ORIGINAL RESEARCH

RETRACTED ARTICLE: OCT4 accelerates tumorigenesis through activating JAK/STAT signaling in ovarian cancer side population cells

Zhengyi Ruan Xingyu Yang Weiwei Cheng

Department of Obstetrics and Gynaecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China

Correspondence: Weiwei Cheng Department of Obstetrics and Gynaecology, International Peace Maternity and Child Health Hospital, School of Medicine, 910 Hengshan Road, Shanghai Jiaotong University, Shanghai 200030, China Tel +86 170 5564 3379 Email wwcheng29@shsmu.edu.cn

Background: Although surgery, chemotherapy, and reactherapy elimine to blocally apparent ovarian tumor, the 5-year survival rate is no more than 45.0 Cancert em cells (CSCs) have been identified for precaution of tumor metastasis and recurrent ein many ends of carters including ovarian cancer. **Aim:** This study aims to explore the furthern of OCT4, a CSC marker, in ovarian cancer progression and to investigate its underlying metanism.

Materials and methods: By Hoechst side population (SP) technique, CSC-like SP cells from human ovarian cancer SKOV7 and A2780 cells were a blated and used for this study. shRNA and lentivirus targeting human *C*. *T4* gene were used to knock down OCT4 in SP cells and upregulate OCT4 in non-SP (NSP) cell stably. Peficial ib was used to inhibit JAK/STAT signaling. Cell counting kit-8, flow cytometry, and in viva kenograft model were used to evaluate the effects of OCT4/JAK/STAT on a viability, and resistance, apoptosis, cycle, and tumorigenesis of the SP cells. Immunor preserved to be used to detect the location of STAT6. **Result** ansults show that OCT4 was upregulated in the SP of SKOV3 and A2780 cells when

compared with the NS wells. Downregulation of OCT4 inhibited SP cell viability, tumorigenesis, a preduce cell drug revistance and induced a G2/M phase arrest, while upregulation of OCT4 control NSP cell malignant features. Besides, OCT4 upregulation in NSP cells increased the phospherelated levels of proteins in JAK and STAT families, especially in JAK1 and STAT6. Furthermore, the roles of apoptosis inhibition and viability, invasion, and tumorigenesis promo-

Collusion: Our study demonstrated that OCT4 accelerated ovarian cancer progression through activating JAK/STAT signaling pathway.

Keywords: OCT4, JAK/STAT signaling, ovarian cancer, side population

Introduction

Ovarian cancer is one of the most common gynecologic malignances in China, with potentially lethal consequences; in 2015, 52,100 new cases and 22,500 deaths were reported.¹ High-grade serous ovarian carcinomas, an aggressive subtype of ovarian cancer, account for 70% of ovarian cancer and are associated with low survival rates.² Although surgery, chemotherapy, and radiotherapy eliminate clinically apparent tumors, the 5-year survival rate is no more than 45%.³ Therefore, there is an urgent need to characterize the molecular pathogenesis of ovarian carcinoma.

Evidences have suggested that the recurrence of ovarian cancer may be activated by a subpopulation of tumor cells that exhibit stem cell-like traits^{4,5} and were named as cancer stem cells (CSCs). These cells not only display enhanced self-renewal traits like embryonic stem cells (ESCs) but also exhibit drug resistance and tumorigenic survival characteristics.⁶⁻⁹

Cancer Management and Research 2019:11 389-399

Construction of the set of the se

Thus, keeping a watchful eye on CSC population has been served as a novel strategy to avoid chemoresistance or tumor recurrence.^{10,11} How to eradicate CSCs to improve the survival of ovarian cancer patients after surgery with or without radio-/ chemotherapy becomes a challenging issue.

The reports related to CSCs in many kinds of cancer scenarios including ovarian cancer have been accumulating for the last 10 years. Several potential indirect mechanisms of CSC regulation have been proposed, such as the Ras/Raf/MEK/ERK, Notch, Hedgehog, phosphatidylinositol 3-hydroxy kinase/AKT (PI3K/AKT), and Janus-activated kinase (JAK)/STAT signaling pathways.^{12–16}

OCT4 (POU class 5 homeobox 1, POU5F1), a transcription factor, has the potential to maintain self-renewal and pluripotency in ESCs and primordial germ cells.17,18 OCT4A and OCT4B are the two transcript variants, which are encoded by OCT4 gene; they share a common carboxyl-terminus of 225 amino acids but consist of 360 and 255 amino acids, respectively.¹⁹ Generally, OCT4B is located in the cytoplasm, while OCT4A is located in the nucleus and has been associated with properties to maintain ESCs and primordial germ cells in an undifferentiated state and stem cell properties.¹⁹ Recently, Samardzija et al²⁰ have found that knockdown of OCT4A caused the obvious alterations in protein netwoi associated with cytoskeleton, metabolism, adhesion, prolifera tion, epithelial-mesenchymal transition, CSCs, and a resistance in ovarian cancer. However, the specific CT4 les of and its underlying molecular mechanism is the prog of ovarian cancer have not yet been corpletely cidated.

lore the fu Therefore, this study aims to tion of OCT4 in ovarian cancer prograssion d investigate its underlying mechanism. CSC rke side population (SP) cells excluded from the Hoeck, 33342 were used to build OCT4 knockdown cell model, d nor P (NSP) cells were used to ression 11 mode' rirst, we determined build OCT4 overe in SP . Use and explored its function the expression 1OC1 virtunce, cycle, and tumorigenesis of in the grow drug . Next, we searched the signaling pathway ovarian cancer related to OCT4 in gulation of ovarian cancer cell malignant phenotype transformation. Finally, we studied the effects of OCT4 and its activated signaling pathway in the progression of ovarian cancer.

Materials and methods Cell lines and cell culture

The human ovarian cancer cell lines SKOV3 and A2780 were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA); SKOV3 cells were grown in

McCoy's 5a modified medium (Biological Industries, Kibbutz BeitHaemek, Israel), while A2780 cells were cultured in DMEM (BI), containing 10% FBS (Thermo Fisher Scientific, Waltham, MA, USA) and 100 U/mL of penicillin (Thermo Fisher Scientific), as well as 100 μ g/mL of streptomycin sulfate (Thermo Fisher Scientific). And the cells were cultured in a humidified 5% CO₂ atmosphere at 37°C.

Cell transfection and RNA interference

For knockdown of the expression of OCT4 stably, the shR-NAs targeting human OCT4 (No. TP210267) gene was purchased from OriGene (Rockville vID, USA Peficitinib, an inhibitor of JAK, was purchased from MedChanExpress (Shanghai, China) and used to repress the K/STAT signaling. For upregulation of OCT1 and lentivirus of F11 OCT4 (No. RC211998L1, OriGene, was purch.

RNA extraction and tracture PCR (RT-PCR)

. Jom SKOV3 A2780 cells was obtained using Total P TRI ol reagent (Thermo Fisher Scientific) when the cells read ed confluent of 90%, referring to the manufacturer's ons. The ThermoScript reverse-transcription PCR instru stem (Promega Corporation, Fitchburg, WI, USA) was used RNA to cDNA, according to the manufacturer's proto ocols. Quantitative RT-PCR was carried out by SYBR Green CR master mix (Qiagen NV, Venlo, the Netherlands) in a ⁰ μL reaction system on a DA7600 Real-time Nucleic Acid Amplification Fluorescence Detection System (Bio-Rad Laboratories Inc., Hercules, CA, USA). The primers used were as follows: OCT4, 5'-ATGTGGTCCGAGTGTGGTTC-3' (forward) and 5'-GAGACAGGGGGAAAGGCTTC-3' (reverse); GAPDH, 5'-ATCATCCCTGCCTCTACTGG-3' (forward) and GAPDH, 5'-GTCAGGTCCACCACTGACAC-3' (reverse).

Western blotting analysis

Total proteins from cells were extracted using RIPA buffer containing protease inhibitor (Beyotime Institute of Biotechnology, Shanghai, China). The concentration of proteins in the sample was detected by a BCA protein assay kit (Thermo Fisher Scientific). The proteins from different groups were separated by 10% SDS-PAGE and electrotransferred to a polyvinylidene fluoride (PVDF) membrane (Merck Millipore, Billerica, MA, USA). Then, the PVDF membrane was then blocked with 5% nonfat milk for 1 hour and incubated with primary antibodies overnight at 4°C. Next day, the PVDF membrane was washed with 3× TBST, followed by incubation for 1 hour with horse radish peroxidase-labeled secondary antibodies diluted with 5% nonfat milk. For quantification, the protein bands were detected using an ECL system (Merck Millipore). GAPDH was used as an endogenous control for total protein. The primary antibodies in this study were all purchased from Abcam (CA, USA).

Cell counting kit-8 (CCK-8) assay

Cell proliferation was detected by using a CCK-8 assay (Dojindo, Tokyo, Japan); 1×10^3 SKOV3 or A2780 cells were seeded in 96-well plates in triplicate. Cell proliferation was monitored at indicated times (24, 48, 72, 96, and 120 hours). After incubation for the designated times, 10 µL of CCK-8 solution was added to each well and incubated for 3 hours and the absorbance at 450 nm was determined by a microplate reader (Bio-Rad Laboratories Inc.).

Clone formation assay

Cells given different treatments were routinely digested with trypsin during the logarithmic growth phase. Then, cells were resuspended at 200 cells/mL with culture medium containing 10% FBS and seeded into a 6-well plate at 1 mL/well. Next, 3 mL of 10% FBS medium was added to each well and incubated for 14 days. Next, cells were washed with PBS thrice and fixed with 4% paraformaldehyde for 15 minutes an extra stained with 0.1% crystal violet solution for 20 minutes. The number of colonies was counted directly under microscome.

Cell apoptosis

After being treated with different treatment 32.48 hours, the SKOV3 or A2780 cells were have ted and state d with propidium iodide (PI) and Annean V-N°C (KeyGen, Nanjing, China) followed by deteration with the CD-FACSCanto[™] II (BD Bioscience, Sate Jose, CA, USA) for flow cytometry analysis. The percentage of cell apoptosis population was evaluated by FlowJo 7.0 software

Cell vicle For cell cycle analysis, SKOV3 or A2780 cells were synchronized with set un-free media for 12 hours. Then, the floating and attached cells were collected and fixed in 70% ethanol at 4°C for 3 hours after 48 hours of the treatment. Next, the cells were treated with RNase (20 μ g/mL) at 37°C for 30 minutes and stained with PI using PI-staining buffer at a concentration of 5 μ g/mL (KeyGen) at 4°C for 30 minutes in the dark. The stained cells were analyzed by BD-FACSCanto II to calculate the percentages of cells in various phases of cell cycle by using FlowJo 7.6 software. At least 1×10⁵ cells were counted for each test.

SP analysis

For SP analysis, SKOV3 or A2780 cells were trypsinized and suspended at a density of 1×10^6 cells/mL in McCoy's 5a with 2% FBS. Then, the cells were stained with 5 µg/mL of Hoechst 33342 at 37°C for 90 minutes. Next, the cells were centrifuged and suspended in ice-cold PBS with 2% FBS containing 2 µg/mL PI. The flow cytometry analysis was performed using the LSRFortessa cell analyzer (BD Biosciences, San Jose, CA, USA). The data were analyzed by FlowJo 7.6 software. To detect the expression of OCT4 in the SP and NSP of SKOV3 or defined and SKOV3 or A2780 cells sorted using the 3D FACS. Via II cell sorter (BD Biosciences) were used as Western betting and RT-PCR analysis.

Cell invasion

For cell invariant assay, 24-well aranswell plate (8.0 μ m, Corning 1.4 exported, Consing, NY, USA) was used to measure cell invaries capability with different treatments. Bring the upper surface of the membrane was pre-coated ith Matrigel basement membrane matrix (BD Biosciences); ×10⁵ SKOV for A2780 cells were resuspended in 200 μ L radium with 2% FBS and seeded into the upper chambers, and output complete medium supplemented with 10% FBS updded into the lower chamber as a chemoattractant. After 48 hours of incubation, the invading cells attached to the lower surface were fixed, stained, and counted.

Immunofluorescence staining

Immunofluorescence staining was performed in accordance with a previous study.²¹ Briefly, cells were seeded at 10% confluence onto small glass coverslips placed in 24-well plates. Twelve hours later, different treatments were performed and then the coverslips were removed, washed with $3 \times$ PBSs, and fixed with 4% paraformaldehyde in PBS for 15 minutes. After pushing through the cytomembrane (0.1%)Triton, 0.1% sodium citrate for 10 minutes) and blocking in 5% goat serum for 1 hour, the cells were incubated with STAT6 primary antibodies (1:100) overnight at 4°C. After washing with $3 \times PBS$, the cells were incubated with a 1:500 dilution of a fluorescent tag (Alexa Fluor 488; Thermo Fisher Scientific) and conjugated with secondary antibodies for 30 minutes in the dark. Next, the cells were treated with DAPI (1:10,000, Invitrogen) for 5 minutes, washed 3× with PBST, covered with an antifade mounting medium, and placed onto microscope slides. The location of STAT6 was measured using a laser scanning microscope (TCS SP2-AOBS-MP; Leica Microsystems, Wetzlar, Germany).

Xenograft model

At the age of 4 weeks, 5×10⁶ SKOV3/A2780 SP cells treated with sh-NC or sh-OCT4 or NSP cells treated with Lentiv-NC, Lentiv-OCT4, or Lentiv-OCT4+ peficitinib were injected subcutaneously into the armpit skin of female nude mice (BALB/c-nu/nu, Jackson Laboratory, Beijing, China). The engrafted mice were inspected every day by visual observation and palpation. After 28 days, the animals were euthanized by cervical dislocation. The tumors were isolated and evaluated by the weight. All procedures involving animals and their care were conducted in conformity with the National Institutes of Health Guide for Care and Use of Laboratory Animals (NIH Pub. No. 85-23, revised 1996) and was approved by Animal Care and Use Committee of the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.

Statistical analyses

Each experiment was performed at least three times. Statistical analyses, including two-tailed tests, unpaired Student's *t*-tests, and a one-way ANOVA, were performed using SPSS 23.0. Mann–Whitney *U* tests were conducted to analyze non-normally distributed data sets. *P*-values <0.05 we considered significant.

Results

OCT4 is highly expressed in the ovarian cancer cells

To explore the effects of OCT4 in the progression of varian cancer, we sorted the SP population of SUDV3 and A2780 cells (excluded the Hoecher 33342 dye). Result showed that both the mRNA and provide expression of OCT4 were significantly elevated in the SP concernen compared with that in the

SP

NSP population, which were determined by Western blotting (Figure 1A) and RT-PCR analysis (Figure 1B), respectively. The data indicated that OCT4 might play an important role in the stemness and drug resistance in ovarian cancer.

Downregulation of OCT4 alleviates cell drug resistance and inhibits cell proliferation and tumorigenesis in the SP of ovarian cancer cells

Next, we investigated the function of downregulation of OCT4 in the proliferation, cycle, tumorigener ug resistance an of the SP of SKOV3 or A2780 cells rigure 2A, h howed the knockdown efficiencies of shRNA-T4 in SP S OV3 and SP A2780 cells and that the rotein expression OCT4 was downregulated apparent, when the SP SN 3 and A2780 cells were transfected w NA-OCT4. CCK-8 results showed that OCT downreght ion significantly enhanced the P SKOV3 a SP A2780 cells (Figure drug sensibil , or 2C, D), as well as real ed cell proliferation ability (Figure The result of flow tometry showed that knockdown 2E-Fof T4 induced G2/M phase arrest of the SP of A2780 and 3 cells (Figure 2G, H). Moreover, knockdown of OCT4 SK significantly reduced the tumorigenesis (Figure 2I, J) of the SP Overall, the above results revealed that downregulated 14 ... aired the malignancy of SP cells in ovarian cancer.

Ipregulation of OCT4 enhances the proliferation and drug resistance of the NSP of ovarian cancer cells

To further explore the function of OCT4 in ovarian cancer progression, we also investigated the effects of overexpression of OCT4 in the proliferation, cycle, and drug resistance of the NSP of SKOV3 or A2780 cells. Figure 3A, B showed that the expression of OCT4 protein in the NSP of SKOV3

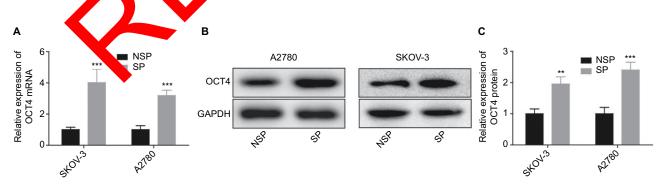
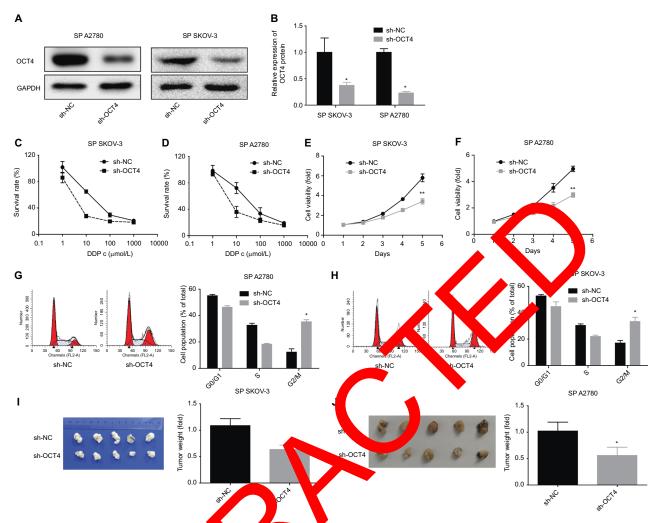
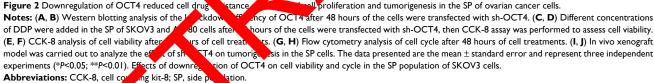




Figure I OCT4 was overexpressed in the SP of ovarian cancer cells.

Notes: (A–C) Western blotting and RT-PCR were carried out to analyze the protein and mRNA expressions of OCT4 in the SP and NSP population of SKOV3 and A2780 cells. **P< 0.01; ***P<0.001.

Abbreviations: NSP, non-SP; SP, side population.

ously elated when the cells were and A2780 cell vas o ompared with the control infected .th Le iv-OC group, CT4 ox ression significantly reduced the drug sensitivity ure 3C, D) and promoted cell viability (Figure CP of SKOV3 and A2780 cells. In addition, 3E, F) of the upregulated OC14 induced S-phase arrest in the NSP cells (Figure 3G, H). The above results confirmed that OCT4 upregulation conferred NSP cells with drug resistance and malignant phenotype in ovarian cancer.

OCT4 activates JAK/STAT signaling pathway in the NSP of ovarian cancer cells

To explore the underlying mechanism of OCT4 in the progression of ovarian cancer, we assessed the expressions of proteins related to JAK/STAT, PI3K/AKT, and NF-κB signaling pathways. Results showed that downregulation of OCT4 in the NSP SKOV3 and A2780 cells dramatically suppressed the phosphorylation of JAK1 and STAT6 but had no influence on the phosphorylated levels of AKT and NF-κB (Figure 4A, B). To further investigate the role of JAK/STAT signaling in OCT4-mediated ovarian cancer development, we also detected the effect of OCT4 on the phosphorylated levels of proteins of JAK family (JAK1, JAK2, JAK3, and Tyk2) and STAT family (STAT1/-2/-3/-4/-5/-6). As shown in Figure 4C, D, phosphorylated levels of JAK1, JAK2, JAK3, and Tyk2 were all elevated when treated with the NSP SKOV3 or A2780 cells with Lentiv-OCT4, with the phosphorylated level of JAK1 increased highest. Besides, the phosphorylated levels of STAT1/-2/-3/-4/-5/-6 were also elevated when treated

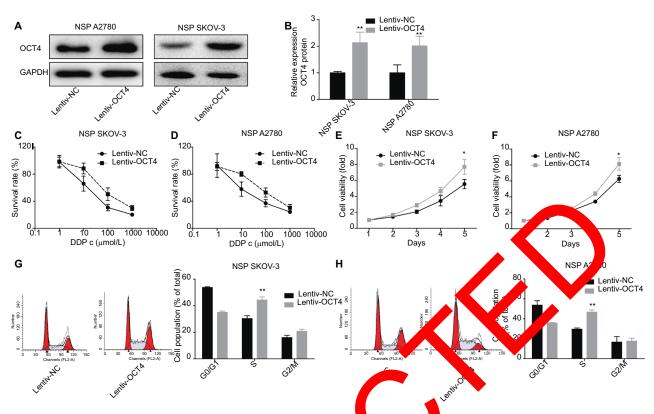
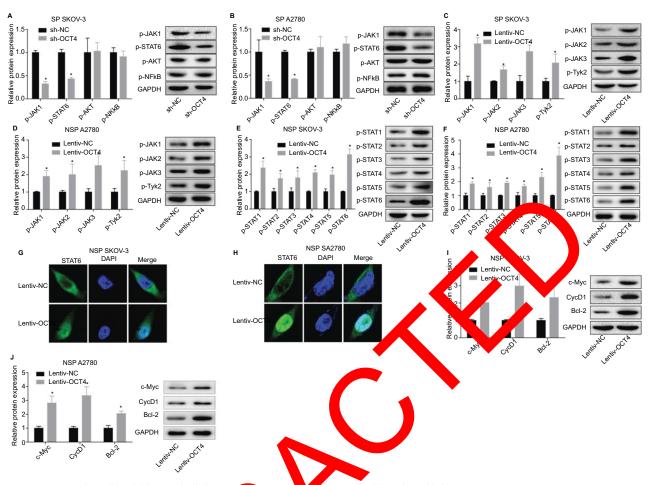
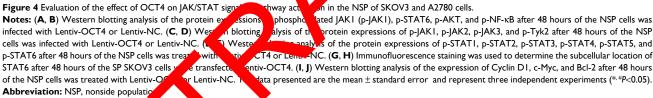


Figure 3 Effects of OCT4 overexpression on cell functions and drug resistance in the NSP of OV3 and A278 ells. Notes: (A, B) Western blotting was carried out to analyze the protein expressions of OCT4 r 48 hours of e SP cells were treated with Lentiv-OCT4 or Lentiv-NC, respectively. (C, D) Different concentrations of DDP were added in the NSP of St V3 and A278 after ours of the cells were treated with Lentiv-OCT4 or Lentivsell proliferation after 48 hours of the NSP cells was infected with Lentiv-OCT4 NC, and then CCK-8 assay was performed to assess cell viability. (E, F) CCK-8 f the N or Lentiv-NC. (G, H) Flow cytometry was used to assess cell cycle after 48 hour were infected with Lentiv-OCT4 or Lentiv-NC. The data presented are the mean \pm standard error and represent three independent experiments (*P<0.0 Abbreviations: CCK-8, cell counting kit-8; NSP, non-SP; SP, side g

especially 1 with the NSP cells with Lentiv-OC7 STAT6 (Figure 4E, F). According to the, we be formed immunofluorescence staining to determine the subce lar location of STAT6 in the presence of centiv-OCT4. Results showed that overexpression of OCT ansle ates STAT6 from cytoplasm to nuclear in the MCP cells, Figure 4, H). Moreover, the ls of C D1, c-Myc, and Bcl-2 protein express on le the NSP cells were infected with were all in pased y Lentiv-OCT4 are 4I, J). Together, these results showed that OCT4 promo d ovarian cancer development through activation of JAK/SIMT signaling pathway.

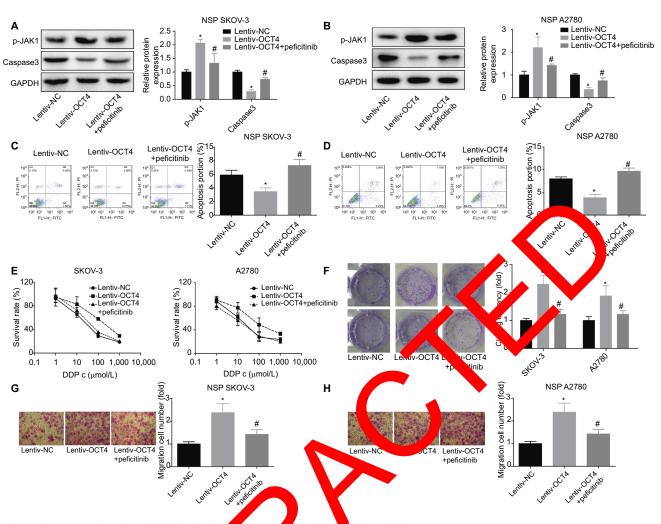

OCT4 accelerates ovarian cancer progress through activation of JAK/STAT signaling pathway

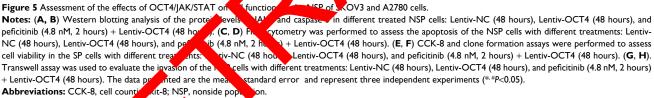

Finally, we evaluate the role of JAK/STAT signaling in the OCT4-induced oncogenes in ovarian cancer NSP SKOV3 or A2780 cells. Peficitinib, an inhibitor of JAK, was used to repress the activation of JAK/STAT signaling. OCT4

upregulation decreased the expression of caspase-3 and inhibited cell apoptosis, but this effect was abolished when adding peficitinib in both the NSP of SKOV3 and A2780 cells (Figure 5A–D). Furthermore, CCK-8, clone formation, and Transwell assays were carried out to evaluate the effects of OCT4/JAK/STAT on the drug resistance and invasion of the NSP cells, and results showed that the promotion of drug resistance (Figure 5E), clone formation (Figure 5F), and invasion abilities (Figure 5G–H) induced by OCT4 upregulation was neutralized when adding peficitinib in the NSP SKOV3 and A2780 cells. Besides, upregulation of OCT4 promoted the tumorigenesis of the SP SKOV3 and A2780 cells, and this effect was impaired when adding peficitinib (Figure 6). All results suggested that OCT4 promoted ovarian cancer progress through activation of JAK/STAT signaling pathway.

Discussion

Ovarian cancer has been reported to have the highest mortality rate among all female reproductive system cancers.²² High





mortality is attribut d to late diagnosis of the disease and erapy. A umulated evidence has ineffectiveness of ch. e of SCs might account for the suggested t existe. a th resistan of ovar h cancer conventional chemotherapy or radiation er2 fore, agents capable of vanishing CSC popula on are imperative for improving the clinical outcomes of ova. In cancer patients. And this study illustrated that OCT4 was highly expressed in SP population of the ovarian cancer cell lines SKOV3 and A2780 compared with the NSP population. Upregulation of OCT4 accelerated the progression of ovarian through activating JAK/STAT signaling with respect to promotion of the viability, invasion, and tumorigenesis and induction of drug resistance of the SP in ovarian cancer cells.

SP cells are enriched with CSCs in a variety of carcinomas.^{25–28} These cells have been isolated from malignancies,

including ovarian cancer.²⁹ In general, SP has been served as a practical method to enrich and isolate CSCs from many tumor tissues and cell lines.³⁰ Hu et al³¹ demonstrated that SP population separated from overall cancer cells indeed have the properties of CSCs. And in this study, we found that the SP population of ovarian cancer SKOV3 and A2780 cells highly expressed the ESCs marker, OCT4, compared with that in the NSP cells, which was consistent with the previous study.³¹ OCT4 is reported to be more significantly overexpressed in poorly differentiated tumors than in welldifferentiated tumors.32 OCT4 is a well-documented marker for CSC in ovarian cancer, and it plays key roles in tumor cell growth, survival, metastasis, and chemoresistance in vitro and in vivo models of ovarian cancer.²⁰ Similarly, in this study, we demonstrated that downregulation of OCT4 alleviated the chemoresistance to DDP of the SKOV3 and

A2780 SP cells. Best les, in this on of proliferation and tumorigenesis and as et of a G2/M phase were induced by OCT4 downreg blacon in the SP cells.

We also observe that overexpression of OCT4 increased the phosphorylated activation of JAK1-3 and Tyk2 and STAT1-6 and accelerated the translocation of STAT6 from cytoplasm to nuclear, suggesting that OCT4 upregulation activated JAK/STAT signaling. In the canonical pathway, JAK/ STAT signaling becomes active upon binding of an extracellular ligand to a transmembrane receptor, eventually, STAT dimerizes are phosphorylated and move to the nucleus to modulate the transcription activities of its downstream target genes.³³ JAK/STAT signaling pathway plays a vital role not only in the transformation of stationary epithelial cells to invasive cells,^{34,35} and cell migration,^{36–38} but also in maintenance of stem cell self-renewal. For example, Flaherty et al³⁹ found that chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in *Drosophila*. Inhibition of the JAK-STAT represses tumor initiation and clonogenic recovery of prostate CSCs.⁴⁰ Besides, Kim et al⁴¹ suggested that the IL-6/JAK1/ STAT3 signal transduction pathway plays an important role in the conversion of non-CSCs into CSCs through regulation of OCT4 gene expression. In ovarian cancer, study demonstrated that inhibition of the JAK2/STAT3 pathway by the addition of CYT387 suppressed the stemness profile in chemotherapytreated residual ovarian cancer cells.¹² And our results were consistent with these studies, in which we indicated that inhibition of SIRT/STAT signaling with peficitinib significantly destroyed the roles of OCT4 upregulation in cell proliferation, invasion, and tumorigenesis promotion and cell apoptosis repression in NSP SKOV3 and A2780 cells.

Conclusion

Our study demonstrated that OCT4 was highly expressed in the SP population of SKOV3 and A2780 ovarian cancer cells. Downregulation of OCT4 distinctly decreased the viability, tumorigenesis, and drug resistance of SP cells, and OCT4 upregulation endowed the NSP of ovarian cancer cells malignant features. Moreover, we also revealed that JAK/ STAT signaling inhibition alleviated the tumor-feeding effects caused by the upregulation of OCT4 in NSP cells (Figure 7). Overall, our study suggested that OCT4/JAK/STAT should be served as a potent target for ovarian cancer treatment.

Acknowledgment

This work was sponsored by the National Natural Science Foundation of China (No. 81370727, 81501256), Shanghai Municipal Commission of Health and Family Planning (20174Y0051, 201640361) and The Interdisciplinary Program of Shanghai ato Tong University (No. YG2016MS42).

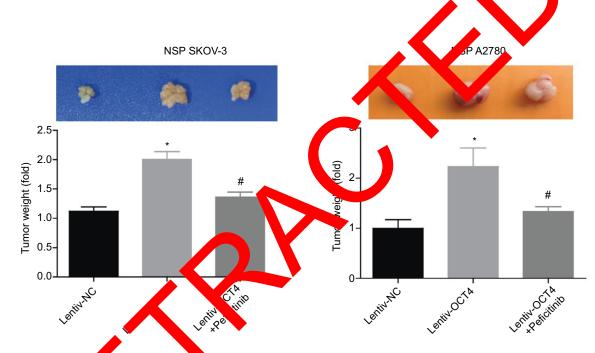


Figure 6 Detection of the effect of OCT4/JAK/STAT on tumorigenesis of the NSP of SKOV3 and A2780 cells. Notes: In vivo xenograft, to del analysis of the effect of OCT4/JAK/STAT on tumorigenesis. The data presented are the mean \pm standard error and represent three independent experiments $\frac{1}{2}$ P<0.05) Abbreviation: NSP, nonside uppendent.

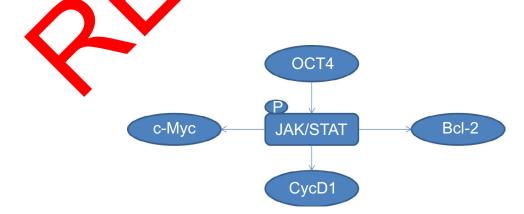


Figure 7 Graphical abstract of this study.

Notes: OCT4 activates JAK/STAT signaling, then promotes the expression of Cyclin D1, c-Myc, and Bcl-2, accelerating the tumorigenesis of NSP cells in ovarian cancer. Abbreviation: NSP, nonside population.

Disclosure

The authors report no conflicts of interest in this work.

References

- Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–132.
- Coscia F, Watters KM, Curtis M, et al. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status. *Nat Commun.* 2016;7:12645.
- Adams SF, Benencia F. Immunotherapy for ovarian cancer: what are the targets of the future? *Future Oncol.* 2015;11(9):1293–1296.
- 4. Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. *Cancer Res.* 2005;65(8):3025–3029.
- Ahmed N, Abubaker K, Findlay JK. Ovarian cancer stem cells: molecular concepts and relevance as therapeutic targets. *Mol Aspects Med.* 2014;39:110–125.
- Chen X, Zhang J, Zhang Z, Li H, Cheng W, Liu J. Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma. *Hum Pathol.* 2013;44(11):2373–2384.
- Kim DK, Seo EJ, Choi EJ, et al. Crucial role of HMGA1 in the selfrenewal and drug resistance of ovarian cancer stem cells. *Exp Mol Med.* 2016;48:e255.
- 8. Abubaker K, Latifi A, Luwor R, et al. Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. *Mol Cancer*. 2013;12:24.
- Wang L, Duan W, Kang L, et al. Smoothened activates breast cancer stem-like cell and promotes tumorigenesis and metastasis of breast cancer. *Biomed Pharmacother*. 2014;68(8):1099–1104.
- Ferrari P, Nicolini A, Carpi A. Targeted therapies of metastatic breast cancer: relationships with cancer stem cells. *Biomed Pharmacoth* 2013;67(6):543–555.
- Aalaoui-Jamali M, Bijian K, Batist G. Emerging drug discovery approaches for selective targeting of "precursor" metastatic broast cancer cells: highlights and perspectives. *Am J Transl Res.* 2012 (5):41–444.
- Abubaker K, Luwor RB, Zhu H, et al. Inhibition of the JAK2 TAT3 pathway in ovarian cancer results in the loss of the cer steps. (1) the characteristics and a reduced tumor burden. BUS Cancer 2, 4;14:317.
- 13. Foster R, Buckanovich RJ, Rueda BR. Over an cancer steapells: working towards the root of stemness. *Cancer* 4, 2013;338(1), 17–157.
- Zhou J, Wulfkuhle J, Zhang H, et a Activation of the PTEN atTOR/ STAT3 pathway in breast cancer cem-like cells in quired for viability and maintenance. *Proc Natl Area Sci USA*. 2007;104. 2):16158–16163.
- 15. Bleau AM, Hambardzumy 20, Ozawa Cet al. PTEN/Pi3K/Akt pathway regulates the side population phenotope and ABCG2 activity in glioma tumor stem-like cells. *Cell. and cell*. 2009;11):226–235.
- Sunayama J, Martin K, Satan et al. Constalk between the PI3K/ mTOR and Max/ERK nathways work of in the maintenance of selfrenewal an aumoriger sty of gliobh. Joma stem-like cells. *Stem Cells*. 2010;28(1):1930-1000
- Samardzija C, Lean M, Findlay JK, Ahmed N. Attributes of Oct4 in stem cell biology perspectives on cancer stem cells of the ovary. J Ovarian Res. 2012; 1:37.
- Wang X, Dai J. Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. *Stem Cells*. 2010;28(5):885–893.
- 19. Pesce M, Schöler HR. Oct-4: gatekeeper in the beginnings of mammalian development. *Stem Cells*. 2001;19(4):271–278.
- 20. Samardzija C, Greening DW, Escalona R, et al. Knockdown of stem cell regulator Oct4A in ovarian cancer reveals cellular reprogramming associated with key regulators of cytoskeleton-extracellular matrix remodelling. *Sci Rep.* 2017;7:46312.

- Chang HM, Cheng JC, Taylor E, Leung PC. Oocyte-derived BMP15 but not GDF9 down-regulates connexin43 expression and decreases gap junction intercellular communication activity in immortalized human granulosa cells. *Mol Hum Reprod*. 2014;20(5):373–383.
- 22. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. *CA Cancer J Clin.* 2013;63(1):11–30.
- Chen J, Wang J, Zhang Y, et al. Observation of ovarian cancer stem cell behavior and investigation of potential mechanisms of drug resistance in three-dimensional cell culture. *J Biosci Bioeng*. 2014;118(2):214–222.
- 24. Sang XB, Sun KX, Wang LL, et al. Effects and mechanism of RhoC downregulation in suppressing ovarian cancer stem cell proliferation, drug resistance, invasion and metastasis. *Oncol Rep.* 2016;36(6):3267–3274.
- Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line *Proc Natl Acad Sci* U SA. 2004;101(3):781–786.
- Hirschmann-Jax C, Foster AE, Wulf Gf, Goodell MA, Cenner MK. A Distinct "Side Population" of cells in her an tumor cells inplications for tumor biology and therapy. *Col Cycle*, p005;4(2):201–205.
- 27. Haraguchi N, Utsunomiya T, Joue H, et al. Corracter ation of a side population of cancer cell from humogastron and system. *Stem Cells*. 2006;24(3):506–5
- Wang J, Guo LP, Chai LZ, Luc X, Lu Shi dentification of cancer stem cell-like side sopulation certain humo masopharyngeal carcinoma cell line. *Caput.* 75, 2007;67(8). 140:2724.
- Patrawala L, Calhou T, Schneider-D, oussard R, Zhou J, Claypool K, Tang DG, Side populations enriched in tumorigenic, stem-like cancer cells and ABCG2+ and BCG2- cancer cells are similarly tumoritic. *Cancer Res.* 2005;65(14):6207–6219.
- 30. u C, Alman BA tide population cells in human cancers. *Cancer Lett.* 28;268(1):1–9.
- 31. H. Mcarthue 2, Jaffe RB. Ovarian cancer stem-like side-population of the tumourigenic and chemoresistant. *Br J Cancer*. 2010;102(8):1276–1283.
- 32 pc. 24 pt I, Thomson MW, Carey VJ, et al. An embryonic stem celllike gene expression signature in poorly differentiated aggressive human tumors. *Nat Genet*. 2008;40(5):499–507.
 - Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. *Gene.* 2002;285(1–2):1–24.
- Silver DL, Geisbrecht ER, Montell DJ. Requirement for JAK/STAT signaling throughout border cell migration in *Drosophila*. *Development*. 2005;132(15):3483–3492.
- Silver DL, Montell DJ. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in *Drosophila*. *Cell*. 2001;107(7):831–841.
- Yamashita S, Miyagi C, Carmany-Rampey A, et al. Stat3 controls cell movements during zebrafish gastrulation. *Dev Cell*. 2002;2(3):363–375.
- Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. *Nat Rev Cancer*. 2005;5(5):355–366.
- Melchionna R, Bellavia G, Romani M, Napolitano M. C/EBPgamma regulates wound repair and EGF receptor signaling. *J Invest Dermatol.* 2012;132(7):1908–1917.
- Flaherty MS, Salis P, Evans CJ, et al. chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in *Drosophila*. *Dev Cell*. 2010;18(4):556–568.
- Kroon P, Berry PA, Stower MJ, et al. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. *Cancer Res.* 2013;73(16):5288–5298.
- Kim SY, Kang JW, Song X, et al. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. *Cell Signal*. 2013;25(4):961–969.

Cancer Management and Research

Publish your work in this journal

Cancer Management and Research is an international, peer-reviewed open access journal focusing on cancer research and the optimal use of preventative and integrated treatment interventions to achieve improved outcomes, enhanced survival and quality of life for the cancer patient. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/cancer-management-and-research-journal

Dovepress