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Background: Pyogenic spondylitis (PS) and Brucella spondylitis (BS) are common spinal infections with similar manifestations, 
making their differentiation challenging. This study aimed to explore the potential of CT-based radiomics features combined with 
machine learning algorithms to differentiate PS from BS.
Methods: This retrospective study involved the collection of clinical and radiological information from 138 patients diagnosed with 
either PS or BS in our hospital between January 2017 and December 2022, based on histopathology examination and/or germ 
isolations. The region of interest (ROI) was defined by two radiologists using a 3D Slicer open-source platform, utilizing blind analysis 
of sagittal CT images against histopathological examination results. PyRadiomics, a Python package, was utilized to extract ROI 
features. Several methods were performed to reduce the dimensionality of the extracted features. Machine learning algorithms were 
trained and evaluated using techniques like the area under the receiver operating characteristic curve (AUC; confusion matrix-related 
metrics, calibration plot, and decision curve analysis to assess their ability to differentiate PS from BS. Additionally, permutation 
feature importance (PFI; local interpretable model-agnostic explanations (LIME; and Shapley additive explanation (SHAP) techniques 
were utilized to gain insights into the interpretabilities of the models that are otherwise considered opaque black-boxes.
Results: A total of 15 radiomics features were screened during the analysis. The AUC value and Brier score of best the model were 
0.88 and 0.13, respectively. The calibration plot and decision curve analysis displayed higher clinical efficiency in the differential 
diagnosis. According to the interpretation results, the most impactful features on the model output were wavelet LHL small 
dependence low gray-level emphasis (GLDN).
Conclusion: The CT-based radiomics models that we developed have proven to be useful in reliably differentiating between PS and 
BS at an early stage and can provide a reliable explanation for the classification results.
Keywords: Brucella spondylitis, Pyogenic spondylitis, machine learning, radiomics, model interpretation

Introduction
Spinal infections encompass a range of diseases caused by various factors, with an estimated incidence rate ranging from 
0.4 to 7.2 cases per 100,000 individuals per year.1,2 Pyogenic spondylitis (PS) is a frequently encountered condition with 
an acute or subacute onset in the emergency department. It has been observed to have an increasing incidence rate and is 
often initially misdiagnosed by healthcare professionals.3,4 Brucella spondylitis (BS) is a common manifestation in the 
osteoarticular system among individuals with human Brucellosis. It occurs as a result of infections caused by different 
species of Brucella, and it continues to pose a significant global public health concern.5,6 BS has been found to have 
a high prevalence in developing areas and countries.7 To diagnose spinal infections, a thorough medical history and 
physical examination should be conducted to identify possible risk factors for infection. Common clinical manifestations 
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include non-specific back pain, fever, and neurological symptoms caused by compression of the spinal cord and/or nerve 
roots.8,9 Fever is a common symptom but may not always be present. Approximately 50% of patients with pyogenic 
spine infections and even higher percentages in fungal, mycobacterial, and Brucella infections may be afebrile.10 

Palpation may reveal paravertebral muscle spasm, and marked tenderness with percussion over the infected spinal 
segment is a consistent finding in 75% to 95% of cases. Early diagnosis of spinal infections can be challenging due to the 
non-specificity of symptoms and signs, leading to delayed identification that can take weeks or months.11 Hence, it is 
vital to maintain a high level of awareness and clinical suspicion. Factors like geographic location and occupational 
history should be highlighted during the patient’s clinical evaluation to increase suspicion specifically for brucellosis. 
These include working in a slaughterhouse or meat-packing environment, recent travel to endemic regions, consuming 
undercooked meat or unpasteurized dairy products, engaging in hunting activities involving certain animals, assisting 
animals during childbirth, and working in a laboratory handling Brucella specimen.12

Notably, both PS and BS are among the diseases caused by bacterial infections. Initial laboratory testing should include 
inflammatory markers such as WBC, ESR, and CRP. They are inflammatory markers that are commonly used to help in 
diagnosing spinal infections. Elevated ESR is observed in 75% of cases, while an elevated CRP has a higher sensitivity of 
98%.11,13,14 WBC, on the other hand, is less reliable and can be within the normal range in up to 55% of patients with spinal 
infections.14 Serology screening for spinal infections typically includes agglutination tests like the plate agglutination test 
(PAT; tiger red plate agglutination test (RBPT; and serum (tube) agglutination test (SAT; which rely on the reactivity of 
antibodies against smooth lipopolysaccharide (LPS).15 Isolation of germ and/or histopathology examination of the bone, 
marrow and/or tissue from the surgical area of patients are the gold standard. Blood culture is the first test in the microbiologic 
diagnosis of Pyogenic spondylitis, and Yee et al reported the true positive rate 53.4% (31/58).16 Mangalgi et al reported an 
overall blood culture true positivity of 24.8%, 43.1%, and 34.9% by conventional, liquid culture, and clot culture techniques, 
respectively, for Brucella.17 In a study conducted on 136 patients with Pyogenic spondylitis, the reported true positive rate of 
tissue culture using biopsy samples was 39.7% (29/73).18 Furthermore, the high laboratory requirements for the aforemen-
tioned culturing methods cannot be met in most endemic areas due to underdeveloped economies, posing a challenge for 
differential diagnosis.19 Thus, it is still highly challenging to differentiate these two diseases clinically. It remains a significant 
hurdle.20 Previous studies primarily concentrated on analyzing radiological signs.8,21–23 Spinal infections can cause damage to 
the structures of the spine, including the vertebral bodies and intervertebral discs, leading to increased spinal instability. 
Computed tomography (CT) can clearly depict the morphological erosion and vertebral destruction.24 Liu et al found that 
vertebral body destruction was more extensive in the PS group compared to the BS group (35.8% vs 12.5%, with a positive 
predictive value of 63.16%).25 However, radiological findings on images can be subject to interpretation, leading to bias in 
interpreting similar radiological signs.26 Moreover, the lesions on both exhibit quite similar characteristics, including adjacent 
vertebral bodies with destruction of the intervertebral disc and involvement of the paravertebral soft tissues, resulting in cold 
abscess formation. Consequently, it can be challenging to differentiate between BS and PS based solely on CT images at times.

It is necessary to explore innovative, rapid, and objective approaches that consider various factors to examine intricate 
and subtle connections among clinical and radiological risk factors and their associated outcomes. Radiomics is an 
emerging technique that involves the objective and quantitative characterization of lesions by quantifying imaging 
through the utilization of high-dimensional imaging features.27 This would shift subjective signs to objective 
features.28 The potential of radiomic features to predict cancer genetics and treatment outcomes has recently garnered 
significant attention.29 They offer substantial promise for personalized medicine. However, there is an expected 
significant increase in the quantity of relevant information that requires processing beyond the capacity of current 
analytical approaches. Furthermore, machine learning (ML) methodologies have the potential to alleviate some of these 
limitations. Machine learning algorithms are emerging as powerful methods for detecting intricate underlying patterns 
from massive amounts of data, particularly when confronted with classification tasks, which are common challenges in 
the medical field.30,31 Risk prediction entails employing computer algorithms to analyze vast datasets that comprise 
numerous multidimensional variables. By identifying intricate, high-dimensional, and nonlinear relationships among 
different clinical features, one can generate outcome predictions based on data analysis.32–35 This will provide a new 
approach that improves the accuracy of diagnosis and enables timely identification of patients at risk of PS or BS, which 
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can lead to improved outcomes and mitigate burdens and costs. Early diagnosis of patients suspected of having PS or BS 
using innovative non-invasive measures can reduce the need for surgery and lower the overall surgical rate.

However, we have not found any previous research that applies machine learning algorithms to diagnose spine 
infectious diseases through analysis of radiomics. Therefore, we developed multiple machine learning models and 
visualized black-box interpretations of radiomics features. The goal was to provide guidance for the clinical and 
radiological screening of patients with PS or BS, aiding in personalized decision-making.

Methods
Ethics Committee board of Xinjiang Medical University Affiliated First Hospital (K202309-15) gave approval to this research, 
which involved a retrospective analysis. Due to the retrospective study design and de-identification during the process of data 
collection, individual agreements and written informed consent were considered unnecessary and were therefore waived.

Patients
We retrospectively searched patients diagnosed as PS or BS from the spine surgery department from January 2017 to 
January 2022. The diagnosis of these patients took clinical presentations, laboratory and radiology findings into 
consideration. The study’s inclusion criteria were established as follows: (1) patients of or above the age of 18 years; 
(2) initial CT examination showed morphological changes including bony sequestrum, posterior vertebral arch involve-
ment, spinal epiduritis, paravertebral abscess, psoas abscess, vertebral body osteolysis, vertebral compaction, spinal cord 
compression, nerve root compression, vertebral destruction, disc space narrowing, osteosclerosis around erosions, 
spondylodiscitis, paraspinal abscess, etc.; (3) clinical manifestations include fever, sweating, loss of appetite, fatigue, 
weight loss, spinal tenderness, paravertebral tenderness, and neurological deficits such as radiculopathy, weakness or 
paralysis, paresthesia, etc.; (4) raised inflammation indicators (erythrocyte sedimentation rate, C-reactive protein and 
white blood cell count). (5) positive bacterial culture of a biopsy specimen or positive blood culture for PS; BS were 
evaluated by blood or bacterial culture positivity of biopsy specimens from the affected region.10 Serum agglutination 
test (SAT) exhibiting a titer of ≥1/160 or histological granulomatous tissue finding were also used to diagnose BS.36

The participants were excluded if they met any of the exclusion criteria, which were as follows: (1) previously 
infected with tuberculosis fungi, viral, parasitic infections or other types of infections that were not specified or 
confirmed by laboratory testing; (2) the presence of lumbosacral lesions caused by metastasis, multiple myeloma, 
spine deformity, bone fracture, spondylolisthesis etc.; (3) displayed a poor health status such as uncontrolled diabetes, 
chronic renal failure, chronic obstructive pulmonary disease, multiple-organ dysfunction syndromes (MODS) etc.; (4) 
history of previous spinal surgery.

In our research, following the aforementioned both inclusion criteria and exclusion criteria, a total of 138 patients 
were enrolled. Then, we randomly split whole cohort into training group (n = 97) and testing group (internal validation 
set) (n = 41) with ratio of 7:3 for further model construction and validation using function from scikit-learn library 
(https://scikit-learn.org/).

Patients Data Collection
The retrospectively retrieved materials include demographic and imaging data. Demographic information include age, 
gender, the body mass index (BMI). The imaging data used in our study consisted of CT images without contrast in 
Digital Imaging and Communications in Medicine (DICOM) format, which were obtained prior to surgery, which 
included a series of slices.

CT Acquisition
The CT scan was conducted utilizing a GE VCT 64-slice scanner (GE Medical Systems Milwaukie, USA). To achieve the 
desired results, a tube voltage of 120-kV was set, and the tube current was automatically adjusted. The rotation speed was set at 
0.6 seconds to obtain an average slice thickness of 2.5 mm for all helical mode CT scans. The Picture archiving and 
communication system (PACS) was employed to obtain images via the use of the Digital Imaging and Communications in 
Medicine (DICOM) technology.
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Extracting Radiomic Features Through Image Segmentation and Pre-Processing
To perform image segmentation and lesion identification, two experienced radiologists, M.M. and W.S., with 5 and 10 
years of experience in spine imaging, independently manually delineated the lesion boundaries slice by slice. No specific 
thresholds were applied during the delineation process. The delineation included both bony structures and soft tissue 
lesions when evident. Any disagreements in the delineation of lesions were resolved through consensus. We choose to 
process multiple ROIs within a single case by averaging the radiomics feature values.37 This was done using the open- 
source 3D Slicer 4.10.1 platform (https://www.slicer.org/); individually segmenting each slice. They followed the edges 
of the lesions and outlined all identified lesions, including multifocal or multicentric cases. Image pre-processing was 
done with registration and resampling to achieve a uniform pixel dimension of 1.0 x 1.0×1.0 mm3 via linear and nearest- 
neighbor interpolation for CT images and segmentation images, respectively.38 Additionally, normalization was carried 
out by setting parameters normalize Scale to 100, normalize to true and binWidth to 25.

For radiomic feature extraction, the Pyradiomics package39 in Python v.3.9 was utilized, extracting a total of 1535 
features consisting of original and filtered features. The original features included shape-based, first-order statistical, and 
texture features such as gray level co-occurrence matrix (GLCM; gray-level size zone matrix, gray level run length 
matrix (GLRLM; neighboring gray tone difference matrix features, and gray-level dependence matrix features. Notably, 
the filtered features are obtained through feature transformation to the original image using wavelet, square, square root, 
local binary pattern 2D, Laplacian Gaussian, logarithm, exponential, and gradient.

Feature Selection and Radiomics Score Building
As described above, features consist of clinical and radiomics feature. As for the former (clinical features), we adopted using 
univariate logistic regression analysis. Then, multivariate analysis was performed based on the result. High dimensional 
feature space of image was obtained. However, the inclusion of all these features will increase the complexity of and 
multicollinearity of classifier and this would occur the risk of overfitting that would affect the discrimination performance of 
the model.40 In our study, we aimed to select features with stable and reliable manual segmentations for further analysis. To 
determine this, we assessed the agreement or consistency of manual segmentations performed by different annotators using the 
intraclass correlation coefficient (ICC). By selecting features with a high ICC agreement, we aimed to include those that had 
consistent and reliable delineations of the regions of interest. This approach minimized potential variability introduced by 
different interpretations or delineations, ensuring the reliability of the selected features for further analysis. We only included 
features in our analysis that exhibited a high level of stability and suitability for segmentation based on their ICC agreement of 
≥0.80. This threshold ensured that the selected features had consistent and reliable manual segmentations, making them 
suitable for subsequent analysis.41 Subsequently, we performed a univariate analysis to assess the screening potential of each 
feature. We performed t-tests for variables that followed a normal distribution and used the Mann–Whitney U-test for variables 
that did not follow a normal distribution. Only features with a significance level of P < 0.01 in the univariate analysis were 
selected for further investigation.41 To address redundancy among the features, we performed a Spearman correlation analysis 
and removed pairs of features with a correlation coefficient of 0.85 or higher.42 Both related features were eliminated from the 
analysis. Lastly, we employed the least absolute shrinkage and selection operator (LASSO) to identify the most relevant 
features while simultaneously penalizing the coefficients of unimportant features to zero. We achieved this by employing ten 
cross-validations and a maximum of 1,000 iterations. This technique helped us select the significant features with non-zero 
coefficients that were used subsequently to build our predictive model.43 Radiomic scores were built by means of weighted 
coefficients in a linear formula.

Model Construction and Optimization
Considering the classification problem at hand, we employed a total of nine distinct machine learning models: support vector 
machine (SVM); logistic regression (LR); random forest (RF); extreme gradient boosting (XGBoost) classifier, light gradient 
boosting (LGBoost) classifier, decision tree (DT); linear discriminant analysis (LDA); k-nearest neighbor classifier (KNN); 
and Gaussian naive Bayes classifiers (GNB). These models were utilized to develop a predictive model based on selected 
features, as depicted in Figure 1, which was constructed using the training set. LR is still one of the most extensively used 
method in data mining.44 DT, as nonparametric model, take no predefined special assumptions, showed great prediction ability 
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in clinical classification task.45 RF is a tree-based ensemble method using bagging techniques to generate a more accurate 
result.46 XGBoost and LGBoost are also ensembled tree-based algorithms achieved by a procedure called boosting.47 SVM 
has been reported with remarkable performance in image classification, which is realized by consuming multiple-support 
vectors in its intrinsic structure.48,49

Machine learning algorithms consist of many parameters. Yet, different combination of parameters will incur different 
prediction performance. Thus, it is necessary to carry out hyperparameters tuning.50 We adopted grid search tuning 
pattern. Furthermore, we noticed conventional cross-validation (CV) might suffer data leakage risk in tuning process.51 

Consequently, it is viewed as best better option using nested-resampling cross-validation techniques where the evaluation 
process (cv = 5) will separate from tuning procedure (cv = 4). The above-mentioned process was implemented by scikit- 
learn package (Version 0.23.0, https://scikit-learn.org/stable/) with Python.

Model Performance Evaluation
For each of the models, receiver operating characteristic (ROC) curves were created to gauge the discriminative 
capacity. We also computed area under the curve (AUC), specificity, and sensitivity to assess the models’ discrimi-
natory potential. The calibration plot was utilized to compare predicted versus observed values for individual cases. 
Additionally, a decision curve analysis (DCA) was executed to appraise the clinical efficacy of diverse radiomics 
models.

Model Interpretation and Feature Importance
Interpreting machine learning models and identifying the essential features can be challenging since the algorithm’s 
accurate prediction mechanisms are often perceived as inscrutable (“black box” models). To mitigate this issue, we 
incorporated the permutation feature importance (PFI); local interpretable model-agnostic explanations (LIME); and 
Shapley additive explanation (SHAP) value methods in our study. This innovative approach aims to provide greater 
transparency and aid in deciphering how the algorithm makes its predictions for a particular cohort of patients. PFI, also 
known as Mean Decrease Accuracy (MDA); is revealing the dependence of model on specific feature.52 LIME learns 
a surrogate local model which is closer to original model, then display the weighted component of given model.53 SHAP 
uses additive feature attribution methods and game theory of Shapley values to calculate the importance of feature. These 
approaches can explain various black-box ML models.54

Statistical Analysis
We used descriptive measures between two groups (PS and BS), where continuous variables belonging to normal 
distributions used t-test are shown as the means ± standard deviations (SDs). To test variables that did not follow 
a normal distribution, we conducted a Mann–Whitney U-test. For categorical variables, we used the Chi-squared or 
Fisher’s exact tests, depending on the expected cell count. Variables with P values less than 0.05 were considered 

Figure 1 Workflow of this study. 
Abbreviations: ROI, region of interests; LASSO, least absolute shrinkage and selection operator.
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significant in their impact on the patient outcomes. All statistical analyses were performed using the R software (version 
4.2.2; http://www.r-project.org).

Results
Clinical Characteristics
The patient features of two groups are shown in Table 1. A total of 138 cases were enrolled in this study, and all of them 
underwent surgical intervention.

Feature Selection
This study employed both univariate and multivariate logistic regression to examine the clinical characteristics of the 
subjects. From a total of 1535 features, we selected 956 features that demonstrated high stability and reliability, with an 
intraclass correlation coefficient (ICC) greater than 0.80. Feature selection was conducted using the univariate analysis 
method, resulting in 494 features selected. After eliminating redundant features via applying Spearman correlation 
analysis, we identified 62 relevant features. Lastly, for optimal feature selection, we utilized the LASSO algorithm, which 
identified 15 features as most effective, as illustrated in Figure 2. Furthermore, we compared the final selected features 
between PS and BS patients (Figure 3B) and it showed that there is no obvious collinearity existing among them 
(Figure 3A).

Parameter Optimization
We compared several performance metrics for each algorithm with nested and non-nested resampling strategies 
respectively. The results of this analysis are presented in Figure 4, which provides a comprehensive overview of the 
performance of each algorithm under the different resampling strategies. The results indicate that non-nested cross- 
validation produces more favorable outcomes when assessing the model’s performance, potentially leading to over-
performance bias. Consequently, we employed the nested cross-validation with grid-search method to fine-tune the 
hyperparameters of each classification algorithm.

Classification Ability and Model Selection
In the training set, the AUC of the SVM, LR, XGBoost classifier, RF, LGBoost classifier, DT, LD, KNN, GNB classifiers 
were 0.93, 0.92, 1.00, 1.00,0.95, 1.00, 0.91, 0.91 and 0.93, respectively. Accordingly, in the testing set, the AUC of these 
seven classifiers were 0.80, 0.83, 0.84, 0.80, 0.82,0.57, 0.83, 0.87 and 0.88, respectively. The performance metrics of 
Recall, Brier loss, Log loss, and F1-scores consistently demonstrated that KNN outperformed other classifiers in 

Table 1 Characteristics at Baseline Between Training Set and Testing Set

Characteristics All (N=138) Training Set  
(N = 97)

Testing Set  
(N = 41)

P

Age (year) (mean + SD) 51.4 ± 13.8 51.7 ± 14.0 50.8±13.6 0.754

Gender (n%): 0.909

Female 51 (36.7%) 37 (37.9%) 14 (34.4%)
Male 87 (63.3%) 60 (62.1%) 27 (65.6%)

BMI (kg/m2) (mean + SD) 24.9 ± 5.01 24.6 ± 4.88 25.6 ± 5.29 0.378
Diagnosis (n%): 0.900

BS 91 (66.3%) 63 (65.2%) 28 (68.8%)

PS 47 (33.7%) 34 (34.8%) 13 (31.2%)
WBC 7.16±3.04 7.20±3.17 7.14±3.00 0.932

ESR 48.0±21.0 46.8±19.3 48.7±21.9 0.672

CRP 38.4±36.5 41.0±38.7 37.1±35.6 0.630

Abbreviations: SD, standard deviation; N, number; BMI, body mass index; PS, pyogenic spondylitis; BS, Brucella 
spondylitis; WBC, white blood cell count; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein.
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accurately distinguishing PS from BS. Table 2 provides comprehensive details on the assessment indicators, while 
Figure 5 illustrates the ROC curves drawn from the classifiers employed. The calibration plot graphically demonstrates 
good concordance between the observed and evaluated data points, as evident from Figure 6A and B. Moreover, based on 
the decision curves of the five radiomic models as noticeable in Figure 6C and D, all models accurately outperformed the 
“treat-all-patients” and “treat-none” measures in predicting early PS. Therefore, KNN was selected for further inter-
pretation in this study.

Figure 2 LASSO algorithm employed for radiomics feature selection. (A) The MSE (mean square error) path represents the performance of the least absolute shrinkage and 
selection operator (LASSO) model at different values of the regularization parameter (lambda) utilizing 20-fold cross-validation. The lambda value (vertical dash line) that 
yields the lowest MSE is selected as the optimal amount of penalization. (B) LASSO coefficient profiles of the radiomics features. The coefficient profiles demonstrate the 
magnitude of the regression coefficients for each feature as the lambda value increases. Features with non-zero coefficients are considered selected by the LASSO model. 
(C) Coefficient for the 16 selected features. This component presents the magnitude of the regression coefficients for the 16 features selected by the LASSO model. The 
best lambda value is 0.0387, − log (lambda) is 1.412. Lambda represents the strength of the regularization penalty applied to the regression coefficients in LASSO. Vertical 
dash line is the best parameters (lambda) selected by LASSO cross-validation.
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Interpretation of Final Model
We deployed LIME, PFI and SHAP techniques to display the features importance and contribution of them to the model 
output. In the predictive model, the significance of features is represented by their ranking on the y-axis, while the x-axis 

Figure 3 Correlation analysis (A) and Comparison (B) of the selected features. (A) The correlation analysis heatmap of selected radiomics features. The heatmap visualizes 
the correlation coefficients between the selected features. Each cell in the heatmap represents the strength and direction of the correlation, with color indicating the 
magnitude. This analysis helps assess the relationships and potential multicollinearity among the selected features; (B) The horizontal bar plot displays a comparison of the 
selected radiomics features between two groups, using their standardized values. The x-axis represents the standardized values, while the y-axis displays the names of the 
selected features. The plot provides a visual comparison of the magnitudes of the selected features between the two groups. This information can help identify features that 
show significant differences between the groups.

Figure 4 Comparison of nest and non-nested cross-validation. (A) Accuracy of each classifier with and without nested cross-validation. The x-axis displays the names of the 
classifiers, while the y-axis represents the corresponding accuracy values achieved using both nested and non-nested cross-validation; (B) Precision of each classifier with and 
without nested cross-validation. The x-axis indicates the names of the classifiers, and the y-axis shows the precision values obtained using both nested and non-nested cross- 
validation; (C) F1 score of each classifier with and without nested cross-validation. The x-axis represents the classifier names, while the y-axis depicts the F1 score values 
obtained using both nested and non-nested cross-validation; (D) Recall of each classifier with and without nested cross-validation. The x-axis displays the names of the 
classifiers, and the y-axis shows the recall values achieved using both nested and non-nested cross-validation. 
Abbreviations: RF, Random Forest; XGB, Extreme Gradient Boosting; LGB, LightGBM; LDA, Linear Discriminant Analysis; LR, Logistic Regression; SVC, Support Vector 
Classifier; KNN, k-Nearest Neighbors; NB, Naive Bayes; DT, Decision Tree.
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represents a consolidated index reflecting the effect of individual features in the model. In LIME (Figure 7A) and PFI 
(Figure 7B); wavelet HLL first-order mean showed similar feature importance in top 5 features, which affected model 
final decision. Figure 7C displays the mean absolute Shapley values computed to determine the relative significance of 
individual radiomic characteristics included in the radiomics model developed. We found top 5 features that are 

Table 2 Diagnostic Performance of Each Model in the Training and Test Sets

Classifiers Brier Loss Log Loss Acc. Recall F1 AUC 95% CI Sen. Spe. N.p.v. P.p.v.

Training set

RF 0.025 0.138 0.867 1.000 1.000 1.000 1.000–1.000 1.000 1.000 1.000 1.000

XGB 0.036 0.181 0.891 1.000 1.000 1.000 1.000–1.000 1.000 1.000 1.000 1.000
LGB 0.115 0.389 0.889 0.792 0.844 0.950 0.772–0.984 0.792 0.949 0.881 0.905

LDA 0.153 0.599 0.810 0.667 0.727 0.910 0.769–0.981 0.667 0.897 0.814 0.800
LR 0.162 0.506 0.794 0.500 0.649 0.920 0.733–0.949 0.500 0.974 0.760 0.923

SVC 0.117 0.367 0.794 0.542 0.667 0.930 0.736–0.952 0.542 0.949 0.771 0.867

KNN 0.117 0.354 0.841 0.708 0.773 0.910 0.71–0.961 0.708 0.923 0.837 0.850
NB 0.157 0.748 0.810 0.625 0.714 0.930 0.764–0.977 0.625 0.923 0.800 0.833

DT 0.046 0.143 0.937 0.958 0.920 1.00 0.875–0.988 0.958 0.923 0.973 0.885

Testing set

RF 0.170 0.514 0.786 0.636 0.700 0.800 0.506–0.867 0.636 0.882 0.789 0.778
XGB 0.170 0.507 0.714 0.636 0.636 0.840 0.521–0.866 0.636 0.765 0.765 0.636

LGB 0.174 0.523 0.679 0.545 0.571 0.820 0.478–0.839 0.545 0.765 0.722 0.600

LDA 0.231 0.945 0.750 0.636 0.667 0.830 0.546–0.894 0.636 0.824 0.778 0.700
LR 0.161 0.492 0.786 0.455 0.625 0.830 0.571–0.875 0.455 1.000 0.739 1.000

SVC 0.169 0.485 0.786 0.636 0.700 0.800 0.588–0.918 0.636 0.882 0.789 0.778

KNN 0.133 0.399 0.821 0.727 0.762 0.870 0.739–0.95 0.727 0.882 0.833 0.800
NB 0.224 1.170 0.750 0.636 0.667 0.880 0.551–0.889 0.636 0.824 0.778 0.700

DT 0.500 17.270 0.500 0.545 0.462 0.570 0.478–0.854 0.545 0.471 0.615 0.400

Abbreviations: RF, Random Forest; XGB, Extreme Gradient Boosting; LGB, LightGBM; LDA, Linear Discriminant Analysis; LR, Logistic Regression; SVC, Support Vector 
Classifier; KNN, k-Nearest Neighbors; NB, Naive Bayes; DT, Decision Tree; Acc., accuracy; AUC, area under the curve; CI, confidence interval; Sen., sensitivity; Spe., 
specificity; N.p.v., negative predictive value; P.p.v, positive predictive value.

Figure 5 The receiver operating characteristic curves (ROC) of the training set (A) and testing set (B). The receiver operating characteristic curve illustrates the tradeoff 
between the model’s sensitivity and its false positive rate, considering various anticipated probabilities of future Brucella spondylitis (BS). The area under this curve indicates 
the model’s predictive capability for estimating the probability of BS. A value of 0.5 represents a random estimator, while a perfect model would yield a value of 1.0. 
Abbreviations: RF, Random Forest; XGB, Extreme Gradient Boosting; LGB, LightGBM; LDA, Linear Discriminant Analysis; LR, Logistic Regression; SVC, Support Vector 
Classifier; KNN, k-Nearest Neighbors; NB, Naive Bayes; DT Decision Tree.
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important for model output: wavelet LHL small dependence low gray-level emphasis (GLDN); logarithm first order 5 
Percentile, logarithm first-order skewness, log sigma 3.0 mm 3D small dependence low gray-level emphasis (GLDM) 
and original first-order minimum. The attributes that are most important to PS based on SHAP value are shown in 
Figure 7D in terms of their overall influence. The SHAP value’s magnitude indicates whether the PS probability value 
should increase or decrease. Each row in the graphic represents a feature, and the first column on the left lists each 
feature’s name. In Figure 7E, the decision plot demonstrates the prediction of PS by the radiomics model. The plot 
displays the SHAP values for each feature added to the basic model value from the bottom to the top, providing insight 
into the overall impact of each feature on the PS forecasting. The two-single case interpretation of prediction was also 
shown in Figure 8. (one patient with PS and one patient with BS)

Discussion
Accurate diagnose between PS and BS was of critical importance before treatment, because accurate diagnosis correlates 
with appropriate treatment option, determine treatment duration, select right antibiotics and manage complication.21 

However, both PS and BS showed similar clinical symptoms such as fatigue, fever, back pain and weight loss. 
Inflammatory biomarkers, such as erythrocyte sedimentation rate, C-reactive protein and white blood cell account can 
be elevated in both PS and BS. In addition, both illnesses showed similar patterns of vertebral body involvement, like 

Figure 6 Shows calibration curves and decision curve analysis (DCA) for the model’s performance evaluation. (A) The calibration curve for the training set; (B) The 
calibration curve for the testing set; (C) DCA curve for the training set; (D) DCA curve for the testing set. Calibration curves were employed to gauge the congruity 
between the observed and predicted diagnostic categories. Decision curve analysis (DCA) aids in appraising the model’s performance by examining the net benefit derived 
from employing the model at various threshold probabilities. It evaluates the balance between the sensitivity and specificity of the model and offers valuable insights into its 
potential clinical applicability.
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vertebral destruction, erosion, collapse paraspinal abscesses on CT imaging, therefore it was challenging to distinguish 
between them based routine CT features.55,56 Biopsy procedures can be conducted under CT guidance to obtain samples 
for histological examinations and facilitate germ isolation/culture. This approach was particularly applicable for patients 

Figure 7 Model interpretation using the LIME and SHAP framework. (A) Ranking feature importance using the LIME technique; (B) Ranking feature importance using permutation 
feature importance (PFI); (C) Ranking the relevance of features based on SHAP values obtained from the test set. A feature is deemed more significant if its average SHAP value is 
higher; (D) A summary plot illustrating the decision-making process of the radiomics model and the interactions among radiomics characteristics. Positive SHAP scores indicate 
a higher likelihood of correctly predicting PS, while a higher risk of PS is associated with a high value. Each point on the plot represents a patient’s forecast; (E) A decision graphic 
demonstrating the prediction of PS using the radiomics model. The plot shows the model’s base value and the SHAP values for each feature, highlighting the impact of each feature 
on the overall PS forecast as you move from bottom to top. The discrete dots on the right represent different eigenvalues, with the color indicating the magnitude of the eigenvalues 
(red for high and blue for low). The X-axis represents the SHAP value. In binary classification, the SHAP value can be seen as the size of the probability value influencing the model’s 
predicted outcome. It can also be interpreted as the extent to which each feature value influences the likelihood of a patient having PS. A positive SHAP value indicates an increased 
probability of PS, while a negative SHAP value suggests a decreased probability of PS (implying a likelihood of BS). 
Abbreviations: LIME, local interpretable model-agnostic explanations; SHAP, SHapley Additive exPlanations.
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who do not require surgical intervention. Consequently, there was a pressing need to identify novel biomarkers that 
enable non-invasive diagnostic procedures, circumventing the requirement for CT-guided biopsy.

In the present investigation, we developed and evaluated an interpretable Machine Learning (ML) risk stratification 
tool to differentiate between PS and BS. Out of the nine ML classifiers implemented, K-Nearest Neighbors (KNN) 
demonstrated satisfactory performance in both the training set (AUC = 0.91) and testing set (AUC = 0.87); along with 
a relatively low loss value (Brier loss = 0.133, Log loss = 0.399). These promising findings underscore the potential of 
ML for enhancing the risk assessment procedure in clinical settings. Furthermore, using SHAP values and plots, the ML 
approach helped us identify crucial features. The cumulative importance of domain-specific features is illustrated and the 

Figure 8 SHAP decision and force plots. (A) Represents the SHAP decision plot for two patients in the testing set, where one is predicted with PS, and the other is 
predicted with BS; (B) Indicating the SHAP force plot for the PS patient, while the figure; (C) provides the SHAP force plot for the BS patient. Both patients presented with 
vertebral bone destruction, with one case observed at the L4-5 level and the other at the L5-S1 level. The destruction was characterized by the presence of bone hyperplasia 
and sclerosis along the edges. Particularly noteworthy is the predominant localization of the observed destruction along the intervertebral disc, implying a potential interplay 
between disc pathology and the underlying pathogenesis of the condition. The two-single case (one patient with PS and one patient with BS) prediction method was also 
shown in Figure 8A. Also, we offer two common instances to demonstrate the model’s interpretability: respectively, PS and BS patients. Each factor’s impact on prediction is 
shown with an arrow. According to the blue and red arrows, PS risk was either decreased (blue) or raised (red) by the factor. 
Abbreviations: LIME, local interpretable model-agnostic explanations; SHAP, SHapley Additive exPlanations.
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visualization of feature significance can lend intuitive insights to physicians and enhance their understanding of the key 
features identified by KNN.

Radiomics analysis involved extracting a total of 15 radiomics features from medical images, which can be 
categorized into five groups. These categories were first-order features (6); Gray Level Co-occurrence Matrix (GLCM) 
features (2); Gray-Level Dependence Matrix (GLDM) features (4); Gray-Level Size Zone Matrix (GLSZM) features (2); 
and Neighborhood Gray Tone Difference Matrix (NGTDM) features (1). By analyzing these features, valuable insights 
can be gained regarding voxel intensities, texture patterns, and spatial distribution within the image. Using widely known 
and fundamental metrics, the first-order features primarily characterized the distribution of voxel intensities inside the 
picture region indicated by the mask. The grey-level relationships within an image were quantified by the GLDM 
features. The grey-level zones in an image were quantified by the GLSZM features. Coroller et al conducted a study to 
investigate whether pre-treatment radiomics data could predict the pathological response following neoadjuvant chemor-
adiation in patients with locally advanced non-small cell lung cancer; the results showed that first-order feature (wavelet 
HLL mean) was the only significantly predictive feature with an AUC of 0.63, which was found to be one of the 
significant features in our study.57 Ma et al evaluated the potential value of radiomics features obtained from non-contrast 
computed tomography (NCCT) to detect acute aortic syndrome (AAS) images; they found nine radiomic features, which 
also included wavelet LLH mean feature, and SVM algorithm showed best performance 0.997 (95% CI, 0.992–1).58 

Furthermore, our findings were consistent with the study conducted by Wang et al, where they also identified several 
important features, including small dependence low gray-level emphasis, that can be utilized to predict the pretreatment 
CD8+ T-cell infiltration status in primary head and neck squamous cell carcinoma.59 Ren et al conducted a study which 
showed that multimodal radiomics can distinguish between true tumor recurrence (TuR) and treatment-related effects 
(TrE) in glioma patients with high accuracy (AUC: 0.965 ± 0.069).60 Our findings were consistent with this study, as we 
also found that wavelet HLL ngtdm contrast was a meaningful feature in identifying BS versus PS.

Machine learning models have been widely used in the medical field, from disease diagnosis and prognosis, to 
medical image analysis and personalized therapy. However, due to its complexity and difficult understanding how to 
arrive at their decision, machine learning also referred as black box model.61 Features like wavelet HLL mean, wavelet 
HLL ngtdm contrast, and small dependence low gray-level emphasis can be explained as having various rank statuses by 
these different interpretation algorithms. LIME-Local Interpretable Model-Agnostic Explanations, the LIME technique 
generates comprehensible justifications for each prediction made by intricate machine learning models. To help 
comprehend the reasons impacting the model’s conclusion, LIME outputs feature significance weights that show how 
much each feature contributes to the prediction for that particular instance.62 LIME model showed top 3 important 
features are wavelet HLL first-order mean, wavelet HLH ngtdm contrast and wavelet HHL first-order mean. Permutation 
feature importance (PFI) is a method for calculating how important various variables or features are in a machine 
learning model. The method involves arbitrarily varying a certain feature’s values and assessing the resulting shift in the 
predicted accuracy or model performance. When a feature is permuted, indicating that the feature is important and that 
the model significantly depends on it for correct predictions.52 In our study, top 3 important features indicated by PFI are 
wavelet HLL first-order mean, logsigma3-0-mm-3D-glcm-Idmn and original first-order minimum Value of the Shapley 
Additive Explanation (SHAP)-game theory is used by SHAP, a unified framework, to explain any machine learning 
model’s predictions. Every feature is given a value that represents its contribution to the prediction. With regard to 
explaining individual predictions, SHAP values offer a globally consistent method that emphasizes the significance of 
each characteristic in relation to other factors.63 In the present research, SHAP model showed the most important features 
are wavelet LHL gldrm Small Dependence Low Gray-Level Emphasis, logarithm first-order 5Percentile, and logarithm 
first-order Skewness. The results revealed disparate rankings for features among the three interpretation models. 
Therefore, we recommend employing multiple-interpretation algorithms to inform decision-making processes.

Furthermore, important machine learning procedure called cross-validation divides data into training and testing sets 
in order to calculate the generalization accuracy of a classifier for a given dataset. To encompass feature selection and 
parameter tuning, it has been expanded in a variety of ways. Incorporating feature selection and machine learning 
parameter modification to train the best prediction model using nested CV is efficient.64 In our study, we used nested 
cross validation and achieved excellent performance of the models.
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Limitation
To the best of our knowledge, this study is the first to employ a radiomics combined machine learning method to 
distinguish between Brucella spondylitis and pyogenic spondylitis. However, there are some limitations in our study. 
Firstly, due to its retrospective nature and being conducted at a single center, our sample size remained relatively small 
despite collecting materials over a 5-year period and we did not have external validation set. Therefore, future 
investigations should aim for larger sample sizes and involve multiple centers, include external validation sets. 
Secondly, the retrospective design of the study may have been influenced by case selection bias, potentially impacting 
the results. Thirdly, the performance of the developed model could be influenced by the choice of feature selection 
algorithm. Unfortunately, we were unable to accurately optimize the final selected features as we did not incorporate 
dimensionality reduction algorithms or employ cross-validation procedures in multiple classifiers. This limitation might 
have resulted in an inadequate selection of final features. Lastly, in our research due to this is a preliminary study that 
focused the radiomics features potential, qualitative evaluation features have not included, further we will expand our 
criteria and incorporate more useful information.

Conclusion
In conclusion, the presented radiomics machine-learning classifier demonstrates excellent predicted accuracy and 
stability. It offers a non-invasive approach to identify Brucella spondylitis and pyogenic spondylitis before clinical 
intervention. The radiomics combined machine learning model can provide valuable information for clinicians.
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