
R E V I E W

The Potential of Exosomes for Osteoporosis 
Treatment: A Review
Yinxi He1, Yanxia Chen 2

1Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, People’s Republic of China; 2Department of 
Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China

Correspondence: Yanxia Chen, Department of Endocrinology, the Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 
Hebei, 050000, People’s Republic of China, Email chenyx@hebmu.edu.cn 

Abstract: As a continuous process comprising bone resorption and formation, bone remodeling, plays an essential role in maintaining 
the balance of bone metabolism. One type of metabolic osteopathy is osteoporosis, which is defined by low bone mass and 
deteriorating bone microstructure. Osteoporosis patients are more likely to experience frequent osteoporotic fractures, which makes 
osteoporosis prevention and treatment crucial. A growing body of research has revealed that exosomes, which are homogenous 
vesicles released by most cell types, play a major role in mediating a number of pathophysiological processes, including osteoporosis. 
Exosomes may act as a mediator in cell-to-cell communication and offer a fresh perspective on information sharing. This review 
discusses the characteristics of exosomes and outlines the exosomes’ underlying mechanism that contributes to the onset of 
osteoporosis. Recent years have seen a rise in interest in the role of exosomes in osteoporosis, which has given rise to innovative 
therapeutic approaches for the disease prevention and management. 
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Introduction
Extracellular vesicles (EVs) have been examined extensively, and exosomes are one such kind. Almost all types of cells 
release EVs, precisely, tiny, submicron-sized lipid-bilayer-enclosed vesicles, into the extracellular environment.1 EVs can 
be categorized into three primary groups based on their size, structure, and biogenesis: exosomes (30–200 nm in 
diameter), microvesicles (100–1000 nm in diameter), and apoptotic bodies (1–5 μm in diameter).2 Every type of EV 
has a unique process of formation. When multivesicular bodies (MVBs) fuse with the plasma membrane, the inward 
budding of the MVBs’ membrane generates homogenous vesicles called exosomes, which are subsequently released into 
the extracellular environment.3 Microvesicles (MVs), which originate from direct protrusions of the cell membrane that 
detach from the surface, are directly released into the extracellular environment.4 Apoptotic bodies are generated by 
shedding cells when the cells undergo apoptosis5 (Figure 1).

Exosomes were first discovered in the in vitro culture of sheep reticulocytes.6,7 Exosomes can be secreted by nearly 
all mammalian cell types (such as endothelial cells, neuronal cells, muscle cells, hematopoietic cells, and various tumor 
cells) in physiological and pathological conditions.8 Various biological fluids, for instance, plasma, serum, urine, cerebral 
spinal fluid, amniotic fluid, saliva, semen, and breast milk naturally contain exosomes.9 The exosomes display pro-
nounced molecular heterogeneity, mainly including their size, content, cellular origin, and functional impact on recipient 
cells.10 The heterogeneity of exosomes might be an outcome of cellular origin, uneven invagination of MVBs, metabolic 
status, and the microenvironment of cells.11 Initially underestimated as molecular garbage bins, exosomes have gained 
considerable attention as a novel and potent mechanism of intercellular communication.12 Exosomes can transfer 
biological signals to modulate target cell biology and function in physiological and pathological processes.13 

Exosomes can carry diverse constituents, including nucleic acids (DNA, mRNA, and noncoding RNA), proteins, lipids, 
amino acids, and metabolites to promote intercellular communication.10 Exosomes have diverse effects on basic 
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biological processes that are mediated in pleiotropic ways. For example, they can fuse their membrane contents into the 
plasma membrane of the recipient cell, cause direct activation of cell surface receptors through bioactive lipid and protein 
ligands, and deliver effectors such as oncogenes, transcription factors, and short and long non-coding regulatory RNAs 
into the recipient cells.14

Bone tissue, containing collagen and calcium phosphate is a kind of mineralized connective tissue, that is crucial to 
the musculoskeletal system and gives tendons and ligaments structural support. The balance of bone metabolism is 
dependent upon bone remodeling, which is a constant process of new bone synthesis by osteoblasts and old bone 
resorption by osteoclasts.15 A systemic skeletal illness called osteoporosis (OP) is characterized by the weakening of the 
bones, which increases the risk of fractures.16 Besides their role in a variety of biological processes and illnesses, 
exosomes have also been shown to be significant in osteoporosis.17,18

This review primarily focuses on the relationship between the exosomes and the pathogenesis of osteoporosis. 
Moreover, the applications of exosomes in preventing and treating osteoporosis have been summarized, which may 
provide a new treatment paradigm for osteoporosis.

Basic Biology of Bone Remodeling
The appropriate combination of bone production and bone resorption results in normal physiological bone remodeling. 
The osteoblast lineage, which includes osteoblasts, osteocytes, and bone lining cells, as well as the bone-resorbing cells 
(osteoclasts), are the primary cells engaged in bone remodeling. Bone multicellular units (BMUs) are specialized units 
made up of these cells and their precursor cells.19 Bone lining cells are a thin layer of post-mitotic flat osteoblast lineage 

Figure 1 Schematic representation of the biogenesis of extracellular vesicles (EVs). EVs are formed according to mechanisms specific to the type of EVs. Exosomes (30– 
200nm) are generated by intraluminal buds fusing with the cell membranes. Initially, the cell membrane invaginates or endocytose to form the early endosome. Early 
endosomes invaginates to form late endosomes which incorporates endocytic vesicles. Then, the late endosomal membrane invaginates to generate intraluminal vesicles in 
the lumen of the multivesicular bodies (MVBs). The exosomes are released into extracellular space through exocytosis when the MVBs fuse with the plasma membrane. 
Microvesicles (100–1000nm) are generated directly from outward budding of the cell membrane. Apoptotic bodies (1–5μm) are directly generated by outward blebbing from 
apoptotic cells.
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cells that cover the surface of the bone, while they are quiescent. It is possible to stimulate the growth and differentiation 
of bone lining cells into osteogenic cells, which could serve as a source of “determined” osteogenic precursors.20 

Mesenchymal stem cells (MSCs) within the bone marrow stroma are the source of pluripotent osteoblasts, which are 
specialized bone-forming cells. Afterwards, osteoprogenitors are produced by MSCs. The osteoprogenitors divide and 
multiply into preosteoblasts that proliferate. Preosteoblast eventually develops into osteoblast. As the committed 
osteoblast becomes less active, the neighboring osteoblasts bury it further into the bone matrix. Certain osteoblasts are 
capable of differentiating into osteocytes. The last stage of development in the osteoblast lineage of mesenchymal stem 
cells is the mature osteocytes or stellate cells. The precise location of the osteocytes is inside the hard, mineralized 
matrix, within the lacuna. The remaining osteoblasts undergo apoptosis after completing the mineralization process.21

The multinucleated cells known as osteoclasts, which degrade bone, are produced from hematopoietic stem cells 
(HSCs) found within the bone marrow. The stromal cells generate M-CSF (macrophage colony-stimulating factor) and 
RAKL (receptor activator of the NF-κB ligand), which are known to stimulate osteoclastogenesis. HSCs, in the presence 
of M-CSF, are steered toward macrophage colony-forming units (CFU-M), which are precursors of osteoclast.22 The 
receptor RANK, which is mostly expressed in immune cells, mature osteoclasts, and osteoclast precursors, is bound by 
RANKL.23 This results in the differentiation of osteoclast precursors into mononucleated osteoclasts, which then fuse to 
become multinucleated osteoclasts, and trigger the activation of osteoclasts.24

The Potential Therapeutic Effects of EVs in Osteogenic Differentiation
EVs have the potential to treat osteoporosis because they can contain proteins, long non-coding RNA (lncRNA), 
microRNAs (miRNAs), and mRNAs. EVs are able to deliver this payload to nearby or far-off cells and cause biological 
reactions that correspond to the contents of the cargo.

Bone Marrow Mesenchymal Stem Cells (BMSCs)-Derived Exosomes
The major progenitors of bone marrow adipocytes and osteoblastic-lineage cells are bone marrow mesenchymal stem cells 
(BMSCs). Strict spatiotemporal constraints govern the reciprocal balance between BMSCs’ osteogenic and adipogenic 
development to preserve skeletal health. The equilibrium between osteogenic and adipogenic differentiation is upset by 
several clinical diseases. The shift in BMSCs differentiation from osteogenesis to adipogenesis, can impede bone production 
and increase the accumulation of adipocytes in various pathological conditions associated with bone loss, like osteoporosis.25

Various studies have shown that BMSCs-derived exosomes act as crucial components in the process of bone 
remodeling.26–29 Differentially expressed long non-coding RNAs (lncRNAs) in exosomes from bone marrow stem 
cells (BMSCs) of postmenopausal osteoporosis (PMOP) patients and healthy postmenopausal females were found 
using RNA microarray technology. In exosomal BMSCs of PMOP patients, 148 of these differentially expressed 
lncRNAs were elevated and 138 were found to be downregulated.30 Differentially expressed lncRNAs may target the 
PI3K-Akt, MAPK, and Wnt/β-catenin pathways, as demonstrated by functional studies.30 Another study was based on 
the microarray analysis of circRNAs sequencing profiles from BMSCs-derived exosomes of 20 healthy post-menopausal 
females and PMOP patients.31 In the study, 279 circRNAs were found to be downregulated and 237 circRNAs were 
observed to be upregulated. Functional analysis revealed that circRNAs were differentially expressed in patients with 
PMOP and take part in the control of autophagy, PI3K-Akt signaling, FoxO signaling, and MAPK signaling.31 These 
findings from PMOP patients have sufficiently proved that the significance of BMSCs-derived exosomes on osteogenic 
differentiation, suggesting potential clinical application of BMSCs-derived exosomes in osteoporosis.

Exosomes generated from bone marrow microglia (BMSCs) that carry particular lncRNAs or miRNAs support 
osteogenic differentiation (Figure 2). Thus, targeting lncRNAs or miRNAs in exosomes could be a novel approach to 
treating osteoporosis. Exosomes produced from the femoral bone marrow of patients who suffered trauma were isolated. 
Exosomal MALAT1, produced by BMSCs, sponged miR-34c in osteoblasts (hFOB1.19) cells, increasing SATB2 
expression and osteoblast activity.32 In ovariectomized (OVX) mice, the expression of MALAT1 and SATB2 manifested 
a significant reduction, while the expression of miR-34 exhibited an increase in comparison with the control mice.32 

Upregulated MALAT1 could alleviate the symptoms of osteoporosis in mice. Thus, BMSC-Exos carrying MALAT1 
could play a potential protective role in preventing osteoporosis osteoporosis.32 The femoral bone marrow of trauma 
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patients was employed for isolating BMSCs-derived exosomes, which were found to improve proliferation, osteoblastic 
differentiation, and ALP activity of human osteoblasts (hFOB1.19 cells).33 Exosomal miR-21-5p produced from BMSCs, 
improved osteoporosis by mediating KLF3, enhancing osteoblastic differentiation and ALP activity of hFOB1.19 cells, 
and offering a possible treatment approach for osteoporosis.33 The hFOB1.19 cells were subjected to treatment with PBS 
or BMSC-derived exosomes, and the differentially expressed miRNAs were examined using a Thermo Fisher 
GeneChipTM miRNA 4.1Array Strip microarray. When osteoblasts were treated with exosomes produced from 
BMSCs, the expression of miR-935 was noticeably greater among the 125 differentially expressed miRNAs.34 By 
downregulating STAT1, the exosomes derived from BMSCs and containing miR-935 may enhance osteoblast prolifera-
tion and differentiation in rats, hence reducing the symptoms of osteoporosis.34 Osteoporosis sufferers’ and healthy 
individuals’ BMSCs were separated and cultured. Using ultracentrifugation, exosomes were separated from the suspen-
sion of MSCs. Exosomes produced from MSCs that were isolated from osteoporosis patients had noticeably higher levels 
of MicroRNA-21 expression than those that were retrieved from healthy adults.35 By regulation of MSC-derived 
exosomes isolated from osteoporosis patients via binding to SMAD7, microRNA-21 was able to suppress 
osteogenesis.35 Another study investigating the exosomes produced from osteoporosis patients’ BMSCs demonstrated 
that WIF1 was knocked down and miR-424-5p was overexpressed.36 Exosomes overexpressing miR-424-5p blocked 
WIF1/Wnt/β-catenin-mediated production of OPN, OCN, Runx2, and ALP activity, which in turn prevented osteoblast 
development.36 Exosomal miR-196a produced from bone marrow microSCs strongly stimulated osteoblastic differentia-
tion by blocking Dkk1 and turning on the Wnt/β-catenin pathway.37 Using miRNA-seq, exosomes produced from the 
BMSCs of OVX and normal rats were separated and identified. Compared to the OVX group, the exosomes+OVX group 
had a higher degree of miR-186 expression. Exosomal miR-186 may stimulate osteogenesis in OVX rats to prevent 
PMOP development by blocking the Hippo signaling pathway.38 Significant reductions in miR-140-3p expression were 
seen in exosomes produced from ADSCs, BMSCs, and serum of diabetic rats. Through the plexin B1/RohA/ROCK 
signaling pathway, miR-140-3p overexpressed Exos may promote the osteoblastogenesis activity of BMSCs and speed 
up diabetic wound healing in diabetic rats.39 Although the research in vitro about BMSCs-derived exosomes in 
osteogenic differentiation are a lot recently, whether these findings obtained can be applied to osteoporosis patients 
needs to be further investigated.

Figure 2 Mechanisms involved in osteogenic differentiation by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes.
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A growing body of research has shown that angiogenesis and osteoblast differentiation have a significant impact on 
the growth and development of bones. By specifically targeting VASH1, BMSC-derived exosomal miR-29a may improve 
endothelial cell migration, proliferation, and tube formation, thus fostering angiogenesis.40 When compared to young 
BMSCs-Exo, the aged BMSCs-Exo had a significantly lower level of miR-29a, suggesting that miR-29a may be involved 
in age-related bone loss. By increasing the number of endothelial cells, the elderly animals treated with miR-29a-loaded 
BMSCs-Exos were able to increase trabecular bone mass.40 The identification of the expression pattern of exosomal 
miRNAs that had been derived from bone marrow mesenchymal stem cells (BMSCs) was conducted in three experi-
mental groups: the sham group, the ovariectomy (OVX) group, and the OVX knee loading group. The levels of miR-214- 
3p in the exosomes of the OVX group were found to be elevated, whereas knee loading resulted in a significant decrease 
in its expression. Daily application of knee loading for two weeks effectively mitigated the bone loss generated by 
ovariectomy (OVX). This beneficial effect was achieved through the promotion of type H vascular formation and the 
downregulation of exosomal miR-214-3p.41 Osteoporosis may be caused by a decrease in angiogenesis, but it may also 
be alleviated by a localized increase in angiogenesis.42 These finding have indicated that BMSCs-derived exosomes acted 
as a pro-angiogenic factor, which might be a new therapeutic target for the treatment of osteoporosis.

Serum-Derived Exosomes
Exosomes were collected and identified in the serum of patients with and without osteoporosis. To find out the expression 
profile of lncRNAs produced from exosomes in the serum of OP patients, RNA sequencing was carried out. 296 
differently expressed serum exosomal lncRNAs were found to be up-regulated and 97 differentially expressed serum 
exosomal lncRNAs were identified to be down-regulated in the current study.43 Differentially expressed serum exosomal 
lncRNAs were shown to be strongly enriched in osteoporosis-related pathways, such as those regulating insulin secretion, 
activating MAPK activity, cellular response to metal ions, proteolysis, and fucosylation, according to bioinformatics 
analysis.43 TCONS_00072128, a newly identified lncRNA, was significantly down-regulated among them. The over-
expression of LncRNA TCONS_00072128 may enhance the ability of BMSCs to differentiate into osteogenic tissues by 
upregulating the levels of caspase 8 and ALP.44 A different study examined the variations in circulating miRNAs in 
serum exosomes among postmenopausal women who had normal bone mass and osteoporotic fractures.45 The results of 
the bioinformatics study and sRNA deep sequencing revealed that serum exosomal miRNAs were expressed differently 
in PMOP patients who had fragility fractures. Bone mineral density (BMD) of L1-L4, femur neck, and total hip was 
shown to be correlated with three miRNAs (mir-324-3p, mir-766-3p, and mir-1247-5p), whereas BMD of femur neck and 
total hip was found to be correlated with mir-330-5p and mir-3124-5p. BMD and mir-330-5p showed a positive 
correlation, however mir-3124-3p manifested a negative correlation with BMD. It was discovered that mir-330-5p 
impeded the osteogenic differentiation of BMSCs and suppressed ALP activity, whereas mir-3124-5p had the reverse 
effect.45 Furthermore, small RNA sequencing was used to elucidate the expression of miRNA in plasma exosomes 
among individuals with osteoporosis, osteopenia, and normal bone mass.46 Using miRNA-mRNA KEGG networks, it 
was shown that miR-642a-3p, one of these differentially expressed miRNAs in plasma exosomes, is involved in bone 
remodeling and helps predict and diagnose early postmenopausal osteoporosis.46 Moreover, quantitative proteomics was 
used to examine the protein profiles of plasma exosomes from individuals with normal bone mass and patients suffering 
from osteoporosis and osteopenia.47 Between the groups, 45 distinct proteins had varying expression levels. Four of 
these, PSMB9, AARS, PCBP2, and VSIR, were confirmed by bioinformatics research to be related to osteoporosis.47 

Based on those studies, the PMOP-related datasets were retrieved from Gene Expression Omnibus (GEO, http://www. 
ncbi.nlm.nih.gov/geo/), which includes the circRNA microarray dataset (GSE161361), miRNA microarray dataset 
(GSE64433), and mRNA microarray dataset (GSE56116). The circRNA-miRNA-TF mRNA regulation network derived 
from serum exosomes was established by applying the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis and Gene Ontology (GO) enrichment analysis for the identification of potential important functions 
of differentially expressed messenger RNAs (mRNAs).48 Quantitative proteomics analysis was used in a different 
investigation to identify the serum-derived exosomes of elderly patients with osteoporosis, osteopenia, and normal 
volunteers.49 Normal volunteers with osteopenia’s serum-derived exosomes stimulated osteoblast development in vitro, 
but osteoporosis sufferers’ serum-derived exosomes inhibited osteoblast formation in osteogenesis.49 Following fatigue 
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loading, the osteogenic differentiation potential and proliferation of bone marrow stem cells (BMSCs) extracted from 
elderly osteoporotic rats were reduced.50 In the fatigue-loading group of old osteoporotic rats treated with serum 
exosomes from young rats, the BMSCs of the rats partially promoted osteogenic differentiation by upregulating the 
expression of miRNA-19b-3p.50 The serum exosomes from lipopolysaccharide (LPS)-induced mice were increased.51 In 
LPS-induced mice, the serum exosomal miRNAs were found to be differentially expressed in comparison with the 
control group.51 Among these, serum exosomes and LPS-treated mice’s femurs showed higher levels of miRNA-125b- 
5p, miRNA-132-3p, and miRNA-214-3p. It has been found that these miRNAs worsen bone loss in mice given LPS 
injections and prevent osteogenic development in MC3T3-E1 cells.51 These findings suggested that serum-derived 
exosomes might offer viable PMOP treatment options. However, more research is needed to determine the specific 
mechanism of the associated network.

Human Umbilical Cord Mesenchymal Stem Cell (HucMSC)-Derived Exosomes
Exosomes generated from human umbilical cord mesenchymal stem cells (HucMSCs) enhanced osteoblast cell prolif-
eration and differentiation.52 In an OVX mouse osteoporosis model, HucMSC-derived exosomes could prevent 
osteoporosis.52 Exosome-related miRNAs between the DOP rats and DOP+exosomes rats were identified using high- 
throughput miRNA sequencing to better understand the molecular mechanism of HucMSC-derived exosomes on disuse 
osteoporosis (DOP). In rat models of DOP produced by hind limb unloading, the results of miRNA-seq indicated that 14 
miRNAs were elevated and 7 miRNAs were downregulated.53 Among these, DOP+exosomes rats had an increase in 
exosomal miR-1263. Exosomal miR-1263 may stop Mob1 and the Hippo signaling pathway to reduce BMSC apoptosis 
and avoid rat DOP.53 Due to researches focus on HucMSC-derived exosomes influence bone remodeling are few recently, 
so more in-depth researches are needed in the future.

Exosomes Derived from Adipose Tissue-Derived MSCs
Recent studies have shown that primary osteoblasts might be efficiently shielded from TNF-α-induced cytotoxicity and 
death by exosomes produced from adipose-derived stem cells (ADSCs-Exos).54 By sponging miR-141-5p in primary 
osteoblasts, KCNQ1OT1-Exos showed a more pronounced inhibitory effect on TNF-α-induced cytotoxicity and apoptosis 
than ADSCs-Exos.54 MiR-21 overexpressing adipose tissue-derived MSCs (AD-MSCs) could produce exosomes that 
upregulate interleukin (IL)-6 expression in the spine, decrease the number of osteoclasts, decrease the content of 
deoxypyridinoline in the urine, tartrate-resistant acid phosphatase (TRACP)-5b, and cathepsin K in the serum, and increase 
bone mineral content and BMD. These effects would alleviate osteoporosis in ankylosing spondylitis (AS) mice.55

Endothelial Cells-Derived Exosomes
One of the negative effects of long-term high-dose glucocorticoids (GCs) is decreased bone mineral density (BMD) and 
bone microstructure degradation. The most prevalent kind of secondary osteoporosis is caused by GCs.56 Recently 
identified as a form of controlled cell death, ferroptosis is closely associated with lipid peroxidation and bone develop-
ment in GC-induced osteoporosis.57 In MC3T3-E1 cells and mice, endothelial cell-secreted exosomes (EC-Exos) have 
the potential to cure GCs-induced osteoporosis by preventing apoptosis and ferritinophagy-dependent ferroptosis.57

Platelet Lysate Exosomes
Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), transforming growth factor β (TGF- 
β), and basic fibroblast growth factor (bFGF) were the main components of platelet lysates (PL), which had a strong pro- 
regeneration and pro-angiogenesis effect in wound healing and local bone healing.58,59 After isolating PL-derived 
exosomes (PL-exo) to enhance platelet-derived growth factors (GFs), DSPE-PEG-grafted alendronate (ALN) conjugated 
PL-exo exosomes (PL-exo-ALN) to create bone-targeting delivery of platelet lysate exosomes (PL-exo-ALN).60 This 
work showed that PL-exo-ALN could reverse GCs and that it prevented the angiogenesis of BMSCs and endothelial 
progenitor cells (EPCs) in vitro.60 Furthermore, through promoting bone anabolism and angiogenesis in rats, intravenous 
injection of PL-exo-ALN might also effectively reverse GCs-induced osteoporosis (GIOP).60
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Macrophages-Derived Exosomes
Two types of macrophages (Mφs) exist that are master regulators of immune responses: the pro-inflammatory M1 type and the 
anti-inflammatory M2 type.61 Treatment with M1Mφ-derived exosomes inhibited the osteogenic differentiation of MC3T3- 
E1 cells and worsened the bone loss caused by OVX in mice.62 Following treatment with M1Mφ-derived exosomes, there was 
a significant rise in the expression of miR-98 in both OVX mice’s bone tissues and MC3T3-E1 cells.62 Through increased 
exosomal miR-98, DUSP1 downregulation, and JNK activation, the M1Mφ-derived exosome therapy may exacerbate bone 
loss and worsen bone function.62

Osteoblast-Derived Exosomes
Differential effects were observed in the metabolism and osteogenic development of BMSCs when EVs were extracted from 
osteoblasts of patients with hip OA (coxarthrosis/CA), osteoporosis (OP), or a combination of both conditions (CA/OP).63 In 
a different investigation, exosomes generated from senescent osteoblasts showed increased expression of miR-139-5p. By 
targeting TBX1, senescent osteoblast-derived exosomal miR-139-5p may stimulate senescence and prevent endothelial cell 
growth.64

Other Cells-Derived Exosomes
T-cell exosomes were derived from non-osteoporotic and osteoporotic postmenopausal women.65 T cell exosomes 
derived from osteoporotic people may negatively impact osteoblastic function by lowering genes linked to osteoblasts, 
such as Runx2, osteocalcin, type I collagen, and osteopontin.65 By releasing miRNA-30a and miRNA-23a, systemic 
mastocytosis (SM)-derived exosomes (SM-EVs) with a mast cell signature and exosomes derived from neoplastic mast 
cells could inhibit the differentiation of preosteoblastic cells into osteoblasts, hence limiting osteoblastogenesis and bone 
production.66 When SM-EVs were injected into mice, they also reduced the expression of osteoblast markers, as well as 
the volume and microarchitecture of trabecular bone.66

Above these findings indicated that exosomes are closely connected with osteogenic differentiation, thus it has great 
clinical significance to do comprehensive investigation to develop effective therapeutic approaches for osteoporosis.

The Potential Therapeutic Effects of EVs in Osteoclast Differentiation
Exosomes produced from BMSCs treated with cyclic mechanical stretch (CMS) efficiently inhibited osteoclastogenesis 
in vitro by blocking the nuclear factor kappa-B (NF-κB) signaling pathway triggered by RANKL.67 Tarrate-resistant acid 
phosphatase (TRAP)-positive osteoclasts were dramatically reduced in quantity when treated with exosomes produced 
from CMS-treated BMSCs.67 In hindlimb unloading (HU)-induced severe DOP mice, exosomes obtained from CMS- 
treated BMSCs and static-cultured BMSC-derived exosomes (static_Exos) both further prevented osteoporosis.67 It has 
been shown that exosomes released by vascular endothelial cells (EC) have a better ability to target bone. EC-Exos may 
considerably restrict osteoclast differentiation and function in vitro by reducing the area of bone resorption and inhibiting 
actin ring formation in mature osteoclasts.68 EC-Exos were injected intraperitoneally into ovariectomized mice twice 
a week. In OVX mice, EC-Exos may decrease bone mass (BMD), bone volume/total volume (BV/TV), and unorganized 
trabecular architecture (Tb. N).68 Using gene sequencing, the differentially expressed miRNAs in the control group and 
EC-Exos-treated bone marrow macrophages (BMMs) were found. EC-Exos, one of these miRNAs, may prevent 
osteoclastic bone resorption in part by supplying macrophages with miR-155.68 BMSC-derived exosomes from aged 
rats had significantly greater levels of exosomal miR-31a-5p than exosomes from younger rats.69 Older rats’ BMSC- 
derived exosomal miR-31a-5p decreased osteoblastogenesis by promoting the development of senescence-associated 
heterochromatin foci (SAHF).69 BMSCs derived Exosomal miR-31a-5p inhibited RhoA activity to increase osteoclas-
togenesis and bone resorption in old rats.69 Treatment with antagomiR-31a-5p prevented bone loss in old mice by 
drastically reducing osteoclast numbers and osteoclastic differentiation.69 Adipose-derived mesenchymal stem cells (AD- 
MSCs) have the ability to inhibit pro-inflammatory cytokines (IL-1b and IL-18) that are generated by high glucose levels 
in osteoclasts.70 By reducing RANKL expression and the ratio of RANKL/OPG, ADSCs-exo may counteract hypoxia 
and serum deprivation (H/SD)-induced osteocyte death and osteocyte-mediated osteoclastogenesis in the osteocyte-like 
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cell line MLO-Y4.71 By inhibiting NLRP3 inflammasome activation, AD-MSCs were also able to decrease bone 
resorption and reverse bone loss in rats with diabetic osteoporosis produced by streptozotocin.70 Exosomes from AD- 
MSCs overexpressing microRNA-146a were able to suppress the expression of pro-inflammatory cytokines (TNF-a, IL- 
18, and IL-1b) in high glucose-treated osteoclasts.72 Exosomes from AD-MSCs overexpressing microRNA-146a were 
able to reduce bone resorption and reverse the effects of diabetic-induced bone loss in rats with streptozotocin-induced 
diabetic osteoporosis.72 Exosomes may offer prospective therapeutic targets in osteoclast differentiation as demonstrated 
by these findings in animals and cells. Therefore, there is an urgent need to do intensive investigations in osteoporosis 
patients to fill the clinical gaps.

Effects of Traditional Chinese Medicine on Exosomes
According to recent studies, osteoporosis was lessened by using bone marrow-derived mesenchymal stem cell-derived 
exosomes (BMSC-Exos), which may represent a new osteoporosis treatment target. Traditional Chinese medicine treated 
BMSC-Exos. Traditional Chinese medicine produced artesunate (ART), a derivative of artemisinin, which is commonly 
used to treat malaria.73 Recent research has demonstrated that antiretroviral therapy (ART) may have preventive effects 
against osteoporosis by modulating the miR-503/RANK axis, inhibiting the MAPK and AKT pathways, and decreasing 
osteoclastogenesis and osteoclast activities in vitro.74 Another study revealed that ART-treated BMSC-Exos enhanced 
hFOB1.19 cells’ osteoblast activity by upregulating osteogenesis-related molecules (including RUNX2, BMP2, and 
ATF4) and increasing alkaline phosphatase activity. This was achieved by providing SNHG7 by altering the TAF15/ 
RUNX2 axis.75 ART-treated BMSC-Exos also attenuated osteoporosis in OVX mice.75 Another study revealed that ART- 
treated BMSC-Exos enhanced hFOB1.19 cells’ osteoblast activity by upregulating osteogenesis-related molecules 
(including RUNX2, BMP2, and ATF4) and increasing alkaline phosphatase activity. This was achieved by providing 
SNHG7 by altering the TAF15/RUNX2 axis.76 The primary chemical ingredient isolated from Morinda officinalis (MO) 
is called Morinda officinalis polysaccharide (MOP), and it has anti-osteoporotic properties.76 MOP treatment signifi-
cantly prevented OVX-induced bone loss in rats by decreasing levels of bone turnover markers and trabecular micro-
architecture degradation.77 Additionally, a recent study demonstrated that MOP therapy helped alleviate the symptoms of 
osteoporosis in rats with GIOP by promoting osteoblastic differentiation and suppressing osteoclastic differentiation.78 

Osteoclast differentiation was induced in BMMs. Osteoclastic differentiation and the development of BMMs generated 
by RANKL were dramatically enhanced when BMSC-Exo isolated from GIOP rats were treated. The osteoclastic 
differentiation and proliferation of BMMs may be effectively reduced by treating BMSC-Exo from MOP-treated 
GIOP rats (MOP-Exo) via upregulating prostaglandin-endoperoxide synthase 2 (PTGS2) and downregulating miR- 
101-3p.78 Bovine colostrum-derived exosomes inhibited osteoclast differentiation in Raw264.7 cells.79 In mice with 
glucocorticoid-induced osteoporosis, oral administration of exosomes produced from bovine colostrum for two months 
markedly increased bone mineral density via improvement in the composition of gut microbiota.79 These studies about 
Chinese medicine were mainly from cells and animals, whether the findings hold true in humans need further study.

Future Perspectives
An increasing amount of research has demonstrated that exosomes are crucial in mediating osteoporosis. Nonetheless, 
further research should be done on exosome-based bone-targeting delivery methods to prevent pathological bone loss. An 
engineered exosome delivery system called BT-Exo-siShn3 was developed in a study using exosomes from iMSCs, 
which are derivatives of induced pluripotent stem cells (iPSCs). After the exosomes were loaded with siRNA of Shn3 
using electroporation, the bone-targeting peptide modified with a diacyllipid tail was fixed onto the exosome membrane 
via hydrophobic interaction.80 Because BT-Exo-siShn3 could preferentially transport siShn3 to osteoblasts, it improved 
osteogenic differentiation by promoting the development of type H vasculature and vascularization by upregulating 
SLIT3 production.80 Genetically engineered NIH-3T3 cells derived CXCR4+ exosomes that aggregated in the bone 
marrow with selectivity. Hybrid nanoparticles were created by fusing liposomes containing antagomir-188 with CXCR4+ 
exosomes (NPs).81 The hybrid NPs stimulated osteogenesis and inhibited BMSC adipogenesis. They particularly 
congregated in the bone marrow and released antagomir-188. Antagonist-188-loaded hybrid nanoparticles may be able 
to stop age-related bone loss by improving the quality and porosity of cortical bone.81 However, the complicated 
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mechanism between exosomes and bone remodeling is still not fully understood. Therefore, we need to spare no effort to 
do related clinical application and looking for an effective treatment for osteoporosis.

Conclusion
Nearly all cell types secrete exosomes, which are made up of the origin cells’ lipids, proteins, and nucleic acids. We 
reviewed the biology of exosomes and their crucial functions in osteoporosis in this study. Exosomes function as highly 
effective biomolecule transporters inside the milieu of bone remodeling. According to preclinical research, exosomes 
contribute to bone homeostasis by controlling osteoblast and osteoclast development and activity. Exosomes are 
anticipated to emerge as a dependable novel treatment option for osteoporosis due to their remarkable therapeutic 
potential. However, this research in this realm is still in its initial stages and the effect on humans is not yet fully 
understood. As a result, there are still obstacles to overcome before exosomes’ therapeutic potential may be fully 
explored.
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