenosis

Goldberg and colleagues (2001) have defined restenosis as
a greater than 50% narrowing of the vessel as determined by
a follow-up angiogram. Clinically, restenosis is an injury-
induced effect on the arterial wall. This effect is typically
classified into two distinct steps, smooth muscle cell (SMC)
proliferation, typically called neointimal hyperplasia or
intimal hyperplasia, and vessel remodeling (Costa and
Simon 2005). As previously mentioned, restenosis
caused by balloon angioplasty is distinctly different
from angioplasty caused by placement of metallic stents.
Restenosis caused by balloon angioplasty is attributed to
three different factors: the elastic response that occurs after
the overstretching of the vessel, neointimal formation, and
chronic remodeling (Scott 2006). Neointimal formation
associated with balloon angioplasty is primarily formed by
the adventitia, with some proliferation of the media layer.
Stent-induced restenosis is primarily caused by prolifera-
tion and accumulation in the intimal layer, leading to a
growth of the neointima (Hoffmann et al 1996). Vascular
remodeling in this case is not as defined as in balloon
induced injury (Nakatani et al 2003).

Involvement of different cell types

The types of cells involved in the restenotic process are well
documented. There are three primary layers in a healthy blood
vessel. The tunica intima or intimal layer is the innermost
layer and is in contact with the blood flowing through the
artery. This layer consists primarily of endothelial cells.
Adjacent to the intimal layer is the tunica media or medial
layer, consisting of primarily smooth muscle cells. This
layer is responsible for the vascular tone. The outermost
layer is the tunica adventitia or adventitial layer, consisting
of primarily collagen, to provide structure and elasticity.
Following vascular injury, other cells are recruited including
various inflammatory cells, such as macrophages, T-cells

and a small number of B-cells (Farb et al 2002). There is
a degree of similarity between restenosis and wound heal-
ing. Analysis of the extracellular matrix of a restenotic lesion
showed hyaluronan and collagen, which are also both involved
in would healing process (Farb et al 2004; Scott 2006). Figure 1
shows an illustration of the different steps in the formation
of a restenotic lesion.

Molecular signals in restenosis

After stent placement, various molecular markers signals
are activated in the coronary artery (Welt and Rogers
2002). Inflammatory signals play a major role in restenosis
and correlates with the amount of injury at the site of stent
deployment (Kornowski et al 1998). With increase in the
inflammatory process in the injured arterial wall, there is
greater proliferation of SMC and narrowing of the artery.
As soon as 15 minutes after injury to the vessel, activated
leukocytes invade the site of injury which further leads
to the deposition of neutrophils, monocytes, platelets and
fibrinogen (Farb et al 2002). Macrophages are recruited
within the neointima as well. The recruitment of fibrinogen
receptors and neutrophils up-regulate adhesion receptors on
the cell surface (Kornowski et al 1998). A week after stent
placement, cytokines including monocyte chemoattractant
protein-1 (MCP-1), interleukin-6 (IL-6) and interleukin-8
(IL-8) are recruited depending on the type of injury causing
an potent pro-inflammatory response. A leukocyte integrin
class of adhesion molecules Mac-1 interacts with activated
platelet receptors (P-selectin glycoprotein) leading to an ac-
cumulation of platelets on the intimal wall (Costa and Simon
2005). It was found that the blockade of CCR2 was able to
reduce neointimal hyperplasia in stented vessels, while hav-
ing no effect on balloon injured vessels (Horvath et al 2002).
Targeting leukocyte 32-integrin MAC-1 (CD11b/CD18) was
shown to reduce neointimal hyperplasia in balloon-injured
models (Horvath et al 2002). In balloon-injured models, it
was shown that although there was no macrophage infiltration
in the neointima, there was significant neutrophil infiltration
(Welt et al 2000).

There are a number of growth factors and cytokines that
play a role in restenosis. Fibroblast growth factor (FGF),
platelet-derived growth factor (PDGF) A and B, insulin
like growth factors (IGF), and transforming growth factor
B (TGF-P) are produced by SMC’s and are responsible for
the SMC proliferation (Welt and Rogers 2002). Additionally
PDGF A and B, released from SMC’s, platelets, and
endothelial cells, are responsible for SMC migration. Vascular
endothelial growth factor (VEGF) derived from endothelial
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Figure | Schematic illustration of the processes leading to restenotic lesion development.The figures show a healthy blood vessel (A), formation of atherosclerotic plaque
within the blood vessel showing a fatty streak and macrophages encapsulated within a fibrotic tissue (B), insertion of a balloon angioplasty catheter to remove the plaque
(C), damage due to stripping of the endothelial cells of the vessel wall after removal of the balloon (D), platelet accumulation and activation as well as rapid growth of
smooth muscle cells and fibrous extracellular matrix forming the scaffolding (E), and the late stage restenosis showing neointima protruding into the lumen causing occlu-

sion within the vessel (F).

cells is responsible for endothelialization and angiogenesis.
The cytokines involved in restenosis are MCP-1, IL-8, and IL-6
(Welt and Rogers 2002). These cytokines, which are present
early in the process, are responsible for monocyte and neutro-
phil recruitment and are derived from a number of cells such as
macrophages, SMCs, endothelial cells, fibroblasts, T-cells and
polymorphonuclear leukocytes. The cytokine signals are key
indicators of an inflammatory response at the site of damage.
Another molecular signal associated with inflammation and
restenosis is the $-2 integrin molecule Mac-1 (CD11b/CD18),
which is responsible for monocyte recruitment (Scott 2006).
In addition to the inflammatory factors mentioned, other pro-
teins or enzymes are effected by restenosis, including p27,
p70, p16, TGF-B, and collagen (Costa and Simon 2005).
For additional understanding on the molecular signaling and
inflamation involved in restenosis, the reader is referred to
excellent reviews of the subject (Libby and Tanaka 1997;
Welt and Rogers 2002; Costa and Simon 2005; Gaspardone
and Versaci 2005; Scott 20006).

Therapeutic strategies

for restenosis

There are a variety of different ways to treat restenosis.
Mechanical stents that keep the vessel open have been coated
with drugs to prevent the cells from growing into the vessel
lumina. A variety of different drug classes have been used to

treat restenosis, including anti-cancer and anti-inflammatory
agents. Modulation of genes with plasmid DNA and RNA
interference have been used to create an increase or decrease
in the local concentrations of specific signaling molecules
used to inhibit the growth of certain cells, while promot-
ing the growth of others. The key point for each of these
therapies is to inhibit the growth of SMCs, while promoting
re-endothelialization of the vessel, such as to reverse the
injured vessel back into a healthy vessel.

Mechanical stents

Originally used by Dr. Charles Stent, a dentist, in the year
1856 for facial reconstruction, this device has radically
changed noninvasive cardiac intervention in the early 1990’s
(Schatz etal 1991; Ring 2001). Stent usage has continuously
grown and is now a widely accepted treatment for occluded
arteries (Topol 1998; Tung et al 2006b). The use of balloon
angioplasty to remove a clot is associated with a greater
than 40% restenosis rate, with greater percent restenosis
in larger vessels (Elezi et al 1999). The advent of the bare
metal stent reduced the incidence of restenosis to 20-53%
depending on the type of stent used (Kastrati et al 2001).
An important design feature of stents is the thickness of the
stent strut, with the thicker struts causing greater incidence of
restenosis (Pache et al 2003). The drug-eluting stent (DES)
further reduced the percentage of restenosis to less than 10%
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in initial clinical trials (Degertekin et al 2003; Stone et al
2004). These results have lead to the current use of DES in
greater than 85% of all coronary interventions (Kandzari
et al 2005). The use of bare metal stents has fallen sharply
since the introduction of DES, though that seems to be chang-
ing with the current studies showing that DES can lead to
possible life threatening in-stent thrombosis conditions (Tung
et al 2006b). In-stent thrombosis, or the formation of blood
clots, occurs more frequently in DES as compared to bare
metal stents since it is shown to occur prior to cell healing.
In general, DES prolong the healing process and, as such, are
more prone to thrombotic events (Tung et al 2006b). Despite
the high usage of DES in the interventional cardiology field,
there is still substantial opportunity for improvement. The
polymer coating on stent surface is thought to invoke an
inflammatory response at the site of injury creating a potential
for restenosis (Virmani et al 2004).

Currently there are two DES on the market, the Cypher®
stent and the Taxus® stent. Each stent has a different drug
and coating on it. The Cypher® stent is loaded with sirolimus,
which is also known as rapamycin, coated on the surface with
a poly(ethylene-co-vinyl acetate) (PEVA) and poly(n-butyl
methacrylate) (PBMA) nonerodable and nonthrombogenic
polymers (Vishnevetsky et al 2004). Sirolimus is a cytostatic
agent causing cell cycle arrest arrest in the G, phase of cell
division (Braun-Dullaeus et al 1998). The Taxus® stent has
the drug paclitaxel embedded in a poly(styrene-b-isobutylene-
b-styrene) (SIBS) triblock elastomeric polymer (Ranade et al
2004). Similarly to sirolimus, paclitaxel is a cytostatic agent,
arresting cell division in the G, phase (Ranade et al 2004). For
reviews on the clinical performance of the Cypher® and Taxus®
stents, please refer to the following reviews (Vishnevetsky et al
2004; Nawarskas and Osborn 2005).

Alternative stent designs have been tested including
the use of biodegradable polymer-based stents to inhibit
restenosis after initial implantation and then having them
degrade in situ after the vessel has stabilized. Poly(L-lactic
acid)-based biodegradable stent has been used in humans
with favorable results, showing complete degradation after
6 months (Tamai et al 2000). The researchers did not evaluate
the length of time the required for the stent to degrade or if
the acidic bi-products of the degraded stent had unfavorable
interactions with the vessel wall. A limitation of polymer
based stents is that they may not be mechanically as strong
as the metal-based stent. An alternative approach to using
polymeric materials, is the use of a magnesium-based stent
that will corrode in the body leaving no metal behind after a
period of set time (Di Mario et al 2004). A follow up clini-

cal study showed that the magnesium stent was absorbed
within 3 weeks of implantation (Bose et al). More studies are
necessary to show whether the residence time of the device
is appropriate as vessel remodeling is likely to occur for at
least a month after clearing of the vessel. A recent review by
Waksman provides an excellent overview of the bioabsorable
stents (Waksman 2006).

Other approaches to stent design include removal of the
polymer-drug reservoirs, and replacing them with nonpolymeric
nanoporous reservoirs. The use of carbon-coated stents has
been shown to have comparable results to current metal-based
DES (Bhargava et al 2006). However, additional studies will
have to be performed under the United States Food and Drug
Administration guidelines to confirm these preliminary find-
ings. Nanoporous aluminum oxide-coated stents have also been
loaded with potent immunosuppressant tacromilus and shown
to inhibit neointimal growth (Wieneke et al 2003). Subsequent
studies seem to contradict these findings, concluding that particle
debris from these stents could negate any positive inhibition of
restenosis (Wieneke et al 2003; Kollum et al 2005). Additional
issues such as thrombosis and inflammatory response to these
implantable devices need to be well understood before they are
considered clinically viable alternatives.

Drug therapy strategies

The advent of DES has brought the use of therapeutic agents
and genes to treat restenosis to the forefront of cardiovascular
research. A variety of different drug classes have been experi-
mented for the prevention of SMC growth and proliferation.
Antineoplastic agents, such as cytarabine, doxorubicin, and
vincristine have been tested to determine their effects on
SMC growth with some success (Voisard et al 1993). Voisard
et al have also tested doxorubicin in addition to four other
drugs — dalteparin sodium, cyclosporine A, colchicines, and
etoposide — on whether the SMC proliferation was inhibited
(Voisard et al 1995). Each of these agents showed some
degree of SMC growth inhibition.

Sirolimus, also known as rapamycin, has been shown to
inhibit SMC growth in rat cells and in human cell in cultures
(Marx et al 1995). Sirolimus was later approved for use in
the Cypher® brand DES developed by Cordis in conjunction
with Johnson and Johnson and is now a common treatment
for restenosis.

Initial studies using paclitaxel, a microtubule stabiliz-
ing chemotherapeutic agent, to prevent restenosis were
performed by intravenous delivery (Sollott et al 1995).
These studies showed that paclitaxel used for prevention
of intimal hyperplasia can be administered at much lower
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concentrations than those needed for cancer therapy.
Shortly following Sollott and colleagues’ study, locally-
administered paclitaxel to the arterial wall using a porous
balloon catheter after angioplasty was examined (Axel
et al 1997). Paclitaxel administered in this fashion con-
firmed previous results showing significant reduction in
restenosis. Recently, clinical results of paclitaxel coated
onto an angioplasty balloon and delivered locally showed
significant promise. The results of these studies showed
that local delivery of paclitaxel could inhibit neointimal
growth without the need for a metallic stent (Scheller et
al 20006). Paclitaxel is the active agent in Boston Scien-
tific’s Taxus® brand DES. The comparisons in terms of
safety and efficacy between the Cypher® stent and Taxus®
stent is outside the scope of this review. The readers are
referred to some excellent reviews on the topic (Kittleson
et al 2005; Perin 2005; Tung et al 2006a).

In addition to sirolimus and paclitaxel, membrane sphin-
golipids, such as ceramide, that has been shown to enhance
cellular apoptosis, has also been tested for treatment of
restenosis (Charles et al 2000). When ceramide was coated
onto an angioplasty balloon and tested in New Zealand white
rabbit carotid artery after stretch injury, the results showed
significant inhibition of restenosis.

The antiplatelet drug, cilostazol, was initially tested to
treat restenosis with nonfavorable results, showing that it did
not significantly reduce restenosis after PTCA (Tsutsui et al
1996). Subsequent studies did show a significant difference
in reduction of restenosis in patients taking cilostazol
(Kunishima et al 1997; Take et al 1997). There has been
several additional recent studies confirming the results of
Kunishima and colleagues and Take and colleagues indi-
cating that cilostazol does indeed have a positive effect on
restenosis (Chen et al 2006).

In addition to the above drugs that modulate various cell
cycle stages, researchers have recently looked at a class of
drugs known as bisophosphonates to reduce the inflammatory
response (Danenberg et al 2002, 2003). Clodronate, pamidro-
nate, alendronate and a novel bisphosphonate [SA-13-1 were
all tested, and showed that systemic administration lowered
local concentrations of inflammatory mediators, thus reduc-
ing restenosis in a rat model (Danenberg et al 2003).

Specific molecular targets have also been used for treat-
ment of restenosis. When PDGF-receptor specific molecules,
tyrphostin, AG1295, and AGL-2043, were used to examine
their effect on neointimal formation, they showed significant
inhibition of restenotic effects (Banai et al 1998, 2005). For a
comprehensive review on PDGF receptor specific molecules

see (Levitzki 2005). Table 1 below shows a summary of the
drug classes used to treat restenosis.

Gene therapy strategies
A variety of different gene targets have been used to
treat restenosis. Since there have been numerous reviews
written discussing the use of gene therapy for the treatment
of restenosis and since this review is focusing on the
nanoparticles role in treating restenosis, we will only briefly
touch on the subject of gene therapy to provide background
information. For additional information, the readers are
referred to (Rutanen et al 2002; Morishita 2004; Fishbein et al
2005a, 2005¢) for more thorough reviews of this topic.
Restenosis gene therapy can be categorized by their
method of action, and the cellular target (Rutanen et al 2002;
Fishbein et al 2005a). The reduction of intimal hyperplasia
has been the most investigated treatment option. Intimal
hyperplasia can be reduced through three distinct modes
of action. By transfecting cells with genes that encode
for proteins known to destroy the cells as they enter the
S-phase of the cell cycle such as thimidine kinase, cytosine
deaminase and Fas ligand (FasL), intimal hyperplasia was
inhibited (Guzman et al 1994; Ohno et al 1994; Ogata et al
1996; Simari et al 1996; Harrell et al 1997; Mano et al 2000).
Alternatively, the cell cycle can be arrested by certain gene
products. These gene products take part in cellular regulation
and, therefore, modulation of these genes would stop the
cell cycle (Sriram and Patterson 2001; Bicknell et al 2003;
Koledova and Khalil 2006). Genes that encode for kinases
such as CDK2, CDC3, and cyclin B as well as CDK inhibi-
tors such as p21, p27, a fusion of p16 and p27, and p53 are
all modulators of the cell cycle (Morishita et al 1994; Chen
etal 1997; Yonemitsu et al 1998; Scheinman M 1999; Tanner
et al 2000; Tsui et al 2001). hRAD 50 gene delivery effects
p21 levels, subsequently inhibiting the cell cycle (Ahn et al
2004). Alternatively, targeting of E2F a protein involved in
the G1/S transition in cells has been approached through a

Table | Drugs used in restenosis therapy
Drug(s)

Action

Smooth muscle Cytarabine, Doxorubicin,Vincristine, Dalteparin
sodium, Cyclosporine A, Colchicines, Etoposide,
Sirolimus, Paclitaxel, Ceramide

Cilostazol

cell growth inhibition

Antiplatelet
Inflammatory Clodronate, Pamidronate, Alendronate, ISA-13-1
response inhibition
PDGF-receptor

specific

AG-1295,AGL-2043
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variety of different pathways. For example, with the use of
nonphosphorylable retinoblastoma (Rb) gene, a protein that
inhibits E2F, has been used to inhibit intimal hyperplasia
(Chang et al 1995). An E2F decoy and a E2F-Rb chimera
were used separately to successfully inhibit E2F levels
(Morishita et al 1995; Kawauchi et al 2000; Wills et al 2001).
Another pathway targeted for restenosis gene therapy is the
protein kinase G (PKG) pathway. Truncated PKG gene has
been used to increase PKG levels, a known inhibitor of neo-
intimal formation (Sinnaeve et al 2002). Similarly proliferat-
ing cell nuclear antigen (PCNA) ribozymes were shown to
inhibit neointimal growth by inhibiting PCNA (Frimerman
et al 1999). Other pathways targeted successfully include
early growth response factor (Egr-1), dominant-negative
H-ras, Gax homeobox, GATA homeobox and inteferon
(INF)-B (Maillard et al 1997; Stephan et al 1997; Ueno et al
1997; Mano et al 1999; Maillard et al 2000; Lowe et al 2001).
Modulating local CO levels through iron metabolism with
heme oxygenase-1 was found to inhibit intimal hyperplasia
despite the exact lack of understanding of the mechanism
(Tulis et al 2001; Kong et al 2004).

Another approach for reducing restenosis via reduction
of intimal hyperplasia would be to prevent the SMCs from
migrating and forming a lesion on the arterial wall. Without
the SMC movement, neointimal growth is not possible.
It should be noted that these genes do not promote re-
endothelialization which is important in the long term health
of the vessel. PDGF receptor P, a growth factor known to
be involved in cell signaling and migration, has been shown
to inhibit neointima formation (Cohen-Sacks et al 2002).
Alternative approaches have encoded genes producing extra-
cellular matrix modifying proteases such as tissue inhibitor
of metalloproteinases (TIMP-1) and plasminogen activator
inhibitor (PAI-1) (Carmeliet et al 1997; Furman et al 2002;
Turunen et al 2002, 2006; Puhakka et al 2005a, 2005b).

The use of gene therapy that affects multiple pathways
simultaneously has also been investigated. These genes
protect the endothelial cells and inhibit intimal hyperplasia.
The use of vascular endothelial growth factor (VEGF), a
well studied regulator of endothelial cell repair, has been
used with some success (Asahara et al 1996; Laitinen et al
1997; Van Belle et al 1997; Hiltunen et al 2000). Nitric
oxide (NO) levels are known to play a role in the formation
of intimal hyperplasia through a variety of different pathways
(De Caterina et al 1995; Mooradian et al 1995). The synthesis
of NO is regulated by a group of enzymes known as nitric
oxide synthases (NOS). Two types of NOS have been used
to reduce restenosis — inducible nitric oxide synthase (iNOS)

and endothelial nitric oxide synthase (eNOS). NO is known
to inhibit aggregation and adhesion of platelets, leukocytes,
and to induce SMC apoptosis (Ross 1993). Local expression of
nitric oxide synthase enzymes has been found to inhibit intimal
hyperplasia (von der Leyen et al 1995; Chen et al 1998; Jans-
sens et al 1998; Shears et al 1998; Varenne et al 1998; Muhs
et al 2003 ; Wang et al 2003; Kong et al 2004).

The use of antithrombotic gene therapy has been investi-
gated to reduce restenosis. A number of different approaches
have been tried. For instance, local transfection with a gene
encoding thrombin inhibitor (hiridun) showed inhibition of
restenosis (Rade et al 1996). Other successful approaches
include transfecting a gene encoding TFPI, the target of the
anti-thrombotic drug heparin to inhibit restenosis (Zoldhelyi
et al 2001; Yin et al 2002). Prostacyclin synthase (PGIS)
gene has been used directly and indirectly by modulating
cyclooxygenase-1 (COX-1) production to inhibit restenosis
(Wu 1997; Todaka et al 1999; Shyue et al 2001; Numaguchi
et al 2004). COX-1 has also been shown to open the arterial
wall, reducing pressure, and ultimately reducing the percentage
of restenosis, though it did not directly effect intimal hyperplasia
growth. In combination with other genes, this could be a
promising target (Shyue et al 2001; Liu et al 2005). Table 2
shows a summary of all of the gene therapy work completed
for the treatment of restenosis.

Nanoparticulate delivery systems

Nanoparticulate delivery systems have been used to treat a
variety of disease states. In restenosis treatment, both con-
ventional drugs- and gene-based medicines have been used in
nanoparticle delivery to achieve desirable therapeutic results.
There is a need for an alternative treatment since there are
limitations to current therapies, such as in-stent restenosis,
including the development for DES-related thrombosis and
the high rate of restenosis with the use of bare metal stents and
balloon angioplasty. A nanoparticle delivery system is well
suited for the treatment of restenosis since local or targeted
delivery can be achieved, lowering systemic toxicity, while
reaching specific cell types in sufficient concentrations for the
necessary period of time. Biocompatible lipids and polymers
also do not create an inflammatory response. In the context
of this article, liposomes, polymer-based nanoparticles, and
micelles are considered as nanoparticulate carriers. The high
shear pressure in the arterial blood supply leads to a very
short residence time for the therapeutic agent at the target
cells in the arterial wall. The use of nanoparticles allows for
the rapid incorporation of the drug and gene into the cell, thus
reducing the shear effects of the arterial pressure. Studies using
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Table 2 Genes used in restenosis therapy

Cellular target Action

Gene Product(s)

Intimal Hyperplasia Antiproliferative (cytotoxic)

Antiproliferative (cytostatic)

Arterial Cytoprotection/ Re-endothelialization

intimal hyperplasia Mixed mechanism

Thrombosis Antithrombotic

Thimidine kinase, Cytosine deaminase, FasL

cdc2, cdk2, cdc2, cyclin B, p21, hRAD 50, p27, pl6—p27, p53,
Nonphorphorylatable Rb, Rb/E2F chimera, E2F decoy,
Truncated PKG PCNA, Egr-1, Dominant-negative H-ras,
Gax homeobox, GATA homeobox

IFN-f, Heme oxygenase- |, TIMP, PAI-1

VEGF

eNOS, iNOS

Hiridun, TFPI, Prostacyclin synthase, COX|

florescent particles have shown a size dependency in arterial
wall transfection using a SCIMED® REMEDY porous balloon
catheter (Westedt et al 2002). Three particle sizes were tested
and the data showed that the smallest size particles (~110 nm
in diameter) had the greatest florescence intensity within the
cell. Larger particles showed very little florescence due to
short residence time on the arterial wall surface. Other studies
showed an increase in inflammatory responses with particles of
5-10 pm in diameter and no therapeutic response, probably due
to uptake by the macrophages and other immune cells rather
than SMC or endothelial cells. (Gradus-Pizlo et al 1995; Dev
et al 1997). Cells can incorporate particles varying from
50-300 nm in diameter based upon a variety of different
internalization pathways including nonspecific or receptor-
mediated endocytosis (Mukherjee et al 1997; Gruenberg
2001; Pelkmans and Helenius 2002; Sieczkarski and Whit-
taker 2002; Mousavi et al 2004). Additionally, nanoparticles
larger than 300 nm in diameter were found to accumulate in
the liver, spleen and lung, rendering them unavailable for
arterial delivery upon systemic administration (Wu and Wu
1988). Other known factors for cellular uptake of nanoparticles
include volume, concentration, infusion pressure, and the type of
infusion balloon (Tahlil etal 1997; Westedt et al 2004). Increased
delivery pressure and large volumes can cause an increase in the
intimal thickening, while increased particle concentration leads
to effective delivery (Westedt et al 2004). In addition, the use of
cell specific surface modifications, can increase the residence
time of the nanoparticles at the desired site.

Unlike in tumor mass, where the enhanced permeability
and retention effect of the tumor vasculature plays a
significant role in the accumulation of nanoparticles, the
vascular endothelium is a much more difficult target to
reach upon systemic delivery. The vascular flow rate is
much higher in the arterial blood flow compared to the capil-
lary flow in tumors. However, some investigators, including
Uwatoku and colleagues (2003) have hypothesized the

presence of the enhanced permeability and retention ef-
fect in balloon injured arteries. However, it should be
noted that the enhanced vascular permeability effects in
restenotic vessels have not been confirmed by additional
studies, especially in humans.

Pharmacokinetic studies were performed on the
poly(L-lactide) nanoparticles to measure the local drug
concentrations after site-specific arterial delivery (Fishbein
et al 2001). Figure 2 shows a graph indicating two distinct
first order kinetic profiles. The initial accumulation of the
nanoparticles on the intima, followed by subsequent slower
accumulation in the media over time is observed. This bipha-
sic mechanism of particle internalization could be the cause
of the two-phased drug pharmacokinetic profile.

lllustrative examples
of nanoparticle-based delivery
in restenosis

Lipid nanoparticle-based drug delivery

Liposomes have been used to deliver a variety of drugs
to the arterial endothelial cell wall. As previously out-
lined a number of drugs have been investigated to treat
restenosis. Out of the drugs tested, only a subset has
been administered through nanoparticle-based delivery
systems. The bisphosphonate agent, clodronate, was
delivered using a liposomal formulation consisting of 1:3
distearoyl phosphatidylglycerol (DSPG), 1, 2-distearoyl-
sn-glycero-3-phosphocholine (DSPC) with an average
particle size of 190 nm (Danenberg et al 2002). Results
from this study showed that liposomal clodronate suc-
cessfully inhibited neointima growth in balloon-injured
rabbit carotid artery after systemic administration. Other
bisphosphonates including, pamidronate, alendronate and
ISA-13-1 were tested in a similar liposomal formulation
in a balloon-injured rat model (Danenberg et al 2003). To

International Journal of Nanomedicine 2007:2(2)

149



Brito and Amiji

1000.0 -
379.92
224.70
& NP (160nm)
£ 1000 - \
- \30.43
= Simulation
-
€ \
3 — —Phase 1 (Particles wash-out)
. \
g f = = = Phase 2 (Drug release)
g 100 - \
\6_ 6.00
——*‘.—.------- ------
\
\
1.0 : v » . p y y
o 2 4 8 B e o

Time, day

Figure 2 The effect of time on arterial AG-1295 concentrations following poly(L-lactic acid) nanoparticle-based delivery. Drug levels are depicted on a logarithmic scale.
Initial washout period occurs within 24 hours of administration and the drug levels can be seen for up to 14 days.The drug concentrations were measured by a high
performance liquid chromatography assay. Insert shows confocal images of rat carotid arteries following local delivery of Nile Red® dye- containing fluorescent nanopar-
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delivery (F). Discrete, granular, fluorescent foci of nanoparticle aggregates are clearly observed in the image F. The notations L, M, N and A indicate lumen, media, neointima,
and adventitia, respectively. Copyright © 2001. Reproduced from Fishbein I, Chorny M, Banai S, et al 2001. Formulation and delivery mode affect disposition and activity of

tyrphostin-loaded nanoparticles in the rat carotid model. Arterioscler Thromb Vasc Biol, 2 1:1434-39.

deliver the liposomes to the target site, the researchers
in these studies modified a piece of plastic tubing with a
23-gauge catheter to perform local intraluminal delivery
in addition to IV and subcutaneous administration. The
results of this study showed that systemic administration
not local administration leads to the greatest amount of
reduction of neointimal growth, which is likely due to
the mechanism of action of the drugs. These drugs act on
macrophages, which are important in the inflammatory
mechanism of restenosis (Danenberg et al 2002, 2003).
Using liposomes to incorporate the hydrophilic bisphos-
phonates into macrophages is a novel approach for the
compound class.

The use of Zn (II)-phthalocyanine, a photoactivatable
agent, in a liposomal formulation was tested to inhibit SMC
growth (Magaraggia et al 2006). This system was examined
in cells and the result showed significant apoptosis of vas-
cular SMC in vitro after a short irradiation time. Cellular
uptake of oxidized low density lipoproteins (LDL) is an
important step in the formation of atherosclerotic plaques
and inflammation. By engineering nanoparticles that block
the LDL channels, researchers were able to inhibit LDL

uptake, and show a reduction in inflammatory responses
(Chnari et al 2006).

Polymeric nanoparticle-based
drug delivery

A significant amount of work has been ongoing and com-
pleted in the field of polymer-based nanoparticle drug
delivery for the treatment of restenosis. The bisphosphinate
agent, alendronate, was encapsulated in a poly(D,L-lactide-
co-glycolide) (PLGA) based nanoparticle system with an
average size of 223 nm (Cohen-Sela et al 2006). The presence
of calcium ions was found to be critical for the successful
entrapment of the hydrophilic drug compound in PLGA
matrices, alendronate in this formulation was delivered sub-
cutaneously and by intravenous administration. The results
showed reduction in neointimal growth in a balloon injured
rabbit model using both routes of administration (Cohen-Sela
etal 2006). Interestingly, unlike with the liposomal formula-
tion, the subcutaneous PLGA nanoparticle formulation of
alendronate showed a greater reduction in neointimal growth
as compared to the intravenous formulation in a rabbit model
(Danenberg et al 2002, 2003; Cohen-Sela et al 2006).
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Paclitaxel has been used in a number of nanopar-
ticle formulations for restenosis therapy. An alternative
to paclitaxel-containing stent coating was developed by
Bhargava and colleagues (2006). A cobalt chromium stent
loaded with carbon-carbon nanoparticles was used in a stented
injury swine model. In this study, three doses of paclitaxel
in nanoparticle formulation showed inhibition of neointimal
growth with less fibrosis and inflammation when compared to
the Cordis Cypher® stent. A comparison to the Taxus® DES
would have been more relevant to see if the nanoparticle
based therapy is better than the current therapy on the market.
Albumin-based nanoparticles containing paclitaxel have also
been used to prevent in-stent restenosis (Kolodgie et al 2002).
The paclitaxel concentrations was lower than typically used
for chemotherapy in a denuded stented rabbit model. The data
indicated that after 28 days, neointimal growth was inhibited
with a single dose locally administered to the iliac bifurcation,
while a second systemically administered dose was needed
to see the effects prolonged out to 90 days. Doxorubicin an
anthracycline anticancer agent, and paclitaxel were used in
a tissue factor targeted lipid/perflorocarbon nano-emulsion
to target vascular SMC proliferation in vitro using porcine
SMC (Lanza et al 2002). Targeted nano-emulsion had
greater efficacy in preventing SMC growth in these studies.
The formulation containing doxorubicin and paclitaxel had
a greater effect that single drug probably due to synergistic
pro-apoptotic activity of these chemotherapeutic agents.

Doxorubicin has also been used in a polymeric micelle
consisting of NK911, a self assembling block co-polymer,
to treat restenosis in a balloon-injured rat carotid artery
model (Uwatoku et al 2003). Results from this study showed
that doxorubicin encapsulated within NK911 permeated
the arterial wall and prevented neointimal growth. The
authors claim that the formulation was able to target the
damaged endothelium due to a local enhanced permeability
and retention effect in the arterial wall. This effect has not
been confirmed in any other reports. The small size (40 nm)
of the delivery system could lead to an increased uptake
in a damaged arterial wall after systemic administration.
Another antiproliferative agent formulated in a PLGA based
nanoparticle system was U-86, a 2-aminochromone, which is
an experimental anti-proliferative compound (Labhasetwar
et al 1998). A number of different surface modifications
strategies to alter the charge of the nanoparticle system and
to promote adhesion to the cells were tested. The results of
this study showed that surface modification with a cationic
surfactant, didodecyldimethylammonium bromide (DMAB),
was most beneficial in producing a 7-10 fold increase in

arterial drug levels due to an increase in the residence time
of the nanoparticles on the endothelial surface.

In addition to the Bisphosphonates and anti-cancer
drugs, tyrphostins have been tested in a variety of differ-
ent nanoparticle systems for restenosis. Poly(L-lactic acid)
(PLA) nanoparticles have been tested in a balloon-injured
swine model (Banai et al 1998). Results showed that infu-
sion catheter local delivery inhibited SMC growth. Simi-
larly tyrphostin AG-1295 was encapsulated in a PLA-based
nanoparticle and was administered locally using a porous
balloon to a rat with denuded carotid artery (Fishbein
et al 2000). Results were similar to previous work showing
inhibition of SMC growth. In this formulation, the particle
size was modulated and the results showed that the smaller
particle sized nano-delivery systems were more efficacious.
A related tyrphostin AGL-2043 was tested in a similar PLA-
based nanoparticle system in balloon-injured rat carotid
arteries and stented porcine arteries (Banai et al 2005). Re-
sults from this study indicated the nano-encapsulated drug
was more successful in inhibiting restenosis in both animal
models. Table 3 summarizes the results obtained from vari-
ous studies of drug-encapsulated nanoparticle systems for
restenosis therapy.

Lipid nanoparticle-based gene delivery

A significant amount of work has been accomplished in
the field of nonviral nanoparticle-based gene delivery for
restenosis. Table 4 is a summary of the studies performed
to date. Most of the work on nonviral transfection has
been performed with commercially-available cationic
lipid transfection reagents such as Lipofectamine® or
Lipofectamine Plus®. The use of Lipofectamine® or
Lipofectamine Plus® in delivery of genes is not a clinically
viable option due to the known toxicity of the cationic
lipid transfection reagents (Armeanu et al 2000). Lipo-
fectamine Plus® has been used in local delivery of pro-
liferating cell nuclear antigen hammerhead ribozyme in a
stented porcine model (Frimerman et al 1999). Results of
this study showed that the ribozyme successfully inhibited
intimal hyperplasia in the stented model. Figure 3 shows
a cross section of the stented porcine arteries without
treatment, with administration of a nonspecific ribozyme,
and administration of PCNA specific ribozyme in nanoparticle
formulations. The gene for eNOS was transfected in a
canine ex-vivo saphenous vein graft using Lipofectamine
Plus® (Kalra et al 2000). In this study, the gene was trans-
fected through the intimal and adventetial routes. The
results indicated that intimal transfection did not show
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Figure 3 Low magnification (10x) images of porcine arteries 4 weeks after stent implantation.The images represent stent only (A), untreated tissue as a negative control
(B), and delivery of PCNI ribozyme therapeutic agent (C). Panels A and B show well-defined intimal hyperplasia, whereas panel C shows a significantly lesser amount of
neointimal growth. Lower panel images correspond to high magnification of the above. No histological evidence of tissue inflammation is seen. Copyright © 1999. Repro-
duced from Frimerman A,Welch P), Jin X, et al 1999.“Chimeric DNA-RNA hammerhead ribozyme to proliferating cell nuclear antigen reduces stent-induced stenosis in a

porcine coronary model.” Circulation, 99:697-703.

an efficient gene transfection, whereas the veins treated
through the adventitia did show efficient transfection.
The gene encoding for prostacyclin synthase (PGIS)
was delivered with Lipofectamine® into balloon-injured
New Zealand white rabbits (Numaguchi et al 2004). A
stent was deployed at the site of injury and a Dispatch®
catheter was used for delivery of the nanoparticulate
plasmid DNA formulation locally. The data from this
study showed that PGIS prevented vascular SMC growth,
stimulated re-endothelialization, and prevented neointi-
mal formation.

Using nonliposomal transfection reagent FuGENE 6
(Boehringer Mannheim) hRADS50 encoding plasmid DNA
was delivered to stented pigs using the Dispatch® catheter
(Ahn et al 2004). From this study, short term inhibition of
neointimal formation was observed. However, long-term
investigations are needed to determine the effect RADS0
mediated re-endothelialization.

The use of plasmid DNA encoding for inducible
and endothelial nitric oxide synthase (iNOS and eNOS,
respectively) has been studied extensively in other
types of cationic liposomes. Using Lipofectamine® as
a transfection reagent, endothelial nitric oxide synthase
(eNOS) expressing plasmid DNA was administered to
HUVEC cells to measure the effect of various inhibitors
and inducers on eNOS production (Qiao et al 2006).
The conclusion from this study was that peripheral

eNOS side effects should be emphasized during clinical
administration (Qiao et al 2006). In another study, the
researchers examined local iNOS plasmid delivery to
an injured mini pig femoral and coronary artery model (Muhs
et al 2003). Administration of the complexed plasmid
was performed using an Infiltrator® infusion catheter,
the animals were stented to produce the injury. The
lipid-DNA complex (lipoplex) contained monocationic
lipid 3B-(N,N'-di-methylaminoethane)-carbamoylcholes-
terol (DAC) at 30% (w/w) and dioleoyl phosphatidyletha-
nolamine (DOPE) at 70% (w/w). When administered to the
injured model, the results indicated that despite the break-
down of excess NO in the bloodstream by hemoglobin,
significant reduction of neointimal growth was observed
with this DNA delivery system. Using a similar liposomal
system, Pfiffer and colleagues (2006) used an Infiltrator®
catheter to administer iNOS expressing plasmid DNA in a
foxhound dog model after an arterial graft. In this study,
the intimal hyperplasia was inhibited for up to 6 months
with a single local plasmid DNA administration. In vivo
studies of eNOS plasmid DNA formulated in cationic
lipid 1-[2-(oleoyloxy)ethyl]-2-oleyl-3-(2-hydroxyethyl)
imidazolinium chloride (DOTIM) and cholesterol in a
1:1 weight ratio, was performed (Iwata et al 2000).
Using a Stauffland rabbit model, an in-situ transfected
carotid artery was grafted into the animal. The results
indicated that eNOS transfected in this manner reduced

International Journal of Nanomedicine 2007:2(2)

155



Brito and Amiji

neointimal formation with effects lasting up to 21 days
after transfection (Iwata et al 2000). The same formulation
was also used in a heart transplanted rabbit with similar
results (Iwata et al 2001).

Other genes that have been delivered to the arterial wall
with cationic liposomes include chloramphenicol acetyl
transferase (CAT) gene. CAT gene was delivered with two dif-
ferent cationic lipid formulations — (+)-N-(2-Hydroxyethyl)-N,
N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium bro-
mide (DMRIE)/DOPE and (t)-N-(3-aminopropyl)-N,N-
dimethyl-2, 3-bis(dodecyloxy)-1-propanaminium bromide)
(GAP-DLRIE)/DOPE — in balloon-injured Yorkshire pigs
using a catheter for local delivery (Stephan et al 1996).
The results of this study indicated that GAP-DLRIE/DOPE
liposomal system was more efficient in transfecting the
artery as compared to the DMRIE/DOPE formulation.
The cationic lipid (DOCSPER) (1,3-dioleoyloxy-2-(N5-
carbamoyl-spermine)-propane) was used to transfer C-type
naturetic peptide (CNP) gene in a pig femoral artery model
(Pelisek et al 2006). Briefly, the CNP and CNP gene were
delivered to the artery and the results showed that a single
CNP gene administration inhibited neointima formation better
than systemic administration of the peptide. Similar results
were observed in a porcine renal model (Kuhnl et al 2005).

VEGF gene delivery was performed in human patients
using a cationic mixture of DOTMA and DOPE as part of
a clinical trial to induce collateral circulation following
myocardial ischemia (Hedman et al 2003). Gene transfer
was performed prior to stenting using a Dispatch® catheter
for local tissue delivery. From this study, the results showed
that cationic lipid transfer of VEGF did not affect the in-
cidence of restenosis. When VEGF was transferred via a
viral vector, myocardial perfusion was increased. A greater
transfection efficiently produced by the viral vector was likely
the cause for the difference in the observed activity. The
gene for TIMP-1 was used in a o5p1 targeted Lipofectin®
nanoparticulate delivery system (Meng et al 2006). From
this study, it was observed that this type of delivery system
was effective in inhibiting neointimal hyperplasia for up to
28 days in a balloon-injured rat model.

Viral-mimicking liposomes have been extensively used to
deliver genes to the arterial wall. Briefly, in this case, a liposome
is made and then bound to the envelop protein of a virus, such as
the hemaglutin virus of Japan (HJV). This formulation strategy
allows for better transfection of the encapsulated gene into the
cell. In one example, E2F oligonucleotide decoy was adminis-
tered using a viral liposome system. Artificial HIV-liposomes
were used to deliver E2F decoy ex-vivo in both a murine and a

primate cardiac transplant model to inhibit neointimal growth
(Kawauchi et al 2000). The artificial viral liposomes were shown
to have increased transfection for oligonucleotides. Additionally,
the results showed that SMC growth was inhibited resulting
form the inhibition of neointima formation. Other investigators
have used HIV-liposome delivered E2F decoy in a denuded rat
carotid artery model showing inhibition of the neointima for
up to 8 weeks following administration (Morishita et al 1995).
Other nucleic acid therapies delivered with the HIV-liposome
delivery system include wild-type p53, tissue factor pathway
inhibitor gene (TFPI), and PGIS (Yonemitsu et al 1998; Todaka
etal 1999; Yin et al 2002). Wild-type p53 was delivered to white
rabbits using a double lumen catheter to locally administer and
transfect the therapeutic gene. Results indicated that pS3 gene
transfer inhibited neointimal formation, with and without apop-
totic stimuli (Yonemitsu et al 1998). White rabbits were also used
as a model to test TFPI transfection by local administration the
encapsulated plasmid (Yin et al 2002). The results of the study
showed that TFPI successfully inhibits neointimal growth up
to 4 weeks after administration. PGIS was delivered in a HIV-
liposome in a denuded rat carotid model (Todaka et al 1999).
An infusion catheter was used to deliver the encapsulated gene;
results indicated that neointima growth was inhibited.

Polymeric nanoparticle-based gene delivery

Unlike lipid-based delivery, there are a small number of
studies performed with polymer based nano-delivery systems
to deliver genes to the arterial wall. Depending on the type
of polymer used, these nanoparticulate delivery systems
are able to modify the release of the genes, while sharing
similar transfection efficacy as lipid nano-systems. For
instance, PLGA-based nanoparticles were used to deliver
PDGF receptor f§ antisense RNAI to an injured rat carotid
artery (Cohen-Sacks et al 2002). The delivery system was
made to release over a period of one month allowing for
a lower dose of the therapeutic agent to be administered
over a long period of time. From these studies, inhibition
of the neointima growth was observed for a period of one
month. When the lowest dose was used, some inhibition
was observed without drug encapsulation. However, as the
dose was increased, there no inhibition when the antisense
was not encapsulated. Another delivery system used in the
treatment of restenosis was a PEI based delivery system for
monocyte chemoattractant protein 1 (MCP-1) (Lenter et al
2004). In addition to the PEI formulation, alternative formu-
lations tested included combinations with the surface active
peptide mellatin and PEG. The formulations were tested in
a variety of different smooth muscle and endothelial cells,
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showing that delivery systems coated with PEG exhibited
less toxicity and an increase in activity of the formulations
when combined with mellatin.

Other therapeutic delivery systems

The use of nucleic acids therapies such as ribozymes and
DNAzymes have also been investigated in the field of
restenosis. DNAzymes were targeted against transcription
factor EGR-1 in a stented porcine model (Lowe et al 2001).
Inhibition of the neo-intimal growth was observed in this first
study of DNAzymes delivery to the arterial wall.

Surface functionalization
of nanoparticles for targeting

restenosis

Damaged endothelial cells within the coronary artery are
difficult drug targets for site-specific localization of the
nanoparticles upon systemic administration. In addition,
many of the drugs and genes used for the prevention and
treatment of intimal hyperplasia are known to produce
cytotoxic effects within the body. Systemic administration
of these drugs and genes would cause unwanted effects. In
order to enhance site-specificity, there are several strategies
that have been tried to functionalize the nanoparticle surface
in order to achieve better localization of the delivery systems
at the target site.

There are very few reported studies on active targeting
of damaged endothelial cells for the treatment of restenosis.
A common targeting moiety for endothelial cells is the
argentine-lysine-aspartic acid (RGD) tripeptide sequence
that is specific to the alpha(v)-beta(3) integrins present
abundantly on sprouting endothelial cells and certain tumor
types (Dijkgraaf et al 2007). Another alpha(v)-beta(3) inte-
grin specific peptide sequence is PHSRN (Mardilovich et
al 20006). Other endothelial cell targeting moieties based on
an amino acid sequence are YIGSR, and HWGF (Turunen
et al 2002; Jun and West 2005). VCAM-1 is a potential
biomarker present on atherosclerotic surface. By targeting
that biomarker, the delivery system would be highly local-
ized to the area of interest (Kelly et al 2006). A nanoparticle
delivery system modified with VINP28, a peptide specific
to VCAM-1, on the surface was shown to have preferential
affinity to the endothelial cells as compared to macrophages
or SMCs. Weissleder and colleagues (2005) produced a
library of small molecule endothelial cell-specific target-
ing moieties. These targeting moieties have not yet been
used in any restenosis studies. The use of PLGA-based
nanoparticles functionalized with an ICAM antibody was

recently shown to successfully target the endothelial cells
in vitro (Muro et al 2006).

Alternative localized delivery
Functionalization of nanoparticles can target specific cell
types. If a broad area within the vessel is the target there are
other strategies available. The use of local administration
using an infusion catheter as previously described with a
Dispatch®, Infiltrator®, or other cardiac infusion catheters is
one way to achieve local high levels of the therapeutic agent
(Tahlil et al 1997; Panyam et al 2002). Local administration
is also achieved through the use of drug and/or gene eluting
stents such as the Cypher®and Taxus® stents (Fishbein et al
2005a, 2005b; Kittleson et al 2005; Perin 2005; Tung et al
2006b). Other drug-coated stents using different designs,
such as biodegradable stents, as well as other systems are
being evaluated in preclinical and clinical studies (Eisenberg
and Konnyu 2006). Ex vivo application of the drug or gene
in the cells is also another possible way to reduce systemic
2fects of the administered drug. However, clinical application
of the ex vivo approach will be quite limited.

Conclusion and future outlook

There is a need to develop an alterative to stents and drug-elut-
ing stents for the treatment of coronary restenosis. In this review
paper, we have evaluated the current research in the field of
nanoparticulate carriers for delivery of drugs and genes. Future
work should focus on creating novel delivery systems that have
less cytotoxic effects. Much of the liposomal work done to

®

date, uses Lipofectamine® as the transfection agent. While this
transfection reagent works well in nonclinical settings, it has
shown to exhibit significant toxicity in porcine arteries upon
systemic administration (Armeanu et al 2000). Few studies have
utilized the advances in nanoparticle targeting for treatment of
restenosis. The cytostatic drugs currently being used may not be
the best option for the treatment of this disorder, as they do not
promote the growth of the endothelium. The work performed
in the field of active targeting has produced a number of cell-
specific targeting ligands that would enhance the delivery and
retention of the nanoparticles to the restenotic lesion, resulting
in an increase in the efficacy of the therapeutic agent. Future
studies should focus on creating biocompatible nanoparticles
with targeting moieties to allow for increased tissue-specific
delivery and cellular uptake with limited toxicity upon systemic
administration. Gelatin-based materials, for instance, may
be particularly well suited for this application, since there is
abundance of collagen at the site of the lesion. Gelatin-based
delivery systems also do not induce any inflammatory effect.
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The key to developing a successful therapy will be to promote
re-endothelialization, while inhibiting any SMC growth, or
vascular remodeling. Ideally, the therapy will be able to be
given in a noninvasive manner or in conjunction with the
initial clearing of the atherosclerotic plaque using an infusion
balloon catheter. With recent observations of thrombosis upon
long-term implantantation of the DES, it is clear that alterna-
tive therapeutic strategies are needed for effective treatment
of coronary restenosis. This review, hopefully, will provide an
impetus for further research in this area and, especially promote
the development of nanoparticulate delivery systems for both
drug and gene therapy of this disease.
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