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Abstract: Nanoparticles of zinc oxide (ZnO) are increasingly recognized for their utility in 

biological applications. In this study, the high-energy ball milling (HEBM) technique was 

used to produce nanoparticles of ZnO from its microcrystalline powder. Four samples were 

ball milled for 2, 10, 20, and 50 hours, respectively. The structural and optical modifications 

induced in the ‘as synthesized’ nanomaterials were determined by X-ray diffraction (XRD), 

scanning electron microscopy (SEM), transmission electron microscope (TEM), and photolu-

minescence emission spectra (PL). SEM and TEM results show a gradual decrease in particle 

size from around 600 to ∼30 nm, with increased milling time. The initial microstructures had 

random shapes, while the final shape became quite spherical. XRD analysis showed ZnO in 

a hexagonal structure, broadening in the diffracted peaks and going from larger to smaller 

particles along with a relaxation in the lattice constant c. The value of c was found to increase 

from 5.204 to 5.217 Å with a decrease in particle size (600 to ∼30 nm). PL result showed a 

new band at around 365 nm, whose intensity is found to increase as the particles size decreases. 

These remarkable structural and optical modifications induced in ZnO nanoparticles might prove 

useful for various applications. The increase in c value is an important factor for increasing the 

antibacterial effects of ZnO, suggesting that the HEBM technique is quite suitable for producing 

these nanoparticles for this purpose.
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Introduction
Nanoparticles have attracted much attention due to their distinct characteristics, which 

are unavailable in conventional macroscopic materials. For example, the reactions of 

nanoparticles with other materials can be more efficient due to their high surface-to-

volume ratios, in addition to the high percentage of atoms at the grain boundaries. Some 

studies have found biomedical applications for nanoparticles mainly as antibacterial 

material,1 cell imaging,2 drug delivery, and cancer therapy.3

Zinc oxide (ZnO) is a potential material for many applications such as gas sensors, 

short-wavelength light-emitting devices, blue lasers, transparent conductive coatings 

for flat panels, solar cells, surface acoustic wave devices, and so on.4–6 In addition to its 

novel physical properties,7–9 it belongs to a group of metal oxides that are characterized 

by their photocatalytic and photo-oxidizing ability against chemical and biological 

species.10 ZnO is, therefore, recognized for its utility in biological applications as an 

antibacterial material.11–14

Efforts have been focused on the synthesis and modification of ZnO particles 

for different applications. Different forms of ZnO nanostructures such as nanowires, 
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nanotubes, nanorods, and nanotetrapods were fabricated 

using different methods including thermal evaporation,8 vapor 

phase transport (VTP),15 metal-organic vapor-phase epitaxy 

(MOVPE) CVD,16 dip coating,17 hydrothermal route,18 electro-

chemical deposition19 and aqueous thermal decomposition.20 

Although the ZnO nanostructures fabricated using these 

methods have a high-purity and high-crystalline structure, the 

growth temperature is too high to make them compatible with 

low-temperature endurance substrates such as glass. The low 

production rate is also another problem. Therefore, we need 

a low-temperature, large-scale, and simple synthetic process 

for the synthesis of ZnO nanoparticles.

Recently, mechanical milling has proved to be an 

 effective and simple technique without involving high 

temperature treatment for the production of nanocrystalline 

powders, with the possibility of obtaining large quantities 

of materials with modified properties.21–25 In this technique, 

starting powder particles are trapped between highly kinetic 

colliding balls and the inner surface of the vial, which 

causes repeated deformation, rewelding, and fragmentation 

of premixed powders resulting in the formation of fine, 

dispersed particles in the grain-refined matrix. During the 

milling operation, two essential processes affect the particle 

characteristics.22 First, the cold welding process leads to 

an increase in average particle size of the composite. The 

second, fragmentation, process causes the breaking up of 

composite particles. Steady-state equilibrium is attained 

when a balance is achieved between these processes after a 

certain period of milling.

The major use of the conventional ball milling is to 

fracture the particles and to reduce the size, which is dif-

ferent from the newly established high energy ball milling 

(HEBM) method. In this new method a magnet is placed 

close to the cell to apply a strong magnetic pulling force on 

the magnetic milling balls, and therefore the impact energy 

is much higher than the conventional ball milling energy. 

In addition, different milling actions and intensities can be 

achieved by adjusting the cell rotation rate and the magnet 

position. Four cells can be run at the same time to produce 

large quantities of materials. The cell rotates at a controlled 

rate with a high speed of 300 rpm. Moreover, in the HEBM 

a longer milling time is generally required to activate and 

complete the structural and chemical changes, crucial for 

the production of the desired characteristics. Using HEBM, 

many new meta-stable materials have been successfully 

produced. These new meta-stable materials cannot be 

 synthesized using thermal equilibrium processes available 

over the past several decades,26 such as  amorphization 

of ZrNi alloys under a dynamic equilibrium between the 

mechanical driven disordering or amorphization process 

and thermal reordering process,27 mechanical alloying of 

nanocrystalline compounds, nanoparticle-reinforced metal 

nanocomposite,28 or nanoporous materials.29 Using con-

trolled reactive ball milling, the researchers have produced 

nanosized particles of metal oxides,30 nitrides,31 hydrides,32 

and carbides33 at room temperature. Therefore, in view of 

the importance of the HEBM method in nanostructures 

synthesis and the modification of their properties, we 

applied this technique in ZnO nanoparticles synthesis. 

Micro-structural (X-ray diffraction [XRD]), morphologi-

cal (scanning electron microscope [SEM] and transmission 

electron microscope [TEM]), and optical studies (photolu-

minescence emission spectra [PL]) on the ‘as-produced’ 

ZnO nanoparticles were investigated in this research. These 

studies have demonstrated remarkable results on this mate-

rial, which might be useful for various applications such as 

an antibacterial material.

Materials and methods
Commercially available ZnO powder (size ≈ 0.6–1 µm, 

purity 99.9%, Loba, Chemi, Pvt. Ltd, India) was milled in 

steel cells (250 mL) using hardened steel balls (diameter 

15 mm, weight 32 gm) in ambient atmosphere for different 

times ranging from 2 to 50 hours. The mechanical milling 

was performed in a horizontal oscillatory mill (Retsch, 

PM 400) operating at 25 Hz. The mixture ratio of steel balls 

and ZnO powders was around 15:1 by weight percent. The 

milled materials were used directly with no added milling 

media. Five balls were kept in each cell along with 10 g 

of the sample powder. Two parallel cells were used in 

this experiment (the total weight for the sample powder 

was 20 g). The as synthesized materials were characterized 

by X-ray diffraction, using an Ultima-IV (Rigaku, Japan) 

diffractometer with Cu Kα radiation, while the morphol-

ogy of the powders was analyzed using a field emission 

scanning electron microscope (FESEM), JSM-7500 F 

(JEOL-Japan) operated at 10 kV and also by a TEM. TEM 

images were obtained on a JEOL JEM 2000EX, operated 

at 200 kV. Photoluminescence emission spectra (PL) were 

recorded at room temperature using a fluorescence sectro-

fluorophotometer, model RF-5301 PC, Shimadzu, Japan. 

For PL measurements, equal quantities of the nanomaterials 

was dispersed in ethanol (5 mg in 5 mL) and then used for 

recording the spectra.
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Results
X-rays diffraction
The XRD patterns for the ZnO powders as purchased and 

after different milling times are shown in Figure 1. The dif-

fractograms display the reflection lines of hexagonal ZnO 

(space group: P 63 mc).34 It is clear from Figure 1 that with 

increasing milling time, the corresponding peaks become 

broader and less intense. This might be due to the reduction 

in the particle size.35 The XRD analysis shows a significant 

modification in the lattice constant c. The value of c is found 

to increase from 5.204 to 5.217 Å, while going from bigger 

particles to smaller ones (Table 1). Meanwhile no systemic 

change was observed in the values of lattice constants, 

a and b. The value of c was found to increase exponentially 

as a function of mailing time (particle size). This behavior 

is illustrated in Figure 2. The average particle size of the 

sample milled for 50 hours was also calculated using the 

 Debye–Scherrer formula and found to be around 22 nm.

Scanning and transmission electron 
microscopes
Figure 3(A1) shows the SEM image of the starting ZnO 

sample without HEBM. This sample contains particles 

of different sizes/shapes (covering the range 0.1–0.6 µm) 

and more than 80% of these particles are large (close to 

0.6 µm). SEM images of the ZnO samples milled for 2, 

10, 20, and 50 hours are presented in Figure 3E1, C1, D1, 

and E1, respectively. The images of the samples milled for 

2 and 10 hours, show particles of smaller size, but unsys-

tematic shapes (Figure 3B1 and C1, respectively), whereas 

the samples milled for 20 hours show smaller and almost 

 spherical shaped nanoparticles (Figure 3D1). The sample 

milled for 50 hours contains very fine nanoparticles with 

spherical shapes and almost equal sizes ∼30 nm (Figure 3E1). 

The average particle size estimated from SEM images is 

plotted as a function of milling time and shown in Figure 4. 

This figure shows an exponentially decreasing behavior with 

increased milling time.

TEM images for the ZnO samples before and after milling 

(Figure 5A2–E2) were also obtained. These images display 

similar trends to those observed by SEM images (Figure 3 

A1–E1). The sample milled for 50 hours (Figure 5E2) 

contains ultrafine particles of sizes in the range 20–30 nm, 

which are close to those observed by SEM (Figure 3E1). 

These sizes are also in agreement with that obtained by the 

Debye–Scherrer formula (∼22 nm). This is a remarkable 

result, achieved with this simple method for producing ultra-

fine spherical nanoparticles of ZnO on a large scale, which 

might be useful for various applications.

Optical properties
PL of ZnO nanocrystalline samples prepared by the 

HEBM technique at different times are shown in Figure 6. 
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Figure 1 X-ray diffracted peaks of ZnO nanoparticles before and after ball milled 
for different times.
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Figure 2 The value of the lattice constant c as a function of milling time.

Table 1 Lattice constants a, b, and c for ZnO nanoparticles 
before and after ball milling for different times

Milling time  
(h)

a  
(Å)

b  
(Å)

c  
(Å)

0 3.248190 3.248190 5.204515
2 3.255058 3.255058 5.208783
10 3.251544 3.251544 5.212723
20 3.253111 3.253111 5.214094
50 3.250677 3.250677 5.216862
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The samples were excited by 325 nm. The micro size mate-

rial (before milling) shows a single intense emission band at 

384 nm (Figure 6, curve a) along with a broader one covering 

the range of 420–600 nm, with a lesser intensity. The latter 

has its maximum intensity at around 440 nm. After milling 

for 2 hours, the band at 384 nm was found to decrease as a 

new band emerged at around 365 nm (Figure 6). The intensity 

of this new band increased with decreasing particle size. It 

is plotted as a function of milling time and found to have 

a linear relationship, as shown in Figure 7 (curve a). This 

relationship matched the theoretical function: y = 0.3x + 1.5, 

whose curve is plotted and shown in Figure 7 (curve b). The 

broad band with maximum intensity at 440 nm was found 

to shift to the higher wavelength region and become more 

prominent at the smallest particle size (30 nm). This shift in 

A1 B1

C1 D1

E1

Figure 3 Scanning electron microscope images of ZnO samples before and after 
milling: (A1) as purchased. (B1, C1, D1, and E1) for the samples ball milled for 2, 
10, 20, and 50 hours respectively.

Figure 5 Transmission electron microscope images of ZnO samples before and 
after milling; (A2) as purchased (B2, C2, D2 and E2) for the samples ball milled for 
2, 10, 20, and 50 hours respectively.
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Figure 4 Particle size as a function of milling time.
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Figure 6 Photoluminescence emission spectra of ZnO nanocrystalline samples 
prepared by ball milling at different times. The excitation wavelength is 325 nm. 
Abbreviation: PL, photoluminescence.
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band position resulted in a change in color of the samples. 

The initial color of the sample was white, but the color of 

the final product became green. The band at 384 nm is the 

UV near-band edge emission.36,37 The other broad band, 

peaking at 440 nm, was attributed to the deep defect levels 

of oxygen vacancies or interstitial zinc ions.38–41 Vendhausen 

et al42 assigned the green emission at 510 nm to the transition 

between the photoexcited holes and singly ionized oxygen 

vacancy.

Discussion
The present study demonstrates remarkable experimental 

results on ZnO material. A number of workers have produced 

this material using the same technique,21–25 but some of the 

modifications observed in this study have not been reported 

earlier. These include the final shapes of the nanoparticles, 

which became quite spherical (Figure 3E1). The other 

remarkable result is the lattice relaxation in z direction by 

means of a significant increase in value of the lattice constant c 

(Table 1). It is well known that milling is a process involving 

complex mechanical forces, therefore, it is expected that these 

forces act equally on all sides of the particles due to the long 

milling time (50 hours), resulting in the formation of quite 

spherical particles. In other words, a balance between the 

striking force causing fraction of the particles and the material 

resistance is achieved at particle size around 30 nm.  Obtaining 

nanoparticles of ZnO in this size (30 nm) is a remarkable 

result, maybe due to the use of the high-energy ball milling 

technique. Other investigators have reported41,43 that when the 

particles become small enough (typically hundreds of nm), 

further refinement cannot be observed due to equilibration of 

cold welding and fracturing. In these cases, this might be due 

to the use of the conventional ball milling technique, which is 

different from the high-energy ball milling used in our study. It 

has been reported that the impact energy of HEBM is typically 

1000 times higher than the conventional ball milling energy.43 

The major use of the conventional ball milling is to fracture 

the particles and to reduce the size, while in high energy 

ball milling, a longer milling time can be achieved, which 

can help to activate and complete the structural changes and 

chemical reactions which are crucial to produce the desired 

structural changes or chemical reactions. HEBM can perform 

most of the work normally performed by conventional ball 

milling. Therefore, conventional ball milling system cannot 

be used directly to conduct any HEBM work and specially 

designed ball mills with a higher milling energy are preferred 

for HEBM.43

Lattice relaxation of ZnO in z direction observed in our 

study has also been reported by a number of workers. For 

example, Bao et al44 reported on the observation of slightly 

higher c values for ZnO thin films prepared on quartz glass sub-

strates by sol–gel method. Hideyuki Maki et al45 claimed that 

a lattice relaxation occurs along the z-axis, which is due to the 

polarity occurring in that direction. In the present study, 

the increase in value of the lattice constant c might be due to 

the occurrence of strain in the nanoparticles as a result of loss 

of oxygen ions. It is quite possible that the continuous loss 

of oxygen ions during the milling (as could be seen from the 

PL results presented in Figure 6) might have induced such 

strain in the lattice of ZnO. Our view in this case is supported 

by the observation of other investigators such as Sun et al,46 

who have observed a linear decrease in value of the lattice 

constant c of ZnO with increasing oxygen pressure during 

the growth of ZnO film. The present result clearly shows a 

loss in oxygen ions as revealed from the PL spectrum; in this 

case it might be possible that the uppermost zinc ions were 

relaxed toward the outside of the surface by a significant 

value of the c lattice constant during the loss of oxygen ions. 

Moreover, there might also be modifications in the lumines-

cent centers inside the host of the nanoparticles, resulting in 

a huge shift in the emissions at 440 nm towards the higher 

wavelengths. However, emergence of a new band at around 

365 nm is  questionable. This band has a shorter wavelength 

than that of the band gap of ZnO (384 nm). This band cannot 

be assigned to any impurity inside the host (such as iron as 

contamination from the steel balls), because it shows emis-

sion above the band gap. Hence, we might speculate that there 

might be a new phase of ZnO, induced with a wider band gap 

due to the high temperature generated in the medium as a 

result of using HEBM. Ultrafine nanoparticles smaller than 

30 nm of ZnO might also be present, whose energy band gap 
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Figure 7 Photoluminescence intensity of the peak at 365 nm as a function of milling 
time (size of ZnO nanoparticles): (a) experimental curve, (b) theoretical curve. 
Abbreviation: PL, photoluminescence.
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is higher than the initial microstructures. However, this needs 

to be investigated using other techniques such as differential 

thermal analysis (DTA) or differential scanning calorimetry 

(DSC) to identify the origin of the 365 nm band.

ZnO nanoparticles with modified properties might have 

a potential application as an efficient antibacterial material, 

since a number of researchers have reported that ZnO has 

an antibacterial effect.11–14 This effect is increased with the 

increase of c value as revealed by Yamamoto et al.11 This 

slight change in the crystal structure of ZnO due to the 

increase in c value has a great effect on the amount of H
2
O

2
 

generated from the surface of ZnO crystals, which in turn is 

effective for the inhibition of bacterial growth.11 Moreover, 

this material was reported to show antibacterial activity 

in the neutral region (pH 7) without the presence of light. 

Therefore these ZnO nanoparticles, obtained using HEBM 

might be ideal for antibacterial applications at different 

places/environments.

Conclusion
The structural and optical modifications induced in ZnO 

powder using the HEBM technique were investigated. These 

include formation of quite spherical and very fine nanopar-

ticles of ZnO with almost equal sizes, lattice relaxation in the 

z-axis direction, deep level defects caused by oxygen loss, 

and emergence of a new PL band at 365 nm, which might be 

due to a new phase formation. These structural and optical 

modifications suggest that ZnO nanoparticles might have a 

potential application as an efficient antibacterial material. 

Moreover, the HEBM technique was found to be effective 

for producing ultrafine spherical nanoparticles of ZnO on a 

large scale, which might be useful for various applications.
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