
© 2011 Zhang et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

International Journal of Nanomedicine 2011:6 649–657

International Journal of Nanomedicine Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
649

O r I g I N A L  r e s e A r c h

open access to scientific and medical research

Open Access Full Text Article

DOI: 10.2147/IJN.S17242

The preparation of 3,5-dihydroxy-4-
isopropylstilbene nanoemulsion and  
in vitro release

Yue Zhang1,2

Jungang gao1

hetang Zheng2

ran Zhang3

Yucui han2

1college of chemistry and 
enviromental science, hebei 
University, Baoding, china; 2school 
of chemical and Pharmaceutical 
engineering, hebei University  
of science and Technology, 
shijiazhuang, china; 3college of 
chemical engineering, east china 
University of science and Technology, 
shanghai, china

correspondence: Jungang gao 
college of chemistry and enviromental 
science, hebei University, Baoding, 
071002, china 
Tel +86 312 5079525 
Fax +86 312 5079525 
email gaojg@hbu.edu.cn

Abstract: We have reported a novel procedure to prepare 3,5-dihydroxy-4-isopropylstilbene 

(DHPS) nanoemulsion, using a low-energy emulsification method. Based on the phase diagram, 

the optimum prescription of nanoemulsion preparation was screened. With polyoxyethylenated 

castor oil (EL-40) as the surfactant, ethanol as the co-surfactant, and isopropyl myristate (IPM) as 

the oil phase, the DHPS nanoemulsion was obtained with a transparent appearance, little viscos-

ity, and spherically uniform distribution verified by transmission electron microscopy and laser 

scattering analyzer. The nanoemulsion was also determined by FT-Raman spectroscopy. The 

DHPS nanoemulsion demonstrated good stability and stable physical and chemical properties. 

The nanoemulsion dramatically improved the transdermal release of DHPS (from 8.02 µg ⋅ cm-2 

to 273.15 µg ⋅ cm-2) and could become a favorable new dosage form for DHPS.

Keywords: nanoemulsion, 3,5-dihydroxy-4-isopropylstilbene, DHPS, pseudo-ternary phase 

diagram

Introduction
3,5-Dihydroxy-4-isopropylstilbene (DHPS) (also named 2-isopropyl-5-(2-

phenylethenyl)-benzene-1,3-diol) belongs to the stilbene family and was first iden-

tified as a bacterial metabolite of the antimicrobial compound.1–5 This compound 

has attracted much attention for its diversified pharmacological activities including 

anti-inflammation and marked effect on T lymphocytes, mast cells, neutrophils, and 

macrophages.6,7 After the rapid progress in pharmacological studies, DHPS has been 

proposed to serve as an effective drug for many diseases such as inflammatory bowel 

disease, rheumatoid arthritis, and autoimmune skin disorders. At the beginning of the 

twenty-first century, DHPS (numbered WBI-2001) was developed by Welichem Bio-

tech Inc. (Burnaby, BC) as a new drug for atopic dermatitis and psoriasis, which are 

chronic skin diseases caused by a disorder of the autoimmune system.8,9 In the prior 

clinical trials in Canada, DHPS was shown to be effective and safe.10 In 2009, Celestial 

Pharmaceuticals (Shenzhen) Co Ltd (China) had also gained approval from the State 

Food and Drug Administration (SFDA) for the clinical trials of DHPS (Benvitimod) in 

China. However, the drug’s instability and insolubility in water resulted in the alteration 

of properties and poor skin permeability. Therefore, the drug had no curative effect. 

To overcome the problem, it is necessary to seek a new vehicle to elevate the stability 

and solubility of DHPS in water and promote skin permeability.

Nanoemulsion is a new drug delivery system possessing isotropic, optical transpar-

ency or translucence characteristics and of special concern for practical applications.11,12 

Nanoemulsions can be applied in the pharmaceutical field as drug delivery systems 
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not only for oral administration,13,14 but also for parenteral,15 

or transdermal administration,16 especially ocular.17 The 

drug is placed in the center of a small nanoemulsion droplet, 

30–300 nm, and is protected from oxidation, hydrolysis, and 

volatilization. Nanoemulsions have been reported to extend 

the drug response time and improve the efficacy of poorly 

water-soluble drugs as well as bioavailability.18–20 To date, 

compared with the oral carriers, few studies on nanoemulsion 

as topical carriers have been published. But it is still expected 

to be applied in topical delivery, taking advantage of good 

solubility, low skin irritation, and great permeability.21 In this 

work, we aimed to establish an oil-in-water (O/W) nanoemul-

sion delivery system for transdermal administration, in which 

DHPS was incorporated into the nanoemulsion concentrate 

so that the solubility and skin permeability of DHPS, and its 

therapeutic efficacy, could be dramatically enhanced.16,22,23 

Literature reviews have so far revealed no studies on the 

nanoemulsion as a delivery system for DHPS, including the 

preparation and release study of DHPS nanoemulsion. In 

this study, we prepared and characterized DHPS nanoemul-

sion, and investigated its transdermal in vitro release and its 

effect as an active drug on the stabilities of the concentrate 

and corresponding nanoemulsion.

Methods
Materials
DHPS (structure shown in Scheme 1) was synthesized in 

the laboratory,24 and isopropyl myristate (IPM) was bought 

from Shanghai LEASUN Chemical Co. Ltd (Shanghai, 

China). Various surfactants such as polyoxyethylene sorbitan 

fatty acid esters (Tween-80) and polyoxyethylenated castor 

oil (EL-40) were purchased from Tianjin Yongda Chemical 

Reagent Development Center (Tianjin, China). Methanol 

was chromatographically pure and purchased from Kangkede 

(Tianjin, China). Other chemical reagents were all analyti-

cally pure grades and purchased from Shijiazhuang Modern 

Reagent Co (Shijiazhuang, China). Soy bean salad oil, olive 

oil, and peanut oil were all of food grade and purchased from 

COFCO (Tianjin, China). Water was twice distilled.

characterization analyses
The process of identifying the structural type of the nano-

emulsion via staining is as follows: the water-soluble meth-

ylthionine chloride and oil-soluble Sudan red were added to 

the same batch of the nanoemulsion. The diffusion rate of two 

kinds of staining agents in the nanoemulsion was recorded. 

The transmission electron microscopy (TEM, H-7650; 

Hitachi, Tokyo, Japan) was used to monitor the morphology 

and distribution of nanoemulsion droplets and FT-Raman 

spectroscopy (MultiRam; Bruker, Madison, WI) was used to 

determine the components. The mean size of nanoemulsion 

droplets was detected by Laser Scattering Analyzer (Nano-

S90; Malvern Instruments, Malvern, Worcestershire, UK). 

The amount of DHPS in the solubility and stability experi-

ments, and in vitro transdermal release, was detected by high-

performance liquid chromatography (HPLC, LC-10AT VP; 

Shimadzu, Kyoto, Japan). The mobile phase was a mixture 

of methanol and distilled water (V/V = 80/20). The column 

of HPLC was Phenomenexluna-C18 (250 × 4.6 mm, 5 µm). 

The flow rate was 1.0 mL/minute, the detection wavelength 

was 316 nm, and the injected volume of the sample was 

10 µL. The in vitro transdermal release experiment of DHPS 

nanoemulsion was carried out through rat skin in a Franz 

diffusion cell (RYJ-12B, Huanghai, China).

solubility of DhPs
Achieving good solubility of drugs in the studied surfactants, 

co-surfactants, oil mediums, and their emulsifier is important 

in the development of nanoemulsions. EL-40 and Tween-80 

were chosen as non-ionic surfactants, and ethanol, i-propanol, 

1,2-propanediol, and n-butanol were used as short-chain co-

surfactants. Frequently used liquid paraffin, IPM, soybean 

oil, and olive oil were used as oil mediums. The solubility 

performance of DHPS in the above components and their 

emulsifier were observed. Different proportions of the above 

components and DHPS were placed in small vials. The vials 

were vibrated in a water bath at 37°C for 24 hours, and 

then the solubilities of DHPS in different components were 

determined by HPLC.

Phase diagrams
The methods for the formation of nanoemulsions include high-

energy and low-energy emulsification. Mechanical energy 

(such as high shear stirring, high-pressure homogenizers, and 
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ultrasound generators) was utilized in a high-energy emulsi-

fying process25 and chemical energy (potential energy) in the 

components was used in a low-energy emulsifying process.26 

Compared with the high-energy formation of nanoemulsions, 

the low-energy emulsification method has a strong appeal in 

the development of a drug delivery system, which can take 

advantage of phase behavior, industial scale-up, reduced 

physical destruction of drugs, and the formation of smaller 

droplets.27–29 The low-energy methods are divided into phase 

inversion composition30 and phase inversion temperature (PIT) 

methods.31,32 Nanoemulsions prepared by phase inversion com-

position are strongly affected by compositions in the system and 

their instrinsic physicochemical properties.33 During the phase 

inversion composition emulsification process, as the compo-

nents change (oil phase mixed with aqueous phase), the rapid 

transfer of hydrophilic materials between two phases is spon-

taneously generated.26 The interfacial area increased markedly, 

and a metastable emulsion state was generated. Therefore, the 

composition of components and their ratios strongly influence 

the formation of nanoemulsions and, simultaneously, their 

properties, such as the stability and distribution of particle 

size.34–36 For this reason, it is essential to establish a pseudo-

ternary phase diagram in order to determine the existing region 

of the nanoemulsion. The phase diagrams were developed 

using the aqueous titration method with one axis representing 

the composition of SF and Co-SF, another representing water, 

and the third representing oil; the nanoemulsion region would 

be the basis for the selection of the formulation.

The emulsifiers and oil mediums were sealed in ampoules 

and vibro-mixed gently to be homogenized at 25°C. Distilled 

water was then added continuously to the homogenized 

mixture. The phase inverse points and the mass ratio of all 

components corresponding to that point were recorded dur-

ing the consecutive addition of distilled water, and then the 

boundary lines appeared. The isotropic liquid crystal line 

phase was identified by polarizing light microscopy (PLM, 

BX51; Olympus, Tokyo, Japan).

Preparation of nanoemulsion
A certain amount of DHPS was dissolved in co-surfactant 

at a constant temperature in a vial. The oil mediums, sur-

factants, and solution of co-surfactant with DHPS were 

thoroughly mixed. Distilled water was added continuously to 

the mixed liquid. As the amount of distilled water increased, 

the system suddenly became viscous, and liquid crystals 

appeared. The distilled water was added drop-wise until a 

stable, colorless, and transparent or translucent nanoemul-

sion was formed.

selection of surfactant and co-surfactant
EL-40 and Tween-80 were chosen as non-ionic surfactants, 

and ethanol, i-propanol, 1,2-propanediol, and n-butanol were 

used as short-chain co-surfactants. IPM was used in the oil 

phase, according to oil solubility studies. The tests were 

designed under different Km (mass ratio of surfactant to co-

surfactant) as 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, and the 

corresponding mass ratio of the combination of surfactant and 

co-surfactant (Smix) to IPM was varied as 1:9, 2:8, 3:7, 4:6, 

5:5, 6:4, 7:3, 8:2, 9:1. The oil, surfactant, and co-surfactant 

of each group were well mixed to form an emulsion, and the 

total mass of all components was constant. Distilled water was 

added drop by drop into the emulsifier under ambient tempera-

ture. The emulsion appeared transparent and translucent, with 

low viscosity, and the Tyndall effect was observed. We noted 

that sometimes the system changed from clarity to turbidity, 

or from clarity to thickness, or back again from thickness to 

clarity, and noted down the quality percentage of all the com-

ponents corresponding to the phase inversion point.

Optimization of the formulation
To obtain an effective emulsification, the surfactant and 

co-surfactant are usually combined. The mixing ratio of 

surfactant/co-surfactant, to form nanoemulsions, also needs 

careful consideration. Surfactant (EL-40) and co-surfactant 

(ethanol) were mixed in different mass ratios (6:1, 4.5:1, 3:1, 

1.5:1). For each group, IPM and the mixture of surfactant–

co-surfactant with specific Km were mixed well in a series 

of mass ratios ranging from 1:9 to 9:1.

stability study of DhPs nanoemulsion
In order to avoid a metastable system, we performed various 

stability studies such as bearing centrifuging, heat, humid-

ity, and light irradiating. The prepared formulations were 

sealed in the centrifuge tube and centrifuged at 10000 rpm 

for 20 minutes. Phase separation (cracking or creaming) 

was observed. If DHPS nanoemulsion showed no instability 

during the centrifugation process, its stability was assessed 

according to the regulations of Chinese Pharmacopoeia37 

including the high temperature test, high humidity test, 

and hard light irradiating test. The relative specifications of 

DHPS nanoemulsion were evaluated with sampling at 0, 5, 

and 10 days, respectively.

In vitro transdermal release
The abdominal skin of a mouse (25 ± 2 g, female, Kunming, 

China), which was depilated with 8% sodium sulfide and 

cleaned of fat, was washed with saline and then fixed to 
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Figure 1 The solubility of DhPs in various components.
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the Franz diffusion cell. The horny layer of skin faced the 

supply chamber, and 1.0 g DHPS nanoemulsion was added, 

in close contact with the skin. Sixteen milliliters of 0.9% 

sodium chloride solution (M/M ) was used as the receiving 

medium. The temperature of the receiving medium was 

kept at 37 ± 0.5°C and the rotating speed was controlled 

at 120 rpm. At certain time intervals (0.5, 1, 2, 4, 6, 8, 10, 

and 12 hours), 5 mL receiving medium was taken out of the 

supply chamber and, simultaneously, an equal volume of 

fresh receiving medium was added to the supply chamber 

to keep the total volume unchanged. Released DHPS was 

quantified by HPLC and the cumulative release rate was 

calculated. During the in vitro transdermal experiment, the 

release behavior of the DHPS nanoemulsion was compared 

with that of the drug DHPS (20 mg DHPS suspended in 

the supply chamber). All the experiments were carried out 

in triplicate. The release behavior of DHPS nanoemulsion 

was compared with that of pure DHPS suspension. The 

accumulative osmotic quantity per unit area (Qt) can be 

described as:

 
Qt = ∑C Vi Ai /

where Ci is the DHPS concentration in the tested samples, 

Vi is the volume of the receiving pool, and A is the effective 

area of the receiving pool.

Results
solubility of DhPs
As shown in Figure 1, DHPS is almost insoluble in distilled 

water and liquid paraffin, but has reasonable solubility in IPM, 

Tween-80, and EL-40. The solubility of the drug in the com-

ponents is important for component screening,38 and therefore, 

IPM was selected as the oil phase, and Tween-80 and EL-40 

were chosen as the surfactants in the nanoemulsion  formulation. 

The four co-surfactants all have favorable solubility for DHPS, 

although of the four co-surfactants, ethanol had the most 

advantages. The emulsifier formulations consisted of surfactant 

(EL-40), co-surfactant (ethanol), and drug dissolved in the oil 

(IPM) to provide a clear liquid at ambient temperature. The test 

results showed that the emulsifier had extremely good solvent 

properties for DHPS. The solubility of DHPS in the emulsifier 

was elevated to about 60,000 times that in water.

selection of surfactant and co-surfactant
To select an ideal surfactant, the solubility of DHPS, the 

hydrophile–lipophile balance (HLB), and toxicity to the human 

body must be considered seriously. Based on solubility studies, 

both EL-40 and Tween-80 showed considerable solubility of 

DHPS, and appropriate HLB value (range 8 to 16). Because 

non-ionic surfactants facilitate the adjustment of the interfacial 

tension, they are appropriate candidates for favorable emulsi-

fiers, as they exhibit low toxicity and play important roles in 

the drug delivery system. But as the results in Table 1 show, 

no phase change appears (no nanoemulsion was formed) when 

Tween-80 was the surfactant, no matter which alcohol was 

used as co-surfactant, and no matter under which ratios. In con-

trast, the mixture of EL-40 with four types of co-surfactant in 

certain proportions facilitated the formation of nanoemulsions 

and, therefore, more choices were available for the selection 

of the co-surfactant formulation. In view of this investigation, 

the selection of EL-40 as the surfactant in the preparation of 

the DHPS nanoemulsion was appropriate.

Table 1 Impacts of surfactants and co-surfactants on the nanoemulsion formation

Surfactants Co-surfactants Smix/oil

9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9

eL-40 ethanol √ √ √ – – – – – –
n-butanol √ √ – – – – – – –
i-propanol √ √ – – – – – – –
1,2-propanediol √ √ √ – – – – – –

Tween-80 ethanol – – – – – – – – –
n-butanol – – – – – – – – –
i-propanol – – – – – – – – –
1,2-propanediol – – – – – – – – –

Notes: √ represents the formation of nanoemulsion; – represents the absence of formation of nanoemulsion.
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A good co-surfactant can improve the dispersibility of 

droplets and drug absorption.39 EL-40 was combined with 

four different co-surfactants including i-propanol, 1,2-

propanediol, n-butanol and ethanol, in different mass ratios, 

respectively. The results are shown in Figure 2. All four 

co-surfactants can promote the formation of nanoemulsions 

when Km is taken as 9:1; the nanoemulsion region was the 

largest when 1,2-propanediol was used for the co-surfactant. 

No clear transitional phase inversion appears when Km is 

taken as 8:2 and n-butanol is taken as co-surfactant. At 

a Km of 7:3, only ethanol can arrange EL-40 in pairs to 

generate phase inversion. When i-propanol served as the 

co-surfactant, the area of nanoemulsion was relatively small 

and, in comparison, the areas of nanoemulsion in phase 

diagrams are larger when 1,2-propanediol or ethanol are 

used. Among these two co-surfactants, a larger amount of 

surfactants are required when 1,2-propanediol is used owing 

to its lower solubility of DHPS, which may be harmful to the 

skin. Therefore because ethanol is non-irritating, has gentle 

properties, no toxicity to the human body, and is the most 

common and readily available reagent, it was chosen to be 

the co-surfactant.

Optimization of the formulation
As Figure 3 shows, when Km = 6:1, a small amount of 

oil (5.2%) can be emulsified and the nanoemulsion region 

is faint. As the Km decreases, the nanoemulsion region 

increases, further increasing the proportion of co-surfactant 

(Km = 3:1); the nanoemulsion region increases to a large 

scale and a considerable amount of oil (15.6%) can be 

 emulsified. When Km decreases to 1.5:1, the co-surfactant 

occupies a bigger ratio and the nanoemulsion cannot be 

formed. Taking a comprehensive view of the  nanoemulsion 

Figure 5 The TeM image of DhPs nanoemulsion particles.
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Figure 6 The mean size of DhPs nanoemulsion droplets.
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Figure 4 The phase behavior of nanoemulsions with different smixs to oil.

Table 2 Physicochemical parameters of DhPs nanoemulsion (n = 3)

Parameter Results

ph 5.69 ± 0.08
refractive index 1.3875 ± 0.002
Viscosity/cP 3.25 ± 0.02
structure type O/W

region, and the lower amount of Smix (surfactant/

co- surfactant) used in this system, we finally selected 

the Km ratio as 3:1, and the ratio of Smix to oil as 3:7. 

 Nanoemulsions prepared with this formulation were further 

studied for stability and potential clinical  application. Under 

this optimized ratio, the prepared DHPS nanoemulsions 

with different mass ratios of Smix to oil were photographed 

and are shown in Figure 4.

characterization analyses
Physicochemical properties of DhPs nanoemulsions
The pH, viscosity, refractive index, and structure type of 

DHPS nanoemulsions are shown in Table 2.

Morphology and size distribution of DhPs 
nanoemulsion
TEM can directly produce images of targets with high 

resolution. The morphology and structure of the optimal 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

655

Preparation of DhPs and in vitro release

DHPS nanoemulsion

DHPS

29
20

.1
6

28
92

.4
4

30
94

.8
0

18
24

.7
3

17
39

.2
0

17
47

.8
4

16
53

.1
8

15
68

.6
8

14
45

.9
4

13
01

.2
1

11
25

.6
5

10
80

.3
5

83
2.

76

59
1.

49

43
3.

64

23
1.

24
18

1.
91

72
.6

9

18
62

.1
7

21
60

.2
0

24
67

.6
0

29
30

.2
6

32
75

.1
6

33
71

.8
2

32
64

.1
6

33
35

.5
4

32
09

.2
8

31
01

.5
6

34
60

.7
3

34
84

.8
5

34
42

.5
8

35
37

.7
9

36
27

.3
7

38
04

.4
2

24
29

.3
4

24
85

.0
5

22
43

.9
8

16
52

.5
5

14
53

.2
1

13
01

.4
8

10
72

.3
4

82
0.

30

42
3.

48

75
.5

0

32
47

.0
9

32
26

.0
9

R
am

an
 in

te
n

si
ty

Wavenumber−1

Figure 7 FT-raman spectra.

Table 3 The stability of drug nanoemulsion (n = 3)

Condition pH Average 
diameter/nm

Percentage/%

0 d 5.69 ± 0.01 62.89 ± 0.09 99.78 ± 0.01
60°c,5 d 5.67 ± 0.01 63.19 ± 0.10 99.20 ± 0.03
60°c,10 d 5.64 ± 0.01 62.01 ± 0.08 98.37 ± 0.05
4500 ± 500 lx, 5 d 5.66 ± 0.01 63.12 ± 0.11 98.95 ± 0.02
4500 ± 500 lx, 10 d 5.63 ± 0.02 63.32 ± 0.12 98.45 ± 0.03

nanoemulsion formulation were observed using TEM. As 

seen in Figure 5, the nanoemulsion droplet is round and 

has a smooth margin with a mean size of about 60.88 nm 

( Figure 6). The droplet size has a direct influence on the 

behavior of the nanoemulsion, especially the bioavailability 

of the delivered drug. In general, the smaller the droplet size 

in the nanoemulsion, the more favorable the expected result 

for in vivo application.

raman spectrum of DhPs nanoemulsion
DHPS and the DHPS nanoemulsion were detected by 

FT-Raman spectroscopy at laser 350 mW scanning 

from 50 cm-1 to 4000 cm-1. Because the surfactants and 

co- surfactants have no clear characteristic scattering 

 absorbance, DHPS and the DHPS nanoemulsion have 

almost the same FT-Raman spectra. In Figure 7, the scat-

tering characteristic peaks at 1453 cm-1 are attributed to 

the conjugating aromatic rings in stilbene and there is 

an alkene scattering peak at 1652 cm-1. The peaks from 

2920 cm-1 to 2930 cm-1 and the peak at 1301 cm-1 indicate 

the i-propyl group of DHPS.
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Figure 8 The in vitro transdermal release of drug DhPs and DhPs nanoemulsion 
(n = 3).
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ratio of EL-40 to ethanol (Km) of 3:1 was chosen, and 

the Smix to oil was selected at 3:7. This optimized DHPS 

nanoemulsion has stable physical and chemical properties, 

and also good stability. The nanoemulsion has dramatically 

improved the DHPS transdermal effect, and the osmotic 

quantity of DHPS from the nanoemulsion formulations 

is 273.15 µg ⋅ cm-2, significantly better than for the DHPS 

suspension (8.02 µg ⋅ cm-2).
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stability of the DhPs nanoemulsion
After centrifuging, there was no sign of phase separation, 

creaming or cracking, and the nanoemulsion was still clear 

and transparent, with no turbidity and no crystal precipita-

tion. The data in Table 3 show that there are no apparent 

changes in pH, drop size, and concentration of nanoemulsion, 

which indicates good stability of the nanoemulsion loaded 

with DHPS.

In vitro transdermal release
In order to optimize drug delivery and achieve an ideal 

therapeutic effect, we have incorporated the drug into the 

heart of nanoemulsion droplets. Therefore, it was extremely 

important to observe the release of DHPS from the nano-

emulsions in comparison with that of the drug. Because 

nanoemulsions provide better dispersion and larger contact 

surface area for drug molecules, an elevated solubility and 

permeability could be expected.

As seen from Figure 8, it is clear that DHPS released 

from nanoemulsion increases exponentially, while DHPS 

released from the drug suspension is rather low and almost 

constant. In a 12-hour period, the maximum accumulative 

osmotic quantity, Qt, of DHPS from the DHPS suspension is 

8.02 µg ⋅ cm-2, while the Qt of DHPS from DHPS nanoemul-

sion is up to 273.15 µg ⋅ cm-2. During a defined time period, 

the transdermal release of DHPS from the suspension and the 

nanoemulsion follows the zero order kinetics equation, and the 

slope of the line indicates the penetration rate, J (Table 4). It is 

clear that the penetration rate, J, of DHPS is 0.53 µg ⋅ cm-2 ⋅ h-1 

from the DHPS suspension, and 24.51 µg ⋅ cm-2 ⋅ h-1 from the 

DHPS nanoemulsion. Therefore, the DHPS nanoemulsion has 

demonstrated significant transdermal advantages.

Conclusion
We have reported a novel procedure to prepare DHPS nano-

emulsion and identified the optimal prescription through a 

number of experiments. With EL-40 as the surfactant, ethanol 

as the co-surfactant, and IPM as the oil phase, the DHPS 

nanoemulsion can be obtained with transparent appear-

ance, low viscosity, and a spherically uniform distribution 

of droplets as verified by TEM, Raman spectroscopy, and 

laser scattering analyzer. For an optimal formulation, a mass 

Table 4 The accumulative osmotic quantity (Qt) and the 
penetration rate (J)

Sample Regression curve R

Drug DhPs Qt = 0.53t + 1.73 0.9975
DhPs nanoemulsion Qt = 24.51t - 3.51 0.9914
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