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Abstract: The interplay between free radicals, antioxidants, and co-factors is important in 

maintaining health, aging and age-related diseases. Free radicals induce oxidative stress, which 

is balanced by the body’s endogenous antioxidant systems with an input from co-factors, 

and by the ingestion of exogenous antioxidants. If the generation of free radicals exceeds the 

protective effects of antioxidants, and some co-factors, this can cause oxidative damage which 

accumulates during the life cycle, and has been implicated in aging, and age dependent dis-

eases such as cardiovascular disease, cancer, neurodegenerative disorders, and other chronic 

conditions. The life expectancy of the world population is increasing, and it is estimated that 

by 2025, 29% of the world population will be aged �60 years, and this will lead to an increase 

in the number of older people acquiring age-related chronic diseases. This will place greater 

fi nancial burden on health services and high social cost for individuals and society. In order 

to acheive healthy aging the older people should be encouraged to acquire healthy life styles 

which should include diets rich in antioxidants. The aim of this review is to highlight the main 

themes from studies on free radicals, antioxidants and co-factors, and to propose an evidence-

based strategy for healthy aging.
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Introduction
One of the main driving force, which helps to sustain human life, are the biochemical 

reactions which take place within the organelles and cells of the body. The laws of 

nature are such that one moves from infancy, to childhood, then into adulthood, and 

fi nally one becomes a frail human being eventually leading to death. This aging process 

is a common feature of the life cycle of virtually all multicellular organisms. The 

number of people aged 65 and over is predicted to increase by approximately 53% 

in the United Kingdom by the year 2031 and similar changes are likely to be seen 

in other developed countries due to low birth rates and increasing life expectancy, 

which will lead to an increasingly elderly population (Majeed and Aylin 2005). This 

predicted gain in life expectancy would potentially lead to an increase in the number 

of older people acquiring age-related chronic diseases of the cardiovascular, brain, and 

immune systems. This can cause loss of autonomy, dependence and high social costs 

for individuals and society, and will impose increased workload and fi nancial pressures 

on healthcare systems worldwide. Due to this there is a major interest in understanding 

of the biochemistry of aging and providing a database of “anti-aging” medicines, diet 

and commercial products which can provide safe, effective and practical methods for 

increasing longevity with a good quality of life during aging, and thus decrease the 

dependence of elderly people on expensive high-tech medicine (Rahman 2003). The 

three main areas of research, which are interlinked and can contribute or delay the 

aging process are; studies involving free radicals, antioxidants, and co-factors. There 

have been a signifi cant number of studies within these areas and the purpose of this 
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review is to highlight the main themes from these studies 

which can provide a better insight into the mechanisms of 

aging, and thus provide an anti-aging strategy.

Free radicals
Free radicals can be defi ned as reactive chemical species 

having a single unpaired electron in an outer orbit (Riley 

1994). This unstable confi guration creates energy which is 

released through reactions with adjacent molecules, such 

as proteins, lipids, carbohydrates, and nucleic acids. The 

majority of free radicals that damage biological systems are 

oxygen-free radicals, and these are more generally known 

as “reactive oxygen species” (ROS). These are the main 

byproducts formed in the cells of aerobic organisms, and can 

initiate autocatalytic reactions so that molecules to which they 

react are themselves converted into free radicals to propagate 

the chain of damage. ROS can be (i) generated during UV 

light irradiation and by X-rays and gamma rays (ii) produced 

during metal catalyzed reactions (iii) are present in the 

atmosphere as pollutants (iv) are produced by neutrophils and 

macrophages during infl ammation, and (iv) are by-products 

of mitochondrial catalyzed electron transport reactions, and 

various other mechanisms (Cadenas 1989). The amount 

of free radical production is determined by the balance of 

many factors, and ROS are produced both endogenously 

and exogenously. The endogenous sources of ROS include 

mitochondria, cytochrome P450 metabolism, peroxisomes, 

and infl ammatory cell activation (Inoue et al 2003). Hydrogen 

peroxide, although not a radical species is produced in the 

mitochondria as is its ROS precursor superoxide. It has 

been proposed that ubisemiquinone is the main reductant 

of oxygen in mitochondrial membranes and the generation 

of superoxide within mitochondria is approximately 

2–3 nmol/min per mg of protein, the presence of ubiquitous 

indicates it to be the most important physiological source 

of this radical in living organisms (Inoue et al 2003). Since 

mitochondria are the major site of free radical generation, 

they contain a variety of antioxidants, which are present on 

both sides of their membranes in order to minimize ROS 

induced stress (Cadenas and Davies 2000). There are also 

other cellular sources of superoxide radicals present such as 

the enzyme xanthine oxidase, which catalyzes the reaction of 

hypoxanthine to xanthine and xanthine to uric acid. In both 

steps, molecular oxygen is reduced, forming the superoxide 

anion followed by the generation of hydrogen peroxide 

(Valko et al 2004). 

Additional endogenous sources of cellular ROS are 

neutrophils, esinophils and macrophages. On activation, 

macrophages initiate an increase in oxygen uptake giving 

rise to a variety of ROS, including superoxide anion, nitric 

oxide and hydrogen peroxide (Conner and Grisham 1996). 

Cytochrome P450 has also been proposed as a source of 

ROS since on its induction, superoxide anion and hydrogen 

peroxide production takes place following the breakdown or 

uncoupling of the P450 cycle (Valko et al 2006). In addition, 

microsomes and peroxisomes are sources of ROS, and 

microsomes are responsible for the majority of hydrogen 

peroxide produced in vivo at hyperoxia sites (Gupta et al 

1997). ROS can also be produced by a host of exogenous 

sources such as xenobiotics, chlorinated compounds, envi-

ronmental agents, metals (redox and nonredox), ions, and 

radiation (Valko et al 2006).

The generation of free radicals in cells is closely linked 

with the participation of redox-active metals (Shi et al 2004), 

which in itself is largely linked to an iron (in part to copper) 

redox couple, and is maintained within strict physiological 

limits. The iron under certain circumstances, can partici-

pate in the Fenton reaction, generating the highly reactive 

hydroxyl radical (Leonard et al 2004) which if produced 

in vivo, can react close to its site of formation hence causing 

localized damage. Additional radicals derived from oxygen 

are peroxy radicals, which are high-energy species, and they 

display biological diversity in their actions. These induce 

lipid peroxidation whose measurement is the most frequently 

cited evidence to support the involvement of peroxyl radical 

in human disease and toxicology (Gutteridge 1995; Cadenas 

and Sies 1998). 

It has been established that ROS can be both harm-

ful and beneficial in biological systems depending on 

the environment (Lopaczynski and Zeisel 2001; Glade 

2003). Benefi cial effects of ROS involve, for example, 

the physiological roles in cellular responses to noxia such 

as defense against infectious agents, and in the function 

of a number of cellular signaling systems. In contrast, at 

high concentrations, ROS can be mediate damage to cell 

structures, including lipids and membranes, proteins and 

nucleic acids; this damage is often referred as “oxidative stress” 

(Poli et al 2004). The harmful effects of ROS are balanced 

by the action of antioxidants, some of which are enzymes 

present in the body (Halliwell 1996). Despite the presence of 

the cell’s antioxidant defense system to counteract oxidative 

damage from ROS, oxidative damage accumulates during 

the life cycle and has been implicated in aging and age-

dependent diseases such as cardiovascular disease, cancer, 

neurodegenerative disorders and other chronic conditions 

(Rahman 2003) (see Figure 1). 
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Free radicals and aging
Aging can generally be defi ned as a progressive decline in 

the effi ciency of biochemical and physiological processes 

after the reproduction phase of life. This contribution of 

the aging process to changes occurring with age are small 

early in life but rapidly increase with age because of the 

exponential nature of aging (Figure 1). Many theories 

have been put forward to explain the phenomenon of aging 

(Armbrecht 2001; Biesalski 2002; Finkel and Holbrook 2002; 

Sohal et al 2002; Balaban et al 2005); and all of these have 

their strengths and weaknesses, and it’s likely that they all 

contribute to the mechanisms of aging. Among the theories 

proposed, the “free radical theory of aging” (Harman 1956) 

has gained universal acceptance and is supported by the 

fact that production of free radicals and free radical damage 

increases with age (Sohal and Weindruch 1996). This theory 

postulates that free radicals in the body cause oxidative dam-

age to cellular components, a process which results in altered 

cellular function, compromised tissue and organ function, 

and ultimately death. The body takes molecular oxygen and 

uses it to produce energy via oxidative phosphorylation in 

mitochondria, and this, and other metabolic reactions gener-

ate free radicals imposing oxidative stress on proteins, DNA 

and lipids. The free radial theory is supported by the “rate 

of living” hypothesis, which inversely links metabolic rate 

with the longevity of the organisms (Ku et al 1993) and it 

is also well established that oxidative damage to proteins, 

DNA and lipids increases with age (Sohal and Weindruch 

1996). Evidence to support the free radical theory of aging 

has been mainly obtained in experimental animal models. 

The restriction of caloric intake in rodents has been shown to 

increase lifespan, increase free radical defenses, and reduce 

oxidative damage. The tissues of species which live longer 

are also less susceptible to oxidative damage then tissue of 

species which have shorter life spans and this is supported by 

the fact that conditions which generate increased free radical 

production such as a high metabolic rate are associated with 

a shorter lifespan (Agarwal and Sohal 1996). Although evi-

dence exists to support the free radical theory and the decline 

in physiological function in aging, some questions relating 

to aging are still unresolved. Free radical mediated oxidative 

stress increases with age, and thus may overwhelm the natural 

repair systems in the elderly (Kowald and Kirkwood 2000) 

and is a major contributor to diseases associated with aging 

(Ames et al 1993) an outline of which is given below. 

Cardiovascular disease
The development of atherosclerosis depends on the 

balance between proinfl ammatory; anti-infl ammatory, and 

antioxidative defense mechanisms (Scott 2004). Vascular 

proliferation and infl ammation are closely linked (Dzay et al 

2002), and excessive proliferation of vascular cells plays 

an important role in the pathology of vascular occlusive 

disease. Free radicals are considered to play a casual role 

in this process (Schachinger and Zeiher 2002), and ROS 

lead to the oxidation of low density lipoprotein (OxLDL), 

and this accumulates within plaques, and contributes to the 

infl ammatory state of atherosclerosis and plays a key role in 

its pathogenesis (Galle et al 2006). Oxidized-LDL leads to 

endothelial dysfunction, and can result in either cell growth 

or apoptotic cell death and can cause vasoconstriction.

Free radicals have also been implicated in congestive 

heart failure (CHF), the annual incidence of which is one 

to fi ve per 1000 person, and the relative incidence doubles 

for each decade of life after the age of 45. Experimental 

evidence suggests a direct link between free radical produc-

tion and CHF (Mariani et al 2005) and the presence of ROS 

in circulating blood is also the key intermediary related to 

vascular injury and organ dysfunction (Fukai et al 2002; 

Elahi and Matata 2006).

Stroke
In Western countries stroke is the main cause of disability and 

mortality among the aging population, and ischemic stroke 

accounts for about 75% of all cases while hemorrhagic stroke 

is responsible for almost 15% of all strokes (Mariani et al 

2005). There is evidence that stroke is associated with free 

radicals arising from sources such as xanthine oxidase, cyclo-

oxygenase, infl ammatory cells and mitochondria (Piantadosi 

and Zhang 1996), and these can potentially cause neuronal 

death (Alexandrova et al 2004). The mitochondrial electron 

transport chain is altered during ischemia and reperfusion and 

Figure 1 Association of free radicals with age, and age-related diseases.
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is also a likely source of free radicals (Simms and Anderson 

2002). This can lead to an increased formation of superoxide 

radical anions as supported by the fact that knockout mice for 

mitochondrial superoxide dismutase (mSOD) genes display 

larger brain lesions after focal ischemia (Murakami et al 

1998). The accumulation of blood borne infl ammatory cells 

such as neutrophils and monocytes/macrophages, which can 

occur during reperfusion, can also promote further oxidative 

stress. Increased levels of oxidative damage to DNA and 

evidence for lipid peroxidation has also been demonstrated in 

ischemic stroke patients (Mariani et al 2005). In addition, the 

increased levels of ROS can make the brain more susceptible 

to oxidative stress due to a variety of reasons namely: the 

brain consumes a signifi cant amount of the body oxygen, has 

a relatively poor antioxidant defense system, is enriched in 

pro-oxidant molecules and contains high concentration of 

readily peroxidizable lipids (Cherubini et al 2005a).

Neurodegenerative diseases
Neurodegenerative diseases affect the central nervous system 

and are characterized by loss of specifi c neuronal populations 

and quite often intraneuronal, as well as extracellular accumu-

lation of fi brillary materials. Decrements in motor function and 

decrements in memory are two main behavioral parameters 

that are altered in senescence in both humans and animals. 

Primary degenerative brain disease and diseases related to 

cerebral vascular disturbances are the leading cause of dis-

ability in old age and can cause loss of autonomy, dependence, 

and high social costs for individuals and the society. There is 

growing evidence that free radicals are involved in the initia-

tion of cellular injury observed in neurodegenerative diseases 

(Emerit et al 2004) an outline of which are given below:

Alzheimers’s disease (AD)
This is the most common neurodegenerative disorder and is 

characterized by loss of neurons and synapses resulting in 

cognitive impairment and a gradual loss of memory, language 

skills, and reasoning leading to dementia and fi nally death 

(Selkoe 2004). The onset of AD is gradual, with clinical 

symptoms appearing between 60–70 years of age and is 

characterized by both synaptic loss and nerve cell loss. It is 

associated with aging and several studies show logarithmic 

age-dependent increases in oxidized proteins, lipids and DNA 

in AD patients (Floyd and Hensley 2002); these observed 

increases are not accounted for by the decreased activity of 

the antioxidant protective enzymes. Oxidative damage may 

also play a role in amyloid deposition in AD, and oxidizing 

conditions can cause protein cross-linking and aggregation 

of β-amyloid protein (Dyrks et al 1993), and also contribute 

to aggregation of tau (Troncoso et al 1993), and other 

cytoskeletal proteins (Bellomo and Mirabelli 1992). The 

β-amyloid protein is also reported to cause the oxidation of the 

nonsaturated carbohydrate side chains of membrane lipids, 

which leads to the disintegration of the neural membrane 

thus resulting in cell lysis (Behl et al 1994). Lipid peroxida-

tion has also been quantitatively assessed in AD brains and 

increased brain levels of 4-hydroxy-2-noneanal glutathione 

conjugates have been recently reported (Völkel et al 2006). 

There is also an increase in the DNA damage of lymphocytes 

obtained from AD donors (Mecocci et al 1998) whilst oxida-

tive modifi cation of proteins in the frontal cortex of AD brain 

has also been reported (Korolainen et al 2006). 

Huntington’s disease (HD)
This is an inherited, autosomal dominant neurodegenerative 

disease, which causes uncontrollable movements and restless-

ness as well as irritability and depression (Margolis and Ross 

2003). Direct evidence for a defect in oxidative phosphoryla-

tion in HD patients is supported by the discovery of a three-

fold increase in lactate concentrations in the occipital cortex 

and in the basal ganglia (Jenkins et al 1993). There is further 

evidence to support the involvement of free radicals in the 

pathogenesis of HD in that increased levels of F
2
-isoprostanes 

have been detected in the cerebro-spinal fl uid of HD patients 

compared to the control group (Montine et al 1999).

Parkinson’s disease (PD)
This is a progressive neurodegenerative movement disorder 

and is the most common form of motor system degenera-

tion affecting approximately 1% of the population over the 

age of 65 (Moore et al 2005). Clinical symptoms include 

bradykinesia, rigidity, postural instability, and resting tremor. 

Experimental evidence supports the involvement of free 

radicals in the pathogenesis of PD. It has been observed that 

that oxidation of dopamine yields potentially toxic semiqui-

nones and that the accelerated metabolism of dopamine by 

monoamine-oxidase-B may induce an excessive formation 

of hydrogen peroxide, superoxide anions, and hydroxyl 

radicals. Further evidence of the involvement of free radicals 

comes from the fact that oxidative stress is responsible for 

the initiation of nigral dopamine neuron loss. The substantia 

nigra has a high metabolic rate combined with both a high 

content of oxidizable species, including dopamine and 

dopamine-derived ROS, neuromelanin, polyunsaturated fatty 

acids, iron, and a low content of antioxidants. Thus oxidative 

stress can dominate and result in the production of ROS, 



Clinical Interventions in Aging 2007:2(2) 223

Free radicals, antioxidants and co-factors

which serve both to maintain the oxidative stress level, and 

to initiate/propagate apoptosis of the dopaminergic neurons 

(Wersinger and Sidhu 2002; Hald and Lotharius 2005). PD 

has also been found to be associated with increased oxida-

tive damage to DNA (Migliore et al 2002) proteins (Choi 

et al 2006) and lipids (Agil et al 2006), and further signs of 

oxidative damage in PD patients is supported by the fi nding 

that elevated levels of the pro-oxidant iron are present in the 

brains of PD patients (Fasano et al 2006). 

Cancer
Carcinogenesis is a complicated, multi-stage process in which 

healthy cells are transformed into abnormal cells as a result 

of a series of mutations and changes in the patterns of gene 

expression. Factors predisposing to malignancy include, inher-

ited traits, environmental agents, diet, and the risk of cancer 

increases with age. Cancer development can be described by 

three stages: initiation, promotion and progression, and ROS 

can act in all these stages of carcinogenesis (Klaunig and 

Kamendulis 2004). It is also well established that free radicals 

are known to react with all components of DNA, thus damaging 

its bases and the deoxyribose backbone (Dizdaroglu et al 2002) 

causing mutations in crucial genes, which ultimately may lead 

to cancer (Ames and Shigenaga 1992).

The permanent modifi cation of genetic material induced 

by free radicals represents the fi rst step involved in muta-

genesis, carcinogenesis, and aging. In support of this free 

radical-mediated damage to DNA has been found in various 

cancer tissues, and there is also a direct link between the size 

of benign tumors and the amount of DNA oxidized product, 

8-hydroxyguanine (8-OH-G) adduct formation; indicating that 

the level of 8-OH-G may be important in the transformation 

of benign to malignant tumor (Loft and Poulsen 1996). This 

damage to the DNA can result either in arrest or induction 

of transcription, induction of signal transduction pathways, 

replication errors, and genomic instability, all of which are 

associated with carcinogenesis (Marnett 2000; Cooke et al 

2003). A high level of oxidative stress can induce apoptosis 

or even necrosis; however, a low level of oxidative stress 

can stimulate cell division and thus promote tumor growth 

(Dreher and Junod 1996). ROS probably enhance the fi nal 

irreversible stage of carcinogenesis, which is characterized 

by accumulation of additional genetic damage, leading to the 

transition of the cell from benign to malignant.

Diabetes
There is increasing evidence that free radical induced damage 

also plays a signifi cant part in the development of insulin 

resistance, β-cell dysfunction, impaired glucose tolerance, 

and type 2 diabetes mellitus (Jay et al 2006; Wright et al 

2006). Hyperglycemia can induce oxidative stress, which 

increases with age, via several mechanisms including 

glucose auto oxidation, the formation of advanced glycation 

end-products (AGE), and activation of the polyol pathway. 

Other circulating factors that are elevated in diabetics such as 

free fatty acids and leptin also contribute to increased ROS 

(Jay et al 2006). There is a signifi cant increase in protein 

glycation (AGE) with age (Poggioli et al 2002), which is 

also increased in diabetics (Wautier and Schimdt 2004). 

The accumulation of AGE leads to an increase in the micro 

vascular lesions, which are present in diabetic retinopathy, 

and is also responsible for cardiovascular complications, 

which are seen in diabetic patients (Wautier and Schmidt 

2004; Jay et al 2006). The damage caused by ROS has also 

been implicated in primary open angle glaucoma (POGA), 

which is the leading cause of irreversible blindness and the 

second most common cause of all blindness after cataracts. 

The incidence of POAG is linked to old age, thus advanced 

age represents a major risk factor for this disease (Izzotti 

et al 2006).

The biochemical and physiological damage induced due 

to free radical mediated oxidative stress can be counteracted 

by antioxidants, which are discussed below.

Antioxidants
The term “antioxidant” refers to any molecule capable of sta-

bilizing or deactivating free radicals before they attack cells. 

Humans have evolved highly complex antioxidant systems 

(enzymic and nonenzymic), which work synergistically, 

and in combination with each other to protect the cells and 

organ systems of the body against free radical damage. The 

antioxidants can be endogenous or obtained exogenously eg, 

as a part of a diet or as dietary supplements. Some dietary 

compounds that do not neutralize free radicals, but enhance 

endogenous activity may also be classifi ed as antioxidants.

An ideal antioxidant should be readily absorbed and 

quench free radicals, and chelate redox metals at physiologi-

cally relevant levels. It should also work in both aqueous 

and/or membrane domains and effect gene expression in a 

positive way. Endogenous antioxidants play a crucial role 

in maintaining optimal cellular functions and thus systemic 

health and well-being. However, under conditions, which 

promote oxidative stress, endogenous antioxidants may not 

be suffi cient and dietary antioxidants may be required to 

maintain optimal cellular functions. The most effi cient enzy-

matic antioxidants involve glutathione peroxidase, catalase 
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and superoxide dismutase (Mates et al 1999). Nonenzymatic 

antioxidants include Vitamin E and C, thiol antioxidants 

(glutathione, thioredoxin and lipoic acid), melatonin, 

carotenoids, natural flavonoids, and other compounds 

(McCall and Frei 1999). Some antioxidants can interact with 

other antioxidants regenerating their original properties; this 

mechanism is often referred to as the “antioxidant network” 

(Sies et al 2005). There is growing evidence to support a 

link between increased levels of ROS and disturbed activi-

ties of enzymatic and nonenzymatic antioxidants in diseases 

associated with aging.

Enzymatic antioxidants
Glutathione peroxidase
There are two forms of this enzyme, one which is selenium-

dependent (GPx, EC1.11.1.19) and the other, which is 

selenium-independent (glutathione-S-transferase, GST, 

EC2.5.1.18) (Mates et al 1999). The differences are due to the 

number of subunits, catalytic mechanism, and the bonding of 

selenium at the active centre, and glutathione metabolism is 

one of the most important antioxidative defense mechanisms 

present in the cells. There are four different Se-dependent 

glutathione peroxidases present in humans (Chaudière and 

Ferrari-Iliou 1999), and these are known to add two electrons 

to reduce peroxides by forming selenoles (Se-OH) and the 

antioxidant properties of these seleno-enzymes allow them 

to eliminate peroxides as potential substrates for the Fenton 

reaction. Selenium-dependent glutathione peroxidase acts 

in association with tripeptide glutathione (GSH), which 

is present in high concentrations in cells and catalyzes the 

conversion of hydrogen peroxide or organic peroxide to 

water or alcohol while simultaneously oxidizing GSH. It also 

competes with catalase for hydrogen peroxide as a substrate 

and is the major source of protection against low levels of 

oxidative stress (Chaudière and Ferrari-Iliou 1999).

Catalase (EC1.11.1.6)
This enzyme is present in the peroxisome of aerobic 

cells and is very effi cient in promoting the conversion of 

hydrogen peroxide to water and molecular oxygen. Catalase 

has one of the highest turnover rates for all enzymes: one 

molecule of catalase can convert approximately 6 million 

molecules of hydrogen peroxide to water and oxygen each 

minute (Mates et al 1999).

Superoxide dismutase (SOD), (EC 1.15.1.1)
This is one of the most effective intracellular enzymatic 

antioxidants and it catalyzes the conversion of superoxide 

anions to dioxygen and hydrogen peroxide. Superoxide 

dismutase exists in several isoforms, which differ in the 

nature of active metal centre, amino acid composition, 

co-factors and other features. There are three forms of SOD 

present in humans: cytosolic Cu, Zn-SOD, mitochondrial 

Mn-SOD, and extra cellular-SOD (Landis and Tower 2005). 

Superoxide dismutase neutralizes superoxide ions by going 

through successive oxidative and reductive cycles of transi-

tion metal ions at its active site (Chaudière and Ferrari-Iliou 

1999). Cu, Zn-SOD has two identical subunits with a 

molecular weight of 32 kDa (Mates et al 1999) and each of the 

subunit contains as the active site, a dinulcear metal cluster 

constituted by copper and zinc ions, and it specifi cally cata-

lyzes the dismutation of the superoxide anion to oxygen and 

water. The mitochondrial Mn-SOD is a homotetramer with a 

molecular weight of 96 kDa and contains one manganese atom 

per subunit (Mates et al 1999), and it cycles from Mn(III) to 

Mn(II), and back to Mn(III) during the two-step dismutation 

of superoxide. Extra cellular superoxide dismutase contains 

copper and zinc, and is a tetrameric secretary glycoprotein 

having a high affi nity for certain glycosaminoglycans such 

as heparin and heparin sulphate (Mates et al 1999), however, 

its regulation in mammalian tissues occurs primarily in a 

manner coordinated by cytokines, rather than as a response 

to oxidative stress.

Nonenzymatic antioxidants
Vitamin E
This is a fat-soluble vitamin existing in eight different forms. 

In humans, α-tocopherol is the most active form, and is the 

major powerful membrane bound antioxidant employed by 

the cell (Hensley et al 2004). The main function of Vitamin E 

is to protect against lipid peroxidation (Pryor 2000), and there 

is also evidence to suggest that α-tocopherol and ascorbic 

acid function together in a cyclic-type of process. During 

the antioxidant reaction, α-tocopherol is converted to an 

α-tocopherol radical by the donation of a labile hydrogen to 

a lipid or lipid peroxyl radical, and the α-tocopherol radical 

can therefore be reduced to the original α-tocopherol form 

by ascorbic acid (Kojo 2004).

Vitamin C (ascorbic acid)
This is an important and powerful water-soluble antioxidant 

and thus works in aqueous environments of the body. 

Its primary antioxidant partners are Vitamin E and the 

carotenoids as well as working along with the antioxidant 

enzymes. Vitamin C cooperates with Vitamin E to regenerate 

α-tocopherol from α-tocopherol radicals in membranes and 
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lipoproteins (Carr and Frei 1999; Kojo 2004), and also raises 

intracellular glutathione levels thus playing an important role 

in protein thiol group protection against oxidation (Naziroglu 

and Butterworth 2005). 

Thiol antioxidants
The major thiol antioxidant is the tripeptide glutathione 

(GSH), which is a multifunctional intracellular antioxidant 

and is considered to be the major thiol-disulphide redox buf-

fer of the cell (Masella et al 2005). It is abundant in cytosol, 

nuclei, and mitochondria, and is the major soluble antioxidant 

in these cell compartments (Masella et al 2005). Glutathione 

has also been shown to play a role in cell senescence since 

studies involving human fi broblasts have shown that the 

intracellular glutathione level has a strong infl uence on the 

induction of a post-mitotic phenotype, and that by implication 

depletion of glutathione may play a signifi cant role in the 

cellular aging in human skin (Alaluf et al 2000). The reduced 

form of glutathione is GSH, glutathione, whilst the oxidized 

form is GSSG, glutathione disulphide. The antioxidant capac-

ity of thiol compounds is due to the sulphur atom, which can 

easily accommodate the loss of a single electron (Karoui et al 

1996). Oxidized glutathione (GSSG) is accumulated inside 

the cells and the ratio of GSH/GSSG is a good measure of 

oxidative stress of an organism (Dröge 2002). The main 

protective roles of glutathione against oxidative stress are 

that it can act as a co-factor for several detoxifying enzymes, 

participate in amino acid transport across plasma membrane, 

scavenge hydroxyl radical and singlet oxygen directly, and 

regenerate Vitamins C and E back to their active forms 

(Masella et al 2005).

Another thiol antioxidant is the thioredoxin (TRX) 

system; these are proteins with oxidoreductase activity and 

are ubiquitous in both mammalian and prokaryotic cells 

(Holmgren 1985). It also contains a disulphide and pos-

sesses two redox-active cysteins within a conserved active 

site (Cys-Gly-Pro-Cys) (Nakamura et al 1997). Thioredoxin 

contains two adjacent –SH groups in its reduced form that 

are converted to a disulphide unit in oxidized TRX when it 

undergoes redox reactions with multiple proteins.

Thioredoxin levels are much less than GSH, however, 

TRX and GSH may have overlapping as well as compart-

mentalized functions in the activation and regulation of 

transcription factors (Valko et al 2006).

The third important thiol antioxidant is the natural com-

pound α-Lipoic acid (ALA), which is a disulphide derivative 

of octanoic acid and is sometimes referred to as thiothic 

acid. It is both water and fat-soluble, and therefore, is widely 

distributed in both cellular membranes and the cytosol of 

eukaryotic and prokaryotic cells. α-Lipoic acid is readily 

absorbed from the diet and is converted rapidly to its reduced 

form, dihydrolipoic acid (DHLA) (Smith et al 2004). Both 

ALA and DHLA are powerful antioxidants and they exert 

their effects by scavenging free radicals, metal ion chelation 

and antioxidant recycling, and repairing protein damage 

due to oxidative stress either in the cytosol or hydrophobic 

domains (Navari-Izzo et al 2002).  Dihydrolipoic acid is a 

stronger antioxidant than lipoic acid and can act synergisti-

cally with other antioxidants such as glutathione, ascorbate 

and tocopherol. However, it can also exert pro-oxidant prop-

erties both by its iron-reducing ability and by its ability to 

generate sulfur-containing radicals that can damage proteins 

(Navari-Izzo et al 2002). 

Melatonin (N-acetyl-5-methoxytryptamine)
This is an indoleamine neurohormone that is synthesized 

mainly in the pineal gland and has many effects on a wide 

range of physiopathological functions. One major function of 

melatonin is to scavenge free radicals in oxygen metabolism, 

thereby potentially protecting against free radical-induced 

damage to DNA, proteins and membranes, thus it has the 

potential to play an important role in the reduction of free 

radical mediated diseases (Rahimi et al 2005).

Carotenoids
These are mainly colored pigments present in plants and 

microorganisms and epidemiological studies have revealed 

that an increased consumption of a diet rich in carotenoids 

is correlated with a lower risk of age-related diseases. Carot-

enoids contain conjugated double bonds and their antioxidant 

activity arises due to the ability of these to delocalize unpaired 

electrons (Mortensen et al 2001). This is also responsible 

for the ability of carotenoids to physically quench singlet 

oxygen without degradation and for the chemical reactivity 

of carotenoids with free radicals. The effi cacy of carotenoids 

for physical quenching is related to the number of conjugated 

double bonds present in the molecule, which determines their 

lowest triplet energy level. They can also scavenge peroxy 

radical thus preventing damage in lipophilic compartments 

(Stahl and Sies 2003), however, the carotenoid β-carotene can 

also act as a pro-oxidant causing an increase in lipid peroxida-

tion (Polozza et al 2003). The concentrations of carotenoids 

and the partial pressure of oxygen are also important factors 

in their effectiveness as antioxidants. Carotenoids, in particu-

lar β-carotene exhibit antioxidant properties at low oxygen 

partial pressure but become pro-oxidants at high pressures 
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of oxygen and similarly, at high carotenoid concentrations, 

pro-oxidant behavior is displayed (Rice-Evans et al 1997; 

Stahl and Sies 2003). 

Flavonoids
These are a broad class of low molecular ubiquitous groups 

of plant metabolites and are an integral part of the human 

diet (Rice-Evans 2001). Flavonoids are benzo-γ-pyrone 

derivatives consisting of phenolic and pyrane rings and 

during metabolism hydroxyl groups are added, methylated, 

sulfated or glucuronidated.

There is intense interest in fl avonoids due to their anti-

oxidant and chelating properties and their possible role in 

the prevention of chronic and age-related diseases (Schroeter 

et al 2002). 

Flavonoids are present in food mainly as glycosides and 

polymers (Hammerstone et al 2000) and these comprise a 

substantial fraction of dietary fl avonoids (Santos-Buelga and 

Scalbert 2000). The biological properties of fl avonoids are 

determined by the extent, nature, and position of the sub-

stituents and the number of hydroxyl groups (Schroeter et al 

2002). These factors also determine whether a fl avonoid will 

act as an antioxidant or as a modulator of enzyme activity, or 

whether it possesses antimutagenic or cytotoxic properties. 

The most reported activity of fl avonoids is their protection 

against oxidative stress (Rice-Evans 2001). Thus fl avonoids 

can scavenge peroxyl radicals, and are effective inhibitors 

of lipid peroxidation, and can chelate redox-active metals, 

and thus prevent catalytic breakdown of hydrogen peroxide 

(Fenton chemistry). However, under certain conditions, 

fl avonoids can also display pro-oxidant activity and this is 

thought to be directly proportional to the total number of 

hydroxyl groups (Cao et al 1997), and they have also been 

reported to modulate cell signaling (Schroeter et al 2002).

Antioxidants and age-related 
diseases
The human body has a host of mechanisms such as the DNA-

repair systems to deal with free radical induced damage and 

depending on the circumstances, environmental and genetic 

factors can either increase or decrease the incidence of dis-

eases associated with old age (Figure 2). Epidemiological 

studies have demonstrated that diet plays a crucial role in 

the prevention of age-related chronic diseases especially if 

combined with regular physical activity and abstaining from 

smoking (Willett 2006). Free radicals and oxidative stress are 

recognized as important factors in the biology of aging and 

of many age-related diseases. One mechanism to slow down 

the aging process and the decline in the vital body functions 

is to modulate oxidative stress by calorie restriction, how-

ever, this is diffi cult to achieve. Hence, dietary components 

with antioxidant activity have received particular attention 

because of their potential role in modulating oxidative stress 

associated with aging and chronic conditions. Several studies 

have indicated potential roles for dietary antioxidants in the 

reduction of age-related diseases (Meydani et al 2001). This 

is supported by the fact that in elderly subjects a higher daily 

intake of fruits and vegetables is associated with an improved 

antioxidant status compared to subjects consuming diets poor 

in fruits and vegetables (Anlasik et al 2005). Therefore, the 

use of antioxidants by this group may lower the prevalence 

of diseases associated with old age; evidence supporting this 

is outlined below.

Mediterranean diet, which is rich in fruits and vegetables, 

has been shown to reduce the incidence of cardiovascular 

disease (Serra-Majem et al 2006; Willett 2006). Evidence is 

now emerging that some dietary antioxidants besides display-

ing traditional antioxidant potential can infl uence signaling 

pathways and gene expression relevant in atherosclerosis 

by mechanisms other than antioxidative ones. Vitamin C 

has been shown to inhibit LDL oxidation in vitro (Alul 

et al 2003) primarily by scavenging free radicals and other 

ROS, thereby preventing them from interacting with LDL. 

The observational data in humans suggest that vitamin C 

ingestion is associated with reduced cardiovascular disease, 

however, the results of randomized controlled trials have 

been mainly disappointing (Cherubini et al 2005b). A ran-

domized double-blind crossover trial has shown a positive 

correlation of plasma Vitamin C with resistance to LDL to 

oxidation (Samman et al 2003), however, in contrast to this, 

in another recent study no correlation between Vitamin C and 

LDL resistance to oxidation has also been reported (Kaliora 

et al 2006). Vitamin E has also been shown to inhibit LDL 

oxidation in vitro (Andrikopoulos et al. 2002; Tucker and 

Figure 2 Summary of mechanisms involved in the prevention of diseases 
associated with old age.
Notes: (–) Reduction of diseases; (+) Induction of diseases. There is interaction 
between body’s antioxidant defense system, dietary antioxidants, and co-factors in 
the reduction of diseases associated with old age.
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Townsend 2005), and also increases LDL oxidative resistance 

(Dieber-Rotheneder et al 1991; Heitzer et al 1999, Palomaki 

et al 1999; Hodis et al 2002), decreases agonist-induced plate-

let aggregation (Munteanu et al 2004), and preserves agonist-

induced vasodilation (Keaney et al 1993; Munteanu et al 

2004) ex vivo. Long term supplementation with Vitamin E 

in hypercholesterolemic patients and/or chronic smokers has 

shown to increase levels of autoantibodies against oxidized 

LDL (Heitzer et al 1999) and it has recently been shown to 

prevent ischemic heart disease (Chattopadhay and Bandyo-

padhyay 2006) however, evidence from other clinical trials is 

controversial and confusing (Kaliora et al 2006) since some 

studies have failed to show a link between dietary supple-

mentation of ∝-tocopherol and LDL resistance to oxidation. 

This may be due to the fact that vitamin E not only acts as an 

antioxidant but can also interact with enzymes and modulate 

genes involved in atherosclerosis (Munteanu et al 2004).

A protective role fl avonoids in the diet of humans has 

been indicated in some large prospective studies. In vitro 

inhibition of LDL oxidation by fl avonoids has also been 

demonstrated (Andrikopoulos et al 2002; Vitseva et al 

2005) whilst total antioxidant capacity is increased and 

LDL oxidizability is reduced after consumption of several 

natural products that are rich in fl avonoids (Rahman 2003; 

Ruel et al 2005). A high fl avonoid intake is also associated 

with a lower mortality rate from coronary heart disease 

and lower incidence of myocardial infarction in older men 

(Hertog et al 1993), and a reduced risk of coronary heart 

disease in post-menopausal women has been observed 

(Yochum et al 1999). The Zutphen Elderly study also 

demonstrated an inverse relationship between consumption 

of catechin, a predominant fl avonoid in tea and ischemic 

heart disease mortality in a cohort of 806 men ( Arts et al 

2001). In support of this, black tea consumption has shown a 

decrease in markers of oxidative stress and infl ammation in 

patients with coronary artery disease (Widlansky et al 2005). 

Carotenoids have shown to increase LDL oxidative resistance 

in ex vivo studies (Levy et al 2000; Upritchard et al 2000), 

however, in another study involving elderly healthy subjects 

supplementation with a carotene mixture or lycopene had 

no effect on oxidative modifi cation of LDL in vitro, despite 

signifi cant increase in plasma and LDL concentrations of 

lycopene, α-carotene and β-carotene (Carroll et al 2000). 

In contrast, in another clinical trial a signifi cant decrease in 

serum LDL cholesterol was observed which was in paral-

lel with an increase in serum lycopene (Agarwal and Rao 

1998). In addition, in patients with diabetes mellitus increased 

susceptibility to LDL oxidation was normalized by natural 

β-carotene or lycopene dietary supplements (Levy et al 2000; 

Omoni and Aluko 2005).

The effect of antioxidants has also been investigated 

on the vascular endothelium since it plays a key role in the 

regulation of vascular tone and its dysfunction correlates with 

cardiovascular disease. Garlic, which is high in antioxidants, 

inhibits the ability of platelets to aggregate, increases anti-

oxidants levels and also inhibits LDL oxidation (Rahman 

2003). It also increases intracellular glutathione (GSH) 

levels in vascular endothelial cells by modulation of the 

GSH redox cycle specifi cally increasing glutathione disulfi de 

(GSSG) reductase activity and superoxide dismutase (SOD) 

activity (Geng and Lau 1997). The role of antioxidants in 

preventing platelet aggregation is still a matter of contro-

versy and contradictory results have been obtained with the 

antioxidant Vitamins C and E (Kaliora et al 2006). Although, 

the intake of dietary fl avonids is inversely correlated with 

the risk of mortality from coronary artery disease (Gelijnse 

et al 1999; Omoni and Aluko 2005) its role in platelet func-

tion has provided contrasting evidence. For example, cocoa 

supplementation in healthy subjects signifi cantly increased 

fl avonoids levels and decreased platelet aggregation (Murphy 

et al 2003), in support of this in another study chocolate 

consumption also decreased platelet aggregation (Innes 

et al 2003). In contrast, some studies have shown no effect 

of fl avonoids on platelet aggregation despite an increase in 

its plasma concentration (Gooderham et al 1996; Conquer 

et al 1998). There is currently little data on the effectiveness 

of carotenoids on platelet function. 

Vitamin C supplementation in healthy humans has shown 

recently that its intake results in signifi cant reduction of 

oxidative stress and infl ammation as shown by a reduction 

in the concentration of F
2
-isoprostanes, prostaglandin E

2
, 

and monocyte chemotactic protein-1 (Sánchez-Moreno et al 

2006). The relationship between antioxidants and gene expres-

sion has also been investigated and evidence is emerging that 

antioxidants may prevent cardiovascular disease infl uencing 

gene expression directly or via gene promoters, via control 

of regulatory signals, and via post-transcriptional pathways 

(Kaliora et al 2006). The role of phytochemicals in the inhi-

bition of cancer and infl ammation has also been extensively 

studied and it is now clear that these exert their action by 

modulating phase I and phase II enzymes and by modulating 

the cell signaling pathways involved in infl ammation (Issa 

et al 2006). In future the role of proteomics and nutrigenomics 

will be important in determining the diet-gene relationship.

Since free radicals are implicated in the pathogenesis of 

neurodegenerative diseases (Emerit et al 2004), the role of 
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antioxidants in their prevention has been gaining popularity. 

It has been reported that the concentration of antioxidant 

varies within the different regions of the brain and some 

enzymatic antioxidants such as catalase are found in lower 

concentrations in the brain when compared to other tissues 

(Gilgun-Sherki et al 2001). A variety of antioxidants have 

been investigated for the reduction of oxidative stress 

associated with AD. It has also been reported that the 

concentrations of Vitamins A, C, E and β-carotene in plasma, 

serum or cerebrospinal fl uid are lower in AD patients than 

in controls (Schippling et al 2000; Bourdel-Marchasson et al 

2001) and supplementation with these vitamins is useful in 

the prevention of AD (Frank and Gupta 2005). Vitamin E 

is also reported to slow the rate of motor dysfunction in HD 

(Peyser et al 1995; Butterfi eld et al 2002). In contrast, no 

effects of these antioxidants on AD have also been reported 

(Luchsinger et al 2003). It has been suggested that fl avonoids 

may have neuroprotective effects both in vitro and in vivo 

possibly by their abilities to scavenge ROS (Sutherland 

et al 2006). This is supported by the fact that polyphenols 

found in blueberry have been shown to reverse age-related 

declines in neuronal signal transduction as well as cognitive 

and motor defi cits and increase hippocampal plasticity (Lau 

et al 2005). In addition, Concord grape juice reverses the 

course of neuronal and behavioral aging possibly through 

a multiplicity of direct and indirect effects that can affect 

a variety of neuronal parameters (Shukitt-Hale et al 2006) 

and curcumin, a powerful antioxidant from the curry spice 

turmeric reduces oxidative damage and amyloid pathology 

associated with AD (Calabrese et al 2003). Garlic, a strong 

antioxidant is also reported to protect against age-related 

maculopathy and cataract formation in the elderly (Cumming 

et al 2000). The role of garlic in preventing cerebral aging 

and dementia is also supported by other studies which indi-

cate that phytochemicals displaying antioxidant properties 

can improve neurological dysfunctions (Youdim and Joseph 

2001; Deschamps et al 2001).

Ginkgo extract has also been investigated in the pre-

vention of neurodegenerative diseases and has a benefi cial 

effect in the treatment of AD patients (Oken et al 1998; 

Frank and Gupta 2005). In contrast no effi cacy of Gingko 

extract on AD subjects has also been noted (Van Dongen 

et al 2000; Schneider et al 2005). Hence, larger studies are 

needed to clarify the therapeutics effects of Gingko extract 

in AD subjects.

Melatonin is a potent free radical scavenger and its levels 

decline with age and patients with neurodegenerative diseases 

have signifi cant reductions of this substance (Liu et al 1999; 

Hardeland et al 2006). It also displays neuroprotective and 

antioxidant properties against amyloid β-protein mediated 

oxidative damage (Frank and Gupta 2005; Hardeland et al 

2006), and displays immunomodulatory properties, and thus 

can play a role in healthy aging (Karasek 2004).

An early biochemical change in PD patients is a reduc-

tion in total glutathione levels (Bharath and Anderson 2005). 

Infusion of GSH in PD patients has been demonstrated to 

improve the symptoms but the therapeutic effects only lasted 

between 2–4 months after GSH treatment was stopped (Sechi 

et al 1996). However, the role of induction of endogenous 

antioxidants in the prevention of neurodegenerative diseases 

needs further investigation. 

Free radicals can induce DNA damage, which can 

lead to mutations in crucial genes thus ultimately leading 

to cancer (Ames and Shigenaga 1992). There is evidence 

to indicate that ROS are involved in cancer initiation and 

promotion and malondialdehyde (MDA) concentration 

is increased in patients with neoplasms (Yeh et al 2005). 

Consumption of potent dietary antioxidants can lower the 

effects of oxidative DNA damage in the aged besides lower-

ing the overall risk of cancer (Block 1991; Donaldson 2004; 

Serra-Majem et al 2006). A recent study has indicated that 

a combination of antioxidants is a powerful adjunctive pre-

ventive treatment for cancer (Eli and Fasciano 2006) since 

the total activity of antioxidant enzymes such as superoxide 

dismutase (SOD) and catalase is reduced in certain types 

of cancers (Oberley 1998; Mates et al 1999). However, the 

invasive potential of cancer cells is also increased in the 

presence of abnormally high levels of Mn-SOD (Valko 

et al 2006). The antioxidant vitamins C and E also have the 

potential to reduce certain types of cancers. Many studies 

have shown that vitamin C protects against cell death trig-

gered by various stimuli and this protection is associated 

with its antioxidant property. Vitamin C supplementation 

studies have shown a reduction in markers of oxidative 

DNA, lipid and protein damage, and in support, vitamin C 

has been shown to regulate factors that can infl uence gene 

expression, apoptosis, and other cellular functions (You 

et al 200). Intervention with vitamin E supplementation 

has shown a reduction in the risk of colorectal adenomas 

and prostate cancer (Borek 2005; Tucker and Townsend 

2005). However, controversy surrounds the effectiveness 

of vitamins in reducing cancer and negative effects of 

vitamin C and E have also been reported. A study by Miller 

and colleagues (2005) has revealed that vitamin E at doses 

of 400IU or more can actually increase the risk of death, 

however, no risk was reported when vitamin E was used 
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at 200IU or less. There is also an association between 

cancer incidence and various disorders of GSH-related 

enzyme functions especially the alterations of glutathione 

S-transferases (GSTs) (Valko et al 2006). 

Carotenoids also display antiproliferative properties 

when tested in various cancer cell lines. Increased intake 

of lycopene has been reported to attenuate alcohol-induced 

apoptosis in 2E1 cells, and reduces the risk of prostate, lung 

and digestive cancers. This cancer preventative property of 

lycopene is associated with its antioxidant property and its 

ability to induce and stimulate intercellular communication 

via gap junctions which are known to play a role in the regu-

lation of cell growth, differentiation, and apoptosis (Tapiero 

et al 2004). In this context the redox state of the cell is also 

important, as there is evidence to show that redox balance is 

impaired in cancer cells compared with normal cells, which 

may be related to oncogenic stimulation. Antioxidants may 

prevent cancer by inducing phase II detoxifying enzymes 

and activating transcription factors and endogenous antioxi-

dant enzymes such as glutathione peroxidase and catalase 

(Frei and Higdon 2003). It is known that altered levels of 

antioxidant enzymes and nonenzymatic antioxidants as 

well as changes in the related signal pathways are evident 

in many human cancers (McEligot et al 2005). Evidence 

is also emerging that fl avonoids such as garlic, green tea, 

silibinin, and curcumin have cancer preventive properties 

(Rahman 2003; Mandel et al 2005). In support of this garlic 

is known to enhance scavenging systems in the cells such 

as glutathione, SOD, catalase, and glutathione peroxidase 

(Wei and Lau 1998). Many of these dietary compounds 

appear to act on multiple target signaling pathways which 

include down-regulation of cyclooxygenase-2 (COX-2) and 

down- regulation of the transcription activators, AP-1 and 

NF-κB known to be extremely important in tumor promoter-

induced cell transformation and tumor promotion, and both 

are infl uenced differentially by the MAPK pathways (Huang 

et al 2002; Sarkar and Li 2004). Further support for the role 

of fl avonoids in preventing cancer has come from grape 

seed proanthocyanidins which have been reported to inhibit 

UV-radiation-induced oxidative stress and activation of 

MAPK and NF-κB signaling in human epidermal keratino-

cytes (Mantena and Katiyar 2006). Dietary Antioxidants may 

also prevent cancer by potentially suppressing angiogenesis 

by inhibiting interleukin-8 production and the cell junction 

molecule VE-cadherin (Meydani 2001). These studies con-

cur with the epidemiologic, clinical and animal studies that 

consumption of antioxidants is associated with a reduced 

risk of cancer among the elderly.

Oxidative stress is increased with aging and is a contributing 

factor for the initiation and progression of complications in 

diabetes mellitus such as lens cataracts, nephropathy and 

neuropathy (Atli et al 2004, Osawa and Kato et al 2005). The 

use of antioxidants in preventing and treating diabetes has been 

investigated over the last decade. Dietary supplementation 

with a combination of antioxidants, and vitamins C and E has 

reported a reduction in oxidative stress markers in patients 

with type 2 diabetes (Farvid et al 2004; Neri et al 2005). In 

contrast, clinical trials involving Vitamin E supplementation 

on diabetic complications have shown conflicting data 

(Ble-Castillo et al 2005; Guerrero-Romero and Rodríguez-

Morán 2005), however, Vitamin E has a greater effect in 

protecting LDL oxidation in type 2 diabetics who are at a 

greater risk of cardiovascular disease (Anderson et al 1999). 

Similarly, confl icting data has also been obtained with vitamin 

C supplementation such that decreased fasting plasma insulin 

levels and improved insulin action (Penckofer et al 2002) has 

been reported, whilst another study has reported no effect 

(Darko et al 2002). Further confl icting data has been observed 

in diabetic postmenopausal women who display a higher level 

of oxidative stress (Varma et al 2005) and supplementation 

with high Vitamin C in this group has been reported to have 

an increased risk of mortality from cardiovascular disease 

(Lee et al 2004). 

Flavonoids also have a role to play in the treatment of 

diabetes (Rahman 2003; Rahimi et al 2005) as these have 

shown to protect against hyperglycemic and alloxan-induced 

oxidative stress in experimental animal models (Hedge et al 

2005). In support, in clinical trials fl avonoids have shown 

to offer protection against type 2 diabetes in a large cohort 

of women (Song et al 2005). Melatonin has been shown to 

reduce diabetic nephropathy and neuropathy in experimental 

animal models (Baydas et al 2003; Cam et al 2003) but more 

work is required to assess its effi cacy in humans. 

Finally, there is evidence to support the use of lipoic acid 

in treating type 2 diabetes as lipoic acid displays strong 

antioxidant properties and increases glucose uptake 

through recruitment of the glucose transporter-4 to plasma 

membranes, a mechanism that is shared with insulin-

stimulated glucose uptake (Packer et al 2001). Lipoic acid is 

also reported to improve neural blood fl ow, endoneural glucose 

uptake, and metabolism and nerve conduction (Ruhnau 

et al 1999; Smith et al 2004). It probably exerts its effect in 

diabetic patients by reducing lipid accumulation in adipose 

and nonadipose tissue (Song et al 2004), by increasing 

glucose uptake and by activating pyruvate dehydrogenase 

complex, which is known to play a major role in the oxidation 
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of glucose-derived pyruvate (Korotchkina et al 2004). It’s 

clear that more human clinical trials are required in order 

to establish the role of antioxidants in the prevention and 

treatment of diabetes.

Antioxidants may also have a role to play in the treat-

ment of symptoms and pathological processes associated 

with menopause (Miquel et al 2006) especially in women 

who suffer high levels of oxidative stress, do not consume 

a healthy diet and are seeking alternative treatments for the 

symptoms of menopause. 

Co-factors
The biochemical defi nition of a co-factor is that it is an ion 

or a molecule that binds to the catalytic site of an apoenzyme 

rendering it active. Many enzymes have a requirement for metal 

ions for their activity and these metal ions are also referred to 

as co-factors. The major antioxidant enzymes possess transition 

metals or selenium at the catalytic site and the availability of 

cofactors can determine the activity of such enzymes. Some of 

the co-factors involved in the oxidant/antioxidant mechanisms 

have already been outlined, the rest are discussed below.

Different essential metals play an important role in 

controlling oxidative reactions in biological tissues. For 

example copper (Cu) is an essential cofactor in a number of 

critical enzymes including cytochrome C oxidase and copper, 

zinc-superoxide dismutase (Cu, ZN-SOD) (Arredondo and 

Núñez 2005). Although unregulated Cu is also a well known 

pro-oxidant it can through the action of transporter proteins 

such as metallothineins and ceruplasmin exert its antioxida-

tive effects (Leung 1998). A Cu defi ciency-induced decrease 

in the activity of CuZn-SOD in humans and animals has 

been reported (Turnlund et al 1997; Uriu-Adams et al 2005). 

Copper defi ciency also decreases the activity of ceruloplasmin, 

which requires Cu for its ferroxidase function (Hellman and 

Gitilin 2002), and it can also lead to a reduction in enzymes 

of the oxidant defense system such as selenium-dependent 

glutathione peroxidase (Se-GPX) and catalase (Chen et al 

1994). Further more a defi ciency in Cu can also alter other 

ROS scavengers including metallothionein (a Cu and Zn 

containing protein) (Tapia et al 2004) and the nonprotein thiol, 

glutathione (Uriu-Adams and Keen 2005). Copper and zinc are 

also essential co-factors for enzymes involved in the synthesis 

of various bone matrix constituents and could be important in 

the elderly since they may play an important role in reducing 

bone loss in osteoporosis (Lowe et al 2002).

Iron (Fe) is an essential constituent of catalase enzymes, 

hemoglobin and myoglobin, but is also a prooxidant (via Fenton 

reactions) when it is present in excess (Gutteridge 1995; 

Leung 1998; Puntarulo 2005). In the presence of lipids iron 

creates oxidative stress and it has been suggested that subjects 

with high levels of lipids and serum iron are at an increased 

risk of cancer (Mainous et al 2005). Thus, iron chelators such 

as albumin, haptoglobin, lactoferrin, transferring and urate 

also have an important role to play in preventing oxidative 

stress-related diseases (Gutteridge 1995). 

Selenium (Se) is another important co-factor and epide-

miological fi ndings have linked a lowered Se status to neu-

rodegenerative and cardiovascular diseases as well as to an 

increased risk of cancer (Brenneisen et al 2005). There is 

an association between Se reduction and DNA damage, and 

oxidative stress, and some evidence that Se may affect not 

only cancer risk but also progression and metastasis (Rayman 

2005). Selenium intervention in subjects with a lower Se 

status has shown some benefi ts in reducing the incidence 

and mortality in all cancers but more specifi cally in liver, 

prostate, colo-rectal and lung cancers. Its protective effects 

appear to be associated with its presence in the multiform of 

glutathione peroxidases, which are known to protect DNA 

and other cellular damage from oxidative stress (Schrauzer 

2000; Trueba et al 2004). 

The element manganese (Mn) is another co-factor 

involved in antioxidant defense mechanisms and is a vital 

component of Mn-SOD enzyme, which plays a crucial role 

in protecting mitochondria from free radical attack (Leung 

1998). Zinc (Zn) another component of SOD is also involved 

in antioxidant defense systems and protects the vascular and 

immunological systems from the damaging affects of free 

radical species (Kuppusamy et al 2005), and it is also a key 

constituent or co-factor of over 300 mammalian proteins 

which may have a role in the prevention of initiation and 

progression of cancer. Evidence supports the fact that Zn 

defi ciency can impair the host protective mechanisms 

designed to protect against DNA damage, thus increasing 

the risk of cancer (Ho 2004), and it also plays an important 

role as an antioxidant and/or as a co-factor in keeping the 

skin healthy (Rostan et al 2002), thus it can play an important 

role in healthy aging.

Coenzyme Q
10

 (Co Q
10

) (Ubiquinone) is fat-soluble 

quinine that transfers electrons from complexes I and II 

to complex III within the mitochondria, this process being 

coupled to ATP production. In its reduced form, Co Q
10 

also 

inhibits lipid peroxidation and can protect mitochondrial 

inner-membrane proteins and DNA from oxidative damage, 

and is the most widely used co-factor supplement in the treat-

ment of mitochondrial disorders (Turunen et al 2004). CoQ is 

commonly used for treatment of cardiomyopathy, (Langsjoen 
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and Langsjoen 1999) and neurological disorders such as 

Parkinson’s disease and diabetes, and can thus prevent age-

related mitochondrial dysfunction (Littarru and Tiano 2005). 

Most promising results have been obtained in the treatment 

of neurological disorders whilst its use in the treatment of 

cardiovascular disease and diabetes has produced contradic-

tory data (Bonakdar and Guarneri 2005). 

Ribofl avin (Vitamin B2) is another co-factor, which is 

converted to fl avin dinucleotide, which serves as a coenzyme 

for glutathione reductase and other enzymes (Manthey 

et al 2006). Low intakes of Ribofl avin have been associated 

with different diseases including cancer and cardiovascular 

diseases and there is some evidence that treatment with ribo-

fl avin can provide some benefi t against diseases associated 

with oxidative stress (Bonnefont-Rousselot 2004; Manthey 

et al 2006). 

Another co-factor Thiamine (Vitamin B1) has been 

investigated for its role in the treatment of oxidative 

stress-related diseases. Thiamine diphosphate is the active 

form of thiamine and it serves as a co-factor for several 

enzymes, which are important in the biosynthesis of reduc-

ing equivalents used in oxidant stress defenses (Singleton 

and Martin 2001). Thiamine defi ciency has been linked 

to the promotion of neurodegeneration and an increase in 

oxidative stress (Gibson and Zhang 2002); however, its 

effectiveness in treating diseases associated with free radi-

cals is still unclear (Bonnefont-Rousselot 2004; Nascimento 

et al 2006). Nicotinamide, the amide form of niacin or 

nicotinic acid is a precursor for both nicotinamide adenine 

dinucleotide (NAD/NADH), and nicotinamide adenine 

dinucleotide phosphate (NADP). It plays an important 

role in energy metabolism, signal transduction, cellular 

injury, aging (Aksoy et al 2006), and shows signifi cant 

inhibition of oxidative damage induced by ROS (Kamat 

and Devasagayam 1999; Feng et al 2006), however, its 

mechanism of action is unknown.

Carnitine, which transfers long-chain fatty acids across 

the mitochondrial membrane, has also been investigated for 

its property to scavenge free radicals. It has been shown to 

protect mitochondrial membrane damage during the aging 

process in an experimental model (Savitha and Panneer-

selvam 2006), and to display antioxidant properties in the 

prevention of acetic acid- induced colitis (Cetinkaya et al 

2006). It has also been reported to inhibit hepatocarcino-

geneis via improvement of mitochondrial dysfunction in 

an experimental model (Chang et al 2005), and it has been 

reported to improve fatigue symptoms in cancer patients 

(Gramignano et al 2006). 

The biochemical interaction between free radicals, 

antioxidants, and co-factors needs to be considered further 

and results from long-term trials are needed to evaluate the 

safety and benefi cial role of these in the prevention and treat-

ment of diseases associated with free radicals. A summary of 

mechanisms involved in the prevention of diseases associated 

with aging is represented in Figure 2.

Conclusions
There is now universal agreement that free radicals are involved 

in the physical, biochemical, and pathological changes asso-

ciated with aging. Oxidative damage to proteins, lipids, and 

DNA accumulates and increases with age, and is associated 

with age-related diseases such as cardiovascular disease, 

neurodegenerative diseases, cancer, and diabetes (Rahman 

2003). The human body deals with the pathological effects 

of ROS by utilizing the endogenous antioxidant system (eg, 

enzymes such as superoxide dismutase), and by the ingestion 

of exogenous antioxidants in the diet (eg, fl avonoids). The 

presence of co-factors is also important for the antioxidants 

to exert optimum effects. If the oxidative stress exceeds the 

protection afforded by antioxidants the aging process and 

some of the diseases associated with it can accelerate. 

According to the World Health Organization 20% of 

the current world population are aged �60 years and life 

expectancy is continuing to increase throughout the world, 

and it is estimated that by 2025 this number will have grown 

to 29% (WHO 2002).

This change in the world population is been accom-

panied by rise in living standards leading to lifestyle and 

behavior changes that are having an adverse impact on 

population health. This increase in older people is likely 

to place greater financial burden on the health services 

and high social costs for individuals and society if not 

managed properly.

Healthy aging involves the interaction between genes, the 

environment and life styles, and in order for the elderly to 

live independently and relatively disease and disability free 

requires that healthy life styles are promoted throughout life. 

The most modifi able lifestyle factors are physical activity 

and diet, and the elderly population should be encouraged 

to take up physical activity since it has a positive effect on 

decreasing the risk of many diseases associated with old age 

(Peel et al 2005). The elderly should also be encouraged to 

consume a diet rich in antioxidants as there is evidence that 

such a diet especially in combination with a healthy life style 

can lower the rate of all-causes and cause-specifi c mortal-

ity by more than 50% in the 70–90 years old (Knoops et al 
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2004), (see Figure 3). Although, some of the evidence that 

certain dietary antioxidants and some co-factors can reduce 

free radical mediated damage and promote healthy aging 

is controversial, the elderly should be encouraged to take 

exogenous antioxidants and co-factors, which have shown 

effi cacy in scientifi c studies. However, more controlled 

studies are needed in order to investigate the effi cacy and 

safety of antioxidants and co-factors, and their mode of 

action especially in the elderly. The scientifi c community 

has a moral responsibility to ensure the healthy aging of the 

world population.
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