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Background: Hepatocellular carcinoma (HCC) is a particularly prevalent type of liver

cancer and is one of the deadliest malignancies in Asia. Tangeretin is a biological compound

extracted from traditional Chinese herbs and has been shown to have potential antitumour

properties; however, its mechanism remains largely unknown. Therefore, we sought to

determine the role of Tangeretin in HepG2 cells subjected to antitumour treatment.

Materials and methods: Cell proliferation was quantified using CCK-8, EdU and colony

formation assays, and cell migration was quantified using transwell migration and wound

healing assays. Protein expression was assessed using Western blot analysis. Small interfer-

ing RNA was used to interfer protein expression. Immunoprecipitation was performed to

detect the protein-protein interactions.

Results: Tangeretin decreased cell proliferation and increased G2/M arrest. Tangeretin

decreased cell migration. Tangeretin increased the LC3II/LC3I ratio and decreased p62

expression in HepG2 cells. Furthermore, the knockdown of BECLIN1 expression in

HepG2 cells partially converted the Tangeretin-induced inhibition of proliferation, migration

and autophagy. In addition, Tangeretin activated the JNK1/Bcl-2 pathway and disturbed the

interaction between Bcl-2 and BECLIN1. Together, our findings demonstrate that Tangeretin

inhibited the proliferation and migration of HepG2 cells through JNK/Bcl-2/BECLIN1

pathway-mediated autophagy.

Conclusion: Our study contributes to the understanding of the inhibitory mechanism of

Tangeretin on HCC development.
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Introduction
Liver cancer is the third leading death of cancer worldwide, and it seriously

threatens human health. There are approximately 850,000 new cases and 600,000

deaths every year in the world.1 Although the diagnosis and treatment technologies

of liver cancer have made great progress, the five-year survival rate is still extre-

mely low.2 In China, HCC is the most common type of primary liver cancer and has

a high recurrence rate and a poor prognosis.3 Therefore, it is urgent to find a more

effective treatment strategy for liver cancer.

The effect of autophagy in hepatocytes is worthy of concern. Autophagy con-

tributes to maintaining hepatocyte homeostasis, and it plays an important role in

preventing malignant transformation.4 It has been confirmed that autophagy plays

a suppressive role in hepatocellular carcinoma (HCC) tumourigenesis. Takamura
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RETRACTED ARTICLE: Tangeretin inhibits 
hepatocellular carcinoma proliferation and migration 
by promoting autophagy-related BECLIN1
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et al found the accumulation of nonfunctional proteins and

organelles in hepatocytes after knocking out autophagy-

related gene 5 (ATG5) and autophagy-related gene 7

(ATG7).5 The conditional knockout of ATG7 in mouse

liver results in hepatomegaly and metabolic disorders.6,7

BECLIN1, the mammalian orthologue of yeast autop-

hagy-related gene 6 (ATG6), is also a mammalian-specific

gene involved in autophagy. Qu et al found that

a heterozygous mutation disrupted the BECLIN1 autop-

hagy gene, promoting hepatocyte tumourigenesis.8

Previous studies have suggested that BECLIN1 contains

a leucine-rich nuclear export signal that is required for its

autophagy and tumour suppressor function.9,10 Huang et al

found that aspirin induced BECLIN1-dependent autop-

hagy in human HCC cells.11 The expression of

BECLIN1 in HCC is associated with clinicopathological

parameters and prognostic significance.12 Therefore, these

studies have demonstrated that BECLIN1 is an HCC

biomarker.

5,6,7,8,4ʹ-Pentamethoxyflavone (Tangeretin; for its

structure, see Figure 1A) is one of the plant-derived flavo-

noids found in tangerine, sweet orange, and other citrus

peels and has been shown to possess a variety of pharma-

cological activities, including antioxidative, anti-

inflammatory, and antitumour properties.13 Tangeretin

exerts antiasthmatic effects by reducing the levels of Th2

and Th17 cytokines and by increasing IFN-γ levels and

inhibiting PI3K and Notch1 signalling.14 Tangeretin

demonstrated anti-inflammatory activity by inhibiting

NF-κB/TNF-α/iNOS signalling.15,16 Tangeretin was also

found to be beneficial against 7,12-dimethylbenz(a)

anthracene-induced oxidative stress in breast cancer-

bearing animals.17 In addition, Tangeretin inhibited cancer

cell growth by inducing G1 arrest or apoptosis in human

non-small-cell lung cancer cells.18 However, the role of

Tangeretin in hepatocellular damage remains unclear.

In this study, we examined the effect of Tangeretin on

hepatocellular carcinoma cells and elucidated the possible

molecular mechanisms responsible for its anticancer

activity.

Materials and methods
Reagents
Tangeretin (S2363) was obtained from Selleck (Shanghai,

China); anti-BECLIN-1 antibody (ab62557) was purchased

from Abcam (Cambridge, UK). Anti-LC3 (#12741S), anti-

p62 (#5114S), anti-caspase-3 (#9662S) and anti-cleaved

caspase-3 (#9661S) antibodies were obtained from Cell

Signaling Technology (Danvers, MA). Anti-Bcl-2

(PRS3335), anti-phospho-Bcl-2 (SAB4504350), anti-phos-

pho-JNK (SAB4504449), and anti-JNK (SAB4200176)

antibodies were obtained from Sigma-Aldrich (Shanghai,

China). Lipofectamine RNAiMAX reagent (13778150)

was obtained from Thermo Fisher Scientific (Waltham,

MA). A Cell-Light™ EdU Apollo® In Vitro Imaging Kit

(C10310) was purchased from RiboBio (Guangzhou,

China). A Transwell Migration Assay was purchased from

Life Sciences (Tewksbury, MA, USA). Wound healing cul-

ture inserts were obtained from IBIDI GmbH (Martinsried,

Germany).

Cell culture
The HCC line HepG2 was purchased from the Type

Culture Collection of the Chinese Academy of Sciences

(Shanghai, China). HepG2 cells were maintained at 37 °C

in humidified conditions of 95% air and 5% CO2 in

DMEM supplemented with 10% heat-inactivated foetal

bovine serum, 2 mM glutamine, and 1% penicillin-

streptomycin.

Cell viability assay
HepG2 cells were incubated in 96-well plates at a density

of 5×103 cells for 24 h. The cells were treated with the

indicated concentrations of Tangeretin for 24 h and then

incubated with Cell Counting Kit-8 (CCK-8) reagent for

2 h at 37°C. Absorbance was measured at 450 nm on

a microplate reader.

Cell cycle analysis
HepG2 cells were treated with the indicated concentrations

of Tangeretin for 24 h and then fixed with 75% ethanol at

20°C. The ethanol-fixed cells were resuspended in PBS

containing ribonuclease A (100 mg/ml) and incubated for

1 h at 37°C. Next, the cells were stained with propidium

iodide (50 mg/ml) and incubated for 30 min at room

temperature in the dark. The data were acquired and ana-

lysed using a flow cytometer.

Colony formation assay
HepG2 cells were seeded into 60 mm dishes (200 cells/

dish) and then incubated with 0, 30, 60 and 90 µg/ml

Tangeretin for 2 weeks to form colonies. Cells were

fixed with methanol for 15 min, and then the cells were

stained with 0.1% crystal violet for 20 min at room tem-

perature. Colonies containing ≥50 cells were manually
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Figure 1 Tangeretin inhibited the proliferation of HepG2 cells.

Notes: (A) Molecular structure of Tangeretin. (B–G) HepG2 cells were treated with the indicated concentrations of Tangeretin (0, 30, 60 and 90 μg/mL) for 24 h. Then, (B) CCK-8
assays were used to measure cell viability. (C) EdU labelled the HepG2 cells for 2 h. Immunofluorescence of EdU (green) and nuclei (DAPI, blue; ×10). Scale bar=25 μm. (D) The graph

summarizes the data of the percentage of EdU cells. (E) HepG2 cells subjected to a colony formation assay. (F) The graph summarizes the colony formation assay data. Error bars

represent the SD. of the mean (n≧6; *vs control group, P<0.05; #vs 30 μg/mLTangeretin group, P<0.05; &vs 60 μg/mLTangeretin group, P<0.05). (G) Cells were harvested and stained

with propidium iodide as outlined in the Materials and Methods. The flow cytometric analysis histograms are shown, and (H) the percentage of cells in G2/M phase is shown as a bar

graph.
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counted under a microscope. Each assay was performed in

triplicate.

Transwell migration assay
Cell migration was measured using a Transwell Migration

Assay according to the manufacturer’s instructions. The

transwells for the HepG2 cells required overnight precoat-

ing of 10 μg/ml collagen before seeding. Cells (1×106/ml)

were seeded into transwell inserts and incubated overnight,

followed by Tangeretin treatment at different concentra-

tions for 24 h. ImageJ (1.48v) software (National Institutes

of Health, Bethesda, Md, USA) was used to obtain an

average cell count of the four stained membrane images.

Each assay was repeated in triplicate.

Wound healing assay
Wound healing culture inserts were used to analyse wound

healing. According to the manufacturer`s instructions,

HepG2 cells were plated at a concentration of 1×105

cells/ml and incubated for 24 h, after which the culture

inserts were removed. Images of the movement of cells

into the scratch area were taken every 6–12 h until the

scratch area had closed using a microscope. Wound heal-

ing was analysed using TScratch software. Each assay was

repeated in triplicate.

Western blot analysis
HepG2 cells were grown in 6-well plates at approximately

60–70% confluence for 24 h and then treated with

Tangeretin at the indicated concentrations. Then, cells

were harvested and subjected to Western blot analysis.

Briefly, equal amounts of total protein (20 or 40 µg)

were separated using 10% or 15% SDS-PAGE and trans-

ferred onto polyvinylidene fluoride membranes.

Subsequently, the membranes were blocked in 5% dry

milk in TBST for 1 h at room temperature and then

incubated with primary antibodies diluted in TBST and

0.2% bovine serum albumin overnight at 4 °C. Proteins

were visualized using the Omega lumc system (Aplegen,

San Francisco, CA), and densitometric analysis was per-

formed using the ImageJ software.

Small interfering RNA (siRNA)
HepG2 cells were transfected with a nontarget control

siRNA or a BECLIN1 siRNA by using Lipofectamine

3000. After 48 h of transfection, the cells were treated

with Tangeretin (90 μg/mL) for 24 h. Western blot analysis

was used to detect the interference efficiency, and the

immunoblotting steps were conducted as previously

described.

Immunoprecipitation (IP)
Total protein were extracted by radioimmunoprecipitation

assay (RIPA) lysis buffer. Immunoprecipitation was per-

formed using PureProteome Protein G Magnetic Beads

(LSKMAGG10; Millipore, Billerica, MA) based on the

manufacturer’s guidelines. Two microliters of primary

antibody or immunoglobulin (IgG) was used for immuno-

precipitation or the control, respectively. Blots were incu-

bated overnight at 4 °C with designated primary antibodies

at a dilution of 1:1,000 unless noted otherwise. Proteins

visualized and densitometric analysis were conducted as

previously described.

Statistical analysis
The results of at least three independent experiments are

presented as the means±standard deviations (SDs). For

statistical analysis, statistical significance was analysed

using Tukey’s multiple comparison tests and one-way

analysis of variance. Data analysis was performed with

GraphPad Prism(GraphPad Software, Inc., La Jolla, cA,

USA). Statistical significance was considered at p<0.05.

Results
The effect of Tangeretin on the

proliferation of HepG2 cells
To determine whether Tangeretin influences the prolifera-

tion of HCC cells, we first examined the effect of

Tangeretin on the proliferation of HepG2 cells with the

CCK-8 assay. HepG2 cells were treated with different

concentrations of Tangeretin (0, 30, 60 and 90 μg/ml) for

24 h. As shown in Figure 1B, Tangeretin decreased cell

viability in a dose-dependent manner. Second, EdU stain-

ing and colony formation assays were performed. The

results confirmed that Tangeretin decreased cell prolifera-

tion (Figure 1C and D) and colony formation (Figure 1E

and F) in a dose-dependent manner.

To further evaluate the inhibitory effect of Tangeretin

on HepG2 cell proliferation, we measured cell cycle pro-

gression by using flow cytometry. HepG2 cells were trea-

ted with 0, 30, 60 and 90 μg/ml Tangeretin for 24 h

respectively, and then the cell cycle was measured. As

shown in Figure 1G and H, Tangeretin-treated HepG2

cells accumulated in G2/M phase, and when the concen-

tration of Tangeretin reached 90 μg/ml, the number of cells
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in G2/M phase increased from 21% to 50%, which was

accompanied by a decrease of cells in G1 phase (compared

to the control). These findings suggest that Tangeretin

suppresses the proliferation of HCC cells.

The effect of Tangeretin on the migration

of HepG2 cells
Subsequently, we detected the effect of Tangeretin on cell

migration. HepG2 cells were treated with different con-

centrations of Tangeretin for 24 h in serum-free medium,

and transwell assays were performed. As shown in Figure

2A and B, Tangeretin significantly inhibited cell migration

in a dose-dependent manner, and 75% inhibition was

observed at a concentration of 90 μg/ml Tangeretin.

CCK-8 assays showed that antiproliferation had no effect

on antimigration activity (Figure 2C). Furthermore, our

results demonstrated that Tangeretin significantly

decreased wound healing and migration (Figure 2D

and E).

Tangeretin triggers autophagy in HepG2

cells
Disordered apoptosis is one of the key characteristics of

tumour cells. Caspase cleavage and cell cycle arrest are

important in apoptosis. Apoptosis in tumour cells is an

important aspect of most antitumour studies.19 We inves-

tigated whether Tangeretin decreased cell proliferation and

migration by enhancing the rate of apoptosis. As shown in

Figure 3, Tangeretin failed to induce caspase-3 cleavage.

Notably, Tangeretin increased the LC3II/LC3I ratio and

reduced p62 expression in HepG2 cells in a dose-

dependent manner (Figure 3A and B). Additionally, immu-

nofluorescence imaging revealed the distribution of LC3 in

the cytosol, with a faint nuclear signal also being observed

in HepG2 cells, and we observed a strong nuclear signal

upon Tangeretin treatment (Figure 3C and D). These

results suggested that Tangeretin triggered autophagy but

not apoptosis in HepG2 cells.

Effect of the knockdown of BECLIN1 on

HepG2 cell autophagy
BECLIN1 is a key regulator of autophagy.11

A disruption in BECLIN1 reduced autophagy and

tended to initiate the spontaneous formation of HCC in

mice.8 To further clarify whether Tangeretin inhibits the

proliferation, migration and autophagy of HepG2 cells

through BECLIN1 signalling, we knocked down

BECLIN1 with a specific siRNA (Figure 4A). First,

we performed EdU assays and transwell migration

assays to investigate whether the down-regulation of

BECLIN1 affects HepG2 cell proliferation and migra-

tion, respectively. The results clearly indicated that the

knockdown of BECLIN1 markedly enhanced cell prolif-

eration and migration, but this phenomenon was mark-

edly attenuated by Tangeretin (Figure 4B–E).

Subsequently, we verified that BECLIN1 is involved in

Tangeretin-induced autophagy. HepG2 cells transfected

with BECLIN1-siRNA were treated with Tangeretin at

a concentration of 90 μg/ml for 24 h, and the expression

levels of BECLIN1, LC3 and P62 were analysed by

Western blot. Our results showed that BECLIN1 was

knocked down successfully, the LC3II/LC3I ratio declined

and p62 expression increased significantly, and Tangeretin

weakened the downtrend (Figure 4F–G). The results of

immunofluorescence imaging and Western blot analysis

were consistent (Figure 4H and I). These results suggest

that Tangeretin-induced cell autophagy is BECLIN1-

dependent.

Tangeretin activates JNK and disrupts the

Bcl-2/BECLIN1 association
B-cell lymphoma-2 (Bcl-2) interacts with BECLIN1 to

inhibit BECLIN1-dependent autophagy.20 Wei et al found

that the stress-activated signalling molecule C-Jun

N-terminal protein kinase 1 (JNK1) mediated the phos-

phorylation of Bcl-2 and then phosphorylated Bcl-2 to

dissociate from the BECLIN1/Bcl-2 complex, resulting in

BECLIN1 release and the initiation of autophagy.20

Therefore, we investigated whether Tangeretin affected

Bcl-2 phosphorylation. As shown in Figure 5A and B,

Tangeretin treatment increased the phosphorylation level

of Bcl-2. We next examined the effect of Tangeretin on the

BECLIN1/Bcl-2 complex and found that Tangeretin dra-

matically disrupted the association between BECLIN1 and

Bcl-2 (Figure 5C and D).

We next sought to identify the upstream kinase respon-

sible for the Tangeretin-induced phosphorylation of Bcl-2

and the disruption of BECLIN1 binding. JNK is the most

frequently implicated Bcl-2 kinase that phosphorylates

Bcl-2,21,22 and our results showed that Tangeretin attenu-

ated the knockdown of BECLIN1-induced cell prolifera-

tion and migration. Therefore, we determined whether

Tangeretin was responsible for the regulation of the JNK

pathway in HepG2 cells. We investigated the effects of
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Tangeretin on the phosphorylation of JNK in HepG2 cells.

In the present study, the immunoblot assay showed that

Tangeretin increased the phosphor-JNK level (Figure 5E

and F). These results suggest that Tangeretin activates the

JNK pathway.

Discussion
HCC is the most common type of primary liver cancer that

accounts for 85–90% of all cases.23 Tangeretin, an extract

from citrus peels with multifaceted anticancer activity, is

commonly used to treat cancer in China. However, the
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transwell membranes stained with crystal violet (×10). Scale bar=25 μm. (B) The results represent the average of three experiments. Error bars represent the SD of the
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underlying molecular targets and efficacy of Tangeretin in

cancer treatment remain unclear. In the present study, we

demonstrated that Tangeretin activated JNK, decreased

Bcl-2 phosphorylation, and prevented the formation of

Bcl-2 and BECLIN1, thereby driving the BECLIN1-

dependent autophagy associated with HepG2 cell death

(Figure 6).

Tangeretin is a traditional Chinese flavonoid medicinal

herb,13 and it has a wide range of pharmacological

effects.14–16 In recent years, studies have found that

Tangeretin has an antitumour effect.17,24–26 Notably, it

inhibited cancer cell proliferation in human cancer cell

lines derived from squamous cell carcinoma, gliosarcoma,

leukaemia, melanoma, colorectal cancer, gastric

carcinoma, lung carcinoma, breast carcinoma and oral

cancer cells.27,28 Consistent with the aforementioned

reports, we found that Tangeretin decreased HepG2 cell

proliferation and migration.

Autophagy is a multistep process that is related to

autophagy-related genes (ATGS).23 Some studies have

focused on the paradoxical roles of autophagy in tumour

progression and promotion and suggested that autophagy

acts as a double-edged sword in cancer cells.29,30 Basic

autophagy maintains genomic stability to suppress tumour-

igenesis, but activated autophagy promotes cancer cell

survival and development.31,32 Yi Rong et al found that

the Tangeretin derivative suppressed CL1-5 lung cancer

cell growth via the mechanisms of G2/M cell cycle arrest,
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Figure 4 Tangeretin-induced HCC cell autophagy is BECLIN1-dependent.

Notes: (A) HepG2 cells were transfected with 15 or 30 nM BECLIN1 siRNA or nontarget siRNA for 48 h. Protein expression of BECLIN1 and GAPDH in HepG2 cells.

(B–I) HepG2 cells were transfected with 30 nM BECLIN1 siRNA or nontarget siRNA for 48 h, and then HepG2 cells were treated with 90 μg/mL Tangeretin for 24 h. (B)
EdU labelled the HepG2 cells for 2 h. Immunofluorescence of EdU (green) and nuclei (DAPI, blue; ×10). Scale bar=25 μm. (C) The graph summarizes the percentage of EdU

cells. (D) HepG2 cells subjected to a colony formation assay. (E) The graph summarizes the colony formation assay data. (F) Levels of BECLIN1, LC3, p62, and Actin. (G)

Relative levels of LC3-II compared with those of LC3-I; relative levels of p62 or BECLIN1 compared with those of actin. (H) Immunofluorescence of LC-3 (green) and nuclei

(DAPI, blue; ×40). Scale bar=25 μm. (I) The area of LC3 dots per cell was quantified using ImageJ. Data are shown as the mean±SD of three independent experiments (*vs

control group, P<0.001; #vs nontarget and 90 μg/mL Tangeretin treatment group, P<0.01).
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autophagy and apoptosis.20 Our current findings also

revealed that Tangeretin induced HepG2 cell death via

BECLIN1-dependent autophagy. Interestingly, Tangeretin,

at a concentration of more than 120 μg/mL, successfully

induced apoptosis in HepG2 cells (Figure S1A and B).

Therefore, we hypothesize that the regulation of

Tangeretin is coordinated through two aspects: by main-

taining basic autophagy at a low-dose concentration and

by promoting apoptosis at a high-dose concentration.

Some studies have indicated that cellular and viral Bcl-2

family members inhibit autophagy and that the cellular Bcl-

2/BECLIN1 complex dissociates.33,34 Our data also showed

that the JNK1 signalling pathway is responsible for Bcl-2

phosphorylation after Tangeretin treatment, which leads to

a disruption in the Bcl-2/BECLIN1 complex and the release

of the inhibitory activity of Bcl-2 on Beclin 1-dependent

autophagy in HepG2 cells. Bcl-2 is one of the most impor-

tant oncogenes in apoptosis research, and in most studies,

the phosphorylation of Bcl-2 is associated with its antiapop-

totic function.35 Therefore, we conclude that Bcl-2 is related

to a high dose of Tangeretin-induced apoptosis.

Conclusion
In conclusion, we identified a signalling mechanism that

regulates Tangeretin-induced autophagy in HepG2 cells

involving the JNK1-mediated phosphorylation of Bcl-2

and a disruption in the Bcl-2/BECLIN1 complex. This is

the first work to report that Tangeretin, via the BECLIN1-

Control

A B

C D

E F

p-Bcl-2

IP: Bcl-2

0 90

Input

Bcl-2

IP: Beclin1

Input

p-JNK

JNK

30 60 90

Control 30 60 90

Tangeretin (µg/ml)

Tangeretin (µg/mL) Tangeretin (µg/mL)

Tangeretin (µg/mL)

Control
0.0

0.2

0.4

0.6

p-
B

cl
-2

/B
cl

-2
p-

JN
K

/J
N

K

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

30 60 90
Tangeretin (µg/mL)

Control 30 60 90
Tangeretin (µg/mL)

0 90
WB: Bcl-2

WB: Beclin1

WB: Bcl-2

WB: Beclin1

WB: Bcl-2

WB: Beclin1

WB: Bcl-2

WB: Beclin1

#
*

*

#

*

#
&

*

*

*

Figure 5 Tangeretin enhances JNK activity and disrupts the Bcl-2/Beclin-1 interaction.

Notes: (A) HepG2 cells were treated with the indicated concentrations of Tangeretin (0, 30, 60 and 90 μg/mL) for 24 h. Protein expression of Bcl-2 and p-Bcl-2 in HepG2

cells. (B) Densitometry was used to determine the fold expression of p-Bcl-2 compared with that of Bcl-2. Data are shown as the mean±SD of three independent

experiments (*vs control group, P<0.05; #vs 60 μg/mL Tangeretin group, P<0.05). (C and D) HepG2 cells were treated with 90 μg/mL Tangeretin for 24 h. (C) Protein

expression of Bcl-2 after BECLIN1 immunoprecipitation in HepG2 cells. (D) Protein expression of BECLIN1 after Bcl-2 immunoprecipitation in HepG2 cells (n≥3). (E)
HepG2 cells were treated with the indicated concentrations of Tangeretin (0, 30, 60 and 90 μg/mL) for 24 h. Protein expression of JNK and p-JNK in HepG2 cells. (F)
Densitometry was used to determine the fold expression of p-Bcl-2 compared with that of Bcl-2. Data are shown as the mean±SD of three independent experiments (*vs

control group, P<0.05; #vs 30 μg/mL Tangeretin group, P<0.05; &vs 60 μg/mL Tangeretin group, P<0.05).
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dependent autophagy pathway, deceases hepatocellular

carcinoma proliferation and migration.
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Figure S1 Effect of tangeretin on the expression of Bcl-2 and Bax in HepG2 cells.

Notes: HepG2 cells were treated with the indicated concentrations of Tangeretin (0, 60, 120 and 180 μg/mL) for 24 h. Then, (A) the levels of Bcl-2, Bax, and GAPDH were

examined. (B) Relative levels of Bcl-2 and Bax compared with GAPDH, respectively (*P<0.05).
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