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Abstract: Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both 
of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are 
caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, 
targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the 
body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological 
transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation 
between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD. 
Keywords: CYP450, liver metabolism, lipid accumulation, monooxygenases, alcoholic fatty liver disease, non-alcoholic fatty liver 
disease

Introduction
Liver metabolism disorders are primarily caused by an imbalance in lipid metabolism, which leads to the excessive 
accumulation of triglycerides (TG) and cholesterol (CHOL) in the liver. In addition, fatty metamorphosis induces liver 
inflammation and oxidative stress (OS), leading to cellular dysfunction, necrosis, and liver fibrosis. If untreated, cirrhosis 
develops and/or liver failure may occur.1 The global prevalence of hepatic lipid metabolism diseases is 32.4%, posing 
a huge burden on global health.2,3 Cytochrome P450 (CYP450) monooxygenases are abundant in the liver and essential 
for the metabolism of endogenous and exogenous compounds, including fatty acids. Thus, CYP450 serves as a novel 
target for the prevention and treatment of hepatic lipid metabolic diseases.4 Here, we summarised what is known about 
the relationship between hepatic CYP450 and lipid metabolism disorders.

Overview of CYP450
Naming and Distribution of CYP450
CYP450 belongs to a multifunctional redox superfamily.5 The discovery of it in rat liver microsomes dates back to 1958.6 

In its reduced state, CYP450 maximum absorption peaks at 450 nm, which is the reason for its name.7 The CYP cDNA 
encodes 420–560 amino acids with a molecular weight of approximately 50 kDa, and has a conserved structural fold.8 

CYP nomenclature is based on their sequence similarity, with a cut-off of 40% defining a family member and 55% or 
more defining a subfamily member.9 There are 18 known families and 43 known subfamilies of CYP450.10 Among them, 
the CYP1, 2, and 3 families are the most abundant in the human liver, accounting for approximately 70% of the total 
hepatic CYP450 content.11 CYP450 is widely distributed in the human body, and differential spectroscopy can detect its 
expression in various organs,12 including the liver, intestine, pancreas, brain, lungs, adrenal glands, kidneys, bone 
marrow, mast cells, skin, ovary and testis; however, experimental tests revealed that it is mainly expressed in the 
liver.13 In addition, the distribution of CYP450 in the liver is also different. For example, CYP1A is mainly expressed in 
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the hepatocytes surrounding the small hepatic veins,14 while CYP3A is preferentially expressed in hepatocytes in the 
central area of the hepatic lobular.15

Structure and Function of CYP450
CYP450 is mainly distributed in the endoplasmic reticulum and mitochondrial inner membrane.16 It has a unique 
structure and is one of the most versatile biocatalysts in nature. CYP450 metabolises exogenous compounds, including 
drugs, ensuring their efficacy and controlling toxicity.11 Additionally, it catalyses endogenous substrates, including 
arachidonic acids, estradiol, cholesterol, vitamin D, and neurotransmitters.17 Its structure consists of 12 α helices and 
antiparallel β-folds,18 and is divided into cytosolic domain (CD), transmembrane domain (TD) and coheme, which is the 
source of CYP450 catalytic activity.19 Heme achieves electron transfer through the protoporphyrin structure20 (Fe3+ is 
located in the center of the site and binds to four nitrogen atoms in the same plane while binding to the sulfhydryl group 
of the bottom cysteine): (1) the substrate binds to the active center of the enzyme to form a complex of high iron ions.21 

(2) CYP450 reductase (POR) slowly transfers an electron from Reduced Nicotinamide Adenine Dinucleotide Phosphate 
(NADPH) to reduce iron to bivalent.22 (3) oxygen atoms are introduced into the substrate structure, oxidising ferrous to 
trivalent iron and producing peroxy ions.23 (4) cytochrome B5 achieves a second electron transfer to generate a molecule 
of water, and the CYP450 returns to the original position to continue to prepare for the next round of catalytic reaction, 
achieving cyclic catalysis.24 In the catalytic process, CYP450 interacts not only with POR and cytochrome B5, as 
mentioned above, but also with other CYP450 subtypes.12 For instance, during alcohol metabolism, CYP2E1 not only 
up-regulates its expression but also indirectly up-regulates the expression of CYP2A5.25

Correlation of CYP450 with Alcoholic and Non-Alcoholic Fatty Liver 
Disease
Recent meta-analyses indicate that the prevalence of fatty liver disease in the global adult population is increasing 
annually, with a worldwide prevalence of 30% and is one of the leading causes of death worldwide.26,27 Fatty liver 
diseases can be categorised into alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) 
based on their pathogenesis.18 The root cause of it is an imbalance in the metabolism of triglycerides, cholesterol, and 
other lipids, which leads to their excessive accumulation in the liver.28 As a class of metabolic enzymes mainly expressed 
in the liver, CYP450 has a wide spectrum of substrates in the liver, almost covering all metabolic reactions in the liver, 
and maintaining the balance of lipid metabolism in the liver. Therefore, there is a dynamic balance between CYP450 and 
hepatic lipid metabolism. Disruption in CYP450 expression drives hepatic mitochondrial dysfunction and β-oxidation 
impairment, stimulating oxidative stress, endoplasmic reticulum stress, and inflammatory responses that exacerbate lipid 
metabolism disorders (Table 1).29,30 By contrast, correcting CYP450 expression delays disease progression.

Correlation Between CYP450 and AFLD
AFLD progression is closely related to the amount and duration of alcohol consumption.61 Excessive alcohol consump-
tion leads to elevated CYP450 activity in hepatic microsomes. This results in reactive oxygen species (ROS) accumula-
tion during alcohol metabolism, which contributes to the onset of mitochondrial oxidative or endoplasmic reticulum 
stress (ERS). ERS impedes the tricarboxylic acid cycle (TAC) and negatively affects cellular fatty acid β-oxidation 
function.40 Consequently, ethanol and its metabolites become more toxic to the liver. In addition, the cholestasis-induced 
inflammatory response contributes to the development of AFLD.41 Furthermore, excessive alcohol intake induces pore 
size enlargement within liver endothelial cells. Consequently, triglyceride-rich chylomicron remnants and their associated 
particles enter the hepatocytes, resulting in the accumulation of fat.42 (Figure 1).

CYP1 and AFLD
Changes in CYP1 expression play a regulatory role in the development of AFLD among the CYP1, 2, and 3 families, 
except for the CYP3 family, which is dominated by drug metabolism. Zhang et al found that CYP1A1 upregulation 
increases aromatic hydrocarbon receptor (AhR) expression and activates the transformation of hepatic stellate cells to 
proliferative, fibrotic, and contractile myofibroblasts to further promote the evolution of steatohepatitis to hepatic 
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fibrosis.62 The CYP family, located mainly in the smooth endoplasmic reticulum, is a major component of the 
mitochondrial ethanol oxidation system.35 Chronic alcohol consumption leads to enhanced CYP1A2 activity in the 
smooth endoplasmic reticulum, which significantly promotes microsomal ethanol oxidation, metabolises ethanol to 
highly reactive acetaldehyde, stimulates the production of ROS, leads to the failure of deoxyribonucleic acid (DNA) 
repair in hepatocytes, lipid peroxidation, and mitochondrial damage, as well as promotes AFLD and hepatocellular 
carcinoma (HCC).36,63

CYP2 and AFLD
Similar to the CYP1 family, the CYP2 family plays a significant role in the development of AFLD. Chen et al verified, in 
a mouse model of alcoholic fatty liver, that high CYP2A5 expression acts on the peroxisome proliferators activated 
receptors α- fibroblast growth factor 21 (PPARα-FGF21) signalling pathway, which further enhances insulin sensitivity and 
blunted the development of AFLD.52 CYP2E1 is highly catalytic in alcohol consumption and is strongly correlated with 
AFLD.64 Attal et al suggested that CYP2E1 is dependent on the sirtuin-1-foxo1 pathway to increase the expression and 
secretion of fatty acid-binding protein-4 (FABP4) mRNA in adipocytes and macrophages. CYP2E1 inhibition reduces fatty 
acid synthesis, effectively alleviating the formation of simple fatty liver in early AFLD.58 In addition, Yuan et al discovered 
that CYP2E1 suppression impedes ethanol oxidation, decreases ROS and free radical production, hinders lipid peroxidation 

Table 1 CYP450 Regulation in Liver Lipid Metabolism-Related Diseases

Name Function Expression Connected Disease

CYP1A1 The generation of ROS;31 estrogen metabolism;32 cholesterol metabolism33 Up/Down AFLD, NAFLD

CYP1A2 Cholesterol metabolism;33 the generation of ROS28,29 Down AFLD, NAFLD

CYP1B1 Fat synthesis34 Up NAFLD

CYP2A5 The generation of ROS35,36 Up AFLD, NAFLD

CYP2B6 Insulin signaling sensitivity37 Up NAFLD

CYP2C44 Arachidonic acid metabolism38 Down NAFLD

CYP2D6 Affect immune function39 Up NAFLD

CYP2E1 The generation of ROS;40–44 Insulin signaling sensitivity45,46 Up/Down AFLD, NAFLD

CYP2J2 The generation of ROS;47 Insulin signaling sensitivity48 Down NAFLD

CYP2J5 Arachidonic acid metabolism49 Down NAFLD

CYP2J6 Arachidonic acid metabolism44 Down NAFLD

CYP3A Bile acid metabolism37 Down NAFLD

CYP4A The generation of ROS;50 assembly of VLDL51 Up AFLD, NAFLD

CYP4F Assembly of VLD51 Up NAFLD

CYP7A1 Bile acid metabolism37,52–54 Down NAFLD

CYP7B1 Bile acid metabolism55 Up NAFLD

CYP8B1 Bile acid metabolism39 Up NAFLD

CYP19A1 Estrogen signaling pathway56 Down NAFLD

CYP24A1 Vitamin D metabolism57 Down NAFLD

CYP26 Retinoic acid metabolism58 Up AFLD

CYP27A1 Bile acid metabolism;59 Vitamin D metabolism60 Down NAFLD
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in hepatocytes, and enhances the stability and function of cell membranes. Consequently, it prevents ethanol-induced liver 
injury.65 Nagappan et al found that CYP2E1 inhibition significantly increases the expression of antioxidant enzymes, 
including super oxide dismutase (SOD) and catalase (CAT), as well as hepatic glutathione levels. This inhibition decreased 
oxidative stress and inflammatory responses, significantly improving alcohol-induced liver fibrosis.66 Li et al found that 
CYP2E1 inhibition enhances alcohol metabolism, improves oxidative stress, and reduces cytotoxic malondialdehyde 
(MDA) produced during lipid peroxidation.67 Gao et al demonstrated that the use of CYP2E1 inhibitors reduced NLRP3 
signal transduction, caspase-1 expression and ROS production in the liver of mice.68 The above studies suggest that 
inhibition of the stress response and activation of inflammatory vesicles may be an attractive pharmacological entry point 
for the treatment of AFLD. Additionally, numerous researchers have observed the therapeutic potential of CYP2E1 
inhibitors and have endeavoured to develop them as a rational drug for the extended treatment of alcoholic 
steatohepatitis.69 However, it is not invariable. In contrast to the above findings, a clinical study indicated that CYP2E1 
was upregulated in the advanced stages of hepatocellular carcinoma.70 Leung et al also found that in a mouse model of 
alcoholic fatty liver disease, CYP2E1 is upregulated, resulting in excess ROS production, activation of the Nrf2 signalling 
pathway, CYP2A5 upregulation, and inhibition of disease progression.25 Furthermore, Ronis et al discovered that tumors in 
mice fed with alcohol and in patients with alcohol-related HCC exhibited elevated levels of CYP2W1.33

Other CYP Families and AFLD
Apart from the CYP1 and CYP2 families, the CYP4, CYP7, and CYP26 families are also involved in AFLD. Tête et al 
found that CYP4A inhibition suppresses the toxic effects of hepatocyte death on the pathological progression of steatosis 
under ethanol exposure and effectively alleviates AFLD progression.31 Alcohol disrupts bile acid (BA) synthesis as well 
as hepatic and intestinal circulation. Additionally, it damages liver cells, leading to hepatotoxicity.32 Hartman et al found 
that in mice, the CYP7A1 (a rate-limiting enzyme in the classical metabolic pathway of BAs) inhibition targets the bile 
acids-farnesoid X receptor- fibroblast growth factor 15 (Bas-FXR-FGF15) signalling pathway to regulate liver glucose 
metabolism and stimulate protein synthesis and promote liver regeneration and repair.34,71 Furthermore, alcohol con-
sumption reduces the supply of vitamin A to the hepatic stellate cells, promoting fibrosis progression.72 Erdouse et al 
demonstrated that chronic alcohol consumption reduces hepatic vitamin A levels, which correlates with the expression of 
the retinoic acid-specific hydroxylases CYP26A1 and CYP26B1. Chronic alcohol consumption upregulates CYP26 
expression, depletes vitamin A content in hepatic stellate cells, and stimulates the development of hepatic fibrosis.47

Correlation Between CYP450 and NAFLD
A fundamental theory formulated by Day and James in 1998 states that the progression of NAFLD can be characterised 
by a “two-hit” model.45 The initial impact results in the accumulation of hepatic triglycerides in the fatty liver, which 
may be benign and reversible. If oxidative stress occurs again, it may lead to non-alcoholic steatohepatitis (NASH). This 

Figure 1 The pathogenesis of ALD is associated with excessive ROS production and cholestasis. Overconsumption of alcohol gives rise to redundant ROS in liver 
metabolism and instigates the stress reaction of mitochondria. Furthermore, alcohol impedes bile acid metabolism, leading to cholestasis and promoting inflammation.
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is because hepatocytes are exposed to ROS and inflammatory cytokines, leading to death and irreversible remodelling of 
the liver tissue. However, this view seems too simplistic in its attempt to capture the multifaceted nature of NAFLD in 
humans. “Multiple-hit” theory was born, which involves insulin resistance (IR), oxidative stress, inflammation, genetics, 
intestinal flora, and immunity.46,50 Changes in CYP450 activity are closely linked to the pathogenesis of NAFLD.73 

Several CYP450 isoforms mediate insulin action (eg CYP2J2 and CYP2E1), affect lipid synthesis and accumulation in 
the liver, and enhance liver susceptibility.43 ROS produced during CYP450 metabolism can strike hepatocytes with pre- 
existing lipid deposits, induce hepatic inflammatory responses, and promote diffuse hepatic fibrosis, regenerative nodule 
formation, and liver failure.44 (Figure 2).

CYP1 and NAFLD
CYP1 is an enzyme involved in the biosynthesis and metabolism of lipid mediators.49 Lu et al discovered that the 
absence of CYP1A1 and CYP1A2, in mice, obstructs the cholesterol metabolism pathway, resulting in the accumulation 
of cholesterol and cholesteryl esters. Moreover, CYP1A-inducing substances can counteract this lipid deposition 
phenotype.48 He and Huang et al demonstrated that inhibition of CYP1A1 was effective in suppressing OS levels and 
alleviating the symptoms of steatohepatitis in terms of decreasing ROS production and elevating the level of the 
antioxidant Superoxide Dismutase (SOD), respectively.38,74 Zhang et al showed that inhibiting the enzymatic activity 
of CYP1A1 enhanced glucose metabolism in obese mice induced by a high-fat diet. Furthermore, it decreased the 
quantity of triglycerides in the liver.57 Zhu et al found that overexpression of CYP1A1, an oestrogen-metabolising 

Figure 2 The pathogenesis of NAFLD has advanced from the two-hit theory to the multiple-hit theory, which states that the progression of NAFLD is multifactorial and not 
solely lipotoxic lipids produced by insulin resistance and the resulting oxidative stress. Factors like the neural circuit, genetic predisposition and the inflammatory response 
triggered by intestinal flora disorders, cholestasis and macrophage activation also play a role.
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enzyme, affects the oestrogen signalling pathway, inhibits fatty acid oxidation and enhances fat mobilization.60 Li et al 
discovered that fatty acid synthase (FAS) and acetyl-CoA carboxylase β (ACCβ) expression was downregulated in the 
liver of CYP1B1 null mice. This effectively reduces the synthesis of intrahepatic fat, thereby slowing the formation of 
simple fatty liver.56 CYP1A2, unlike CYP1A1 and CYP1B1, reduces metabolic activity in patients with cirrhosis.55

CYP2 and NAFLD
The CYP2 family is one of the largest CYP450 families, which profoundly affects the metabolism and synthesis of 
endogenous lipids in the liver.75 Morgan et al found that the CYP2A5 upregulation suppresses X-box binding protein1 
(XBP1) splicing and caspase-3 cleavage, resulting in the inhibition of hepatic injury caused by endoplasmic reticulum 
stress. Consequently, the progression from steatosis to fibrosis and cirrhosis is effectively prevented.53 Li et al discovered 
that overexpression of CYP2B6 hinders the phosphorylation of insulin receptor substrates and the membrane transloca-
tion of glucose transporter 2 (GLUT2), exacerbating IR and promoting lipid accumulation in the liver.37 Furthermore, 
Ghoshal et al observed that CYP2C44 suppresses the expression of genes involved in gluconeogenesis (glycogen 
synthase 2, glucose 6-phosphatase, phosphoenolpyruvate carboxykinase, and fructose 1,6-bisphosphatase); stimulates 
insulin signalling; and inhibits hepatic lipid synthesis.54 Muller et al observed that overexpression of CYP2D6 increased 
the risk of autoimmune liver diseases (such as autoimmune hepatitis) in the presence of pre-existing metabolic liver 
injury.39 Smith et al discovered that CYP2E1 upregulation promotes ROS production, triggering the activation of the 
JNK pathway to phosphorylate insulin receptor substrates. This action reduces the sensitivity to insulin signalling and 
prompts hormone-sensitive lipase activation. It also catalyses adipose tissue hydrolysis, which releases significant 
amounts of fatty acids into the bloodstream, eventually affecting the liver. This process enhances hepatic triglyceride 
synthesis and storage, promotes inflammation, and fibrosis stimulation.51 Leclercq et al identified an alternative pathway 
for FA hydroxylation in CYP2E1 null mice, in which CYP4A is activated, causing an increase in OS levels. This 
response promotes inflammatory hepatic injury and fibrosis.76 In addition, Song and Dang found that decreased CYP2E1 
activity activates hepatic PPARα and increases the expression and secretion of its target gene, FGF21, to induce white 
steatosis and effectively metabolise accumulated adipose tissue. FGF21 induces white fat browning and effectively 
metabolises accumulated adipose tissue, thereby facilitating disease treatment.77,78

Chen et al discovered that CYP2J2 upregulation, in mice induced with high-fat diets, decreased the activation of the 
nuclear factor kappa B/c-Jun N-terminal kinase (NF-Κb/JNK) signalling pathway, thereby improving the antioxidant 
defence system and reducing oxidative stress and inflammatory responses. These findings have ultimately led to the 
successful prevention and treatment of NAFLD.79 Zhang et al demonstrated that CYP2J2 upregulation increases insulin 
sensitivity through fatty acid oxidation mediated by the AMP-activated protein kinase (AMPK) pathway. This process 
reduces circulating fatty acid production and intrahepatic lipid accumulation.80 Razdan et al discovered that when 
CYP2J5 downregulation significantly reduces hepatic and circulating epoxyeicosatrienoic acids (EETs) levels. This 
loss also reduces adipose tissue expansion, promotes adipogenic gene (for example, FABP4) expression, leads to glucose 
intolerance, and enhances intrahepatic lipid synthesis.81 Maayah found that CYP2J6 catalyses the formation of EETs 
from arachidonic acid, enhancing insulin sensitivity and regulating lipid metabolism.82

Other CYP Families and NAFLD
Families other than CYP 1, and 2 are also of interest in the study of non-alcoholic fatty liver disease. Cholesterol- 
synthesising BAs have been identified as signalling molecules that progressively drive HCC development in patients with 
non-alcoholic steatohepatitis.83 Ji et al found that CYP7A1 downregulation significantly lowers the risk of liver tumour 
formation due to limited bile acid synthesis.84 This highlights the use of CYP7A1 as a therapeutic target; downregulating 
CYP7A1 serves as a preventive measure against liver tumourigenesis development. Qin et al noted that CYP3A 
inhibition inhibits intrahepatic bile acid metabolism and the release of inflammatory cytokines, which increases hepatic 
susceptibility and promotes fibrosis and cirrhosis development.85 Dong et al found that CYP7A1 activation enhances 
hepatic bile acid biosynthesis to counteract high-fat diet-induced steatosis.86 Pathak et al found that CYP8B1 over-
expression increases 12α-hydroxybile acid production and activates lipid synthesis genes, including sterol regulatory 
element binding protein 1c (SREBP-1c) and FAS, thereby increasing hepatic lipid accumulation.87 Hendrikx et al 
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showed, in liver Kupffer cells, that CYP27A1 overexpression downregulates inflammatory gene expression and upre-
gulates cholesterol transporter protein expression, effectively alleviating liver lipid accumulation and inflammation.88

Filipović et al revealed that CYP24A1 enhances the hydroxylation response of vitamin D. CYP24A1 upregulation 
curbs insulin secretion in pancreatic β-cells of rats, reduces intracellular Ca2+ concentration, and enhances glucose 
transporter protein activity. In addition, it restrains peripheral IR and delays hepatic lipid accumulation.89 Barchetta et al 
found that CYP27A1 inhibition hindered vitamin D metabolism and insulin signalling. This leads to reduced hepatic 
angiopoietin-like protein 3 (Angptl33) expression and enhanced hormone-sensitive triglyceride lipase (HSL) activity, 
which promotes hepatic lipid synthesis.90 Yang et al found that CYP19A1 upregulation promotes oestrogen production, 
attenuates IR via the transcription factor forkhead box o 1 (Foxo1), and inhibits lipid accumulation in the liver.91 

Evangelos et al reported that in an insulin resistant state, CYP7B1 stimulation leads to the advancement of steatohepatitis 
from simple steatohepatitis.92

CYP4A and CYP4F play important roles in hepatic fatty acid metabolism. Hardwick found that a high-fat diet induces 
the expression of CYP4A and CYP4F, which promotes the synthesis of stearoyl-coenzyme A desaturase 1 (SCD-1) and 
inhibits the assembly of TG into very low density lipoprotein (VLDL), consequently favouring steatosis and 
steatohepatitis.93 Similar to CYP2E1, Osborne found that in human tissue samples, CYP4V2 was elevated in steatosis, 
but decreased in patients with cirrhosis and HCC.94

Conclusion
In summary, CYP450 is a crucial member of the hepatic enzyme system. It regulates systemic metabolic homeostasis by 
altering the transcription and expression of its upstream factors. It also participates in ROS generation, steroid 
metabolism, immune inflammatory response, and other pathways. Relevant studies on diseases related to liver lipid 
metabolism have attracted wide attention. It has been suggested that targeting CYP450 could be a potential approach for 
treating emerging diseases that regulate lipid metabolism in the liver. This may provide ideas for treating clinical diseases 
related to lipid metabolism disorders. However, CYP450 polymorphism exhibits variation across different species, and 
even among individuals of the same species. When introducing CYP450-targeted drugs to the clinic, it is important to 
verify extrapolation and consider individual differences among patients. At the same time, CYP450 exists widely in the 
human body, and achieving precise treatment requires further in-depth research. Consequently, research on CYP450 
targeted drugs has mostly stalled in the laboratory. Few drugs have progressed to the early clinical trial stage, and there 
are still no mature clinical preparations. Further studies are required to confirm the presence of unknown but potentially 
serious adverse reactions during targeted CYP450 therapy. Therefore, CYP450 could be used as a clinical treatment 
strategy by targeting its upstream gene/protein as a therapeutic target for clinical drug development, focusing on its 
indirect regulatory role.
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