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Abstract: Artificial intelligence (AI) and machine learning (ML) represent significant advancements in computing, building on
technologies that humanity has developed over millions of years—from the abacus to quantum computers. These tools have reached a
pivotal moment in their development. In 2021 alone, the U.S. Food and Drug Administration (FDA) received over 100 product
registration submissions that heavily relied on AI/ML for applications such as monitoring and improving human performance in
compiling dossiers. To ensure the safe and effective use of AI/ML in drug discovery and manufacturing, the FDA and numerous other
U.S. federal agencies have issued continuously updated, stringent guidelines. Intriguingly, these guidelines are often generated or
updated with the aid of AI/ML tools themselves. The overarching goal is to expedite drug discovery, enhance the safety profiles of
existing drugs, introduce novel treatment modalities, and improve manufacturing compliance and robustness. Recent FDA publications
offer an encouraging outlook on the potential of these tools, emphasizing the need for their careful deployment. This has expanded
market opportunities for retraining personnel handling these technologies and enabled innovative applications in emerging therapies
such as gene editing, CRISPR-Cas9, CAR-T cells, mRNA-based treatments, and personalized medicine. In summary, the maturation of
AI/ML technologies is a testament to human ingenuity. Far from being autonomous entities, these are tools created by and for humans
designed to solve complex problems now and in the future. This paper aims to present the status of these technologies, along with
examples of their present and future applications.
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Introduction

The learning of facts by humans comes with their intellectual bias, based on prior learning, beliefs, and genetically driven
survival instincts. None of these factors enter when a machine is involved since it cannot think beyond what it is taught.
Artificial intelligence (AI) and Machine Learning (ML) definitions vary.1 ML is a subset of Al that enables ML models to be
developed by ML training algorithms through data analysis without being explicitly programmed. Al is a branch of computer
science, statistics, and engineering that uses algorithms or models to perform tasks and exhibit behaviors like learning, making
decisions, and making predictions. Notably, this computer software can only report or analyze the available data as input or
based on reported simulations. This paper presents a historical perspective of the evolution identifying significant events that
have led to the evolution of scientific and computational events that now constitute AI/ML, as shown in Table 1.

Optimizing the Utility of AI/ML

If AML were limited in use by corporate and industrial laboratories, there would not have much debate about the risks of
their service until the arrival of the public-use ChatGPT4,>® which stirred up controversies, suggesting that the technology
must be regulated,’' >* as if this were an alien intervention. But this is nothing new; we continue to live with myths and

perpetuate them, as the nature of humans and an Al-driven tool can only replicate what we think, as shown in Table 2.
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Table | A brief history of Al/ML development interventions

Year | Intervention

1950 | The paper by Alan Turing, “Computing Machinery and Intelligence”, proposed the concept of a “universal machine” capable of exhibiting
intelligent behavior.

1956 | The Dartmouth Conference marked the birth of Al as a field, bringing together leading scientists to discuss Al research and define its
goals.?

1956 | The Logic Theorist program, developed by Allen Newell and Herbert A. Simon, was the first Al program to prove mathematical theorems.*

1957 | Frank Rosenblatt’s Perceptron introduced the concept of a single-layer neural network capable of learning through a process called
“perceptron learning”®

1957 | The General Problem Solver (GPS) program, developed by Newell and Simon, demonstrated an approach to problem-solving using
symbolic reasoning.®

1972 | The development of the PROLOG programming language by Alain Colmerauer and Philippe Roussel brought about significant
advancements in logic programming and knowledge representation.’”

1976 | The MYCIN system, developed by Edward Shortliffe, demonstrated expert systems in medical diagnosis, utilizing a rule-based approach. 8

1982 | The RI/XCON system by Douglas Lenat and Randal Davis was a notable expert system used in configuring computer systems, showcasing
the power of rule-based reasoning.9

1983 | John McCarthy coined the term “artificial intelligence” and developed the Lisp programming language, which became a significant language
for Al research.'®

1983 | The CYC project, led by Douglas Lenat, aimed to create a vast knowledge base encompassing common-sense reasoning and
understanding.I !

1988 | The Backpropagation algorithm, proposed by Paul Werbos, enabled efficient training of multi-layer neural networks.'%"?

1997 | Deep Blue, developed by IBM, defeated world chess champion Garry Kasparov in a six-game match, showcasing the potential of Al in
complex strategy games. '*

1998 | The LeNet-5 architecture by Yann LeCun et al revolutionized the field of computer vision and became a fundamental model for image
recognition tasks.'>

2009 | The ImageNet project, led by Fei-Fei Li, introduced a large-scale dataset and benchmarks for training deep convolutional neural networks
for image classification.'®

2011 | Watson, an Al system created by IBM, won the Jeopardy! Game show against human champions in 201 I, demonstrating natural language
processing and knowledge retrieval abilities.'”

2012 | The AlexNet architecture by Krizhevsky, Sutskever, and Hinton revolutionized image classification tasks and demonstrated the power of
deep learning on GPUs.'®

2016 | AlphaGo, developed by DeepMind, defeated the world champion Go player Lee Sedol, highlighting the advancements in machine learning
and reinforcement learning.'?

2017 | DeepMind’s AlphaGo Zero surpassed the performance of the original AlphaGo by mastering the game Go through reinforcement learning
without any human expert knowledge.”®

2017 | The Transformer model, introduced by Vaswani et al, revolutionized natural language processing tasks by enabling efficient attention-based
sequence-to-sequence modeling.2I

2018 | Devin et al created the BERT (Bidirectional Encoder Representations from Transformers), achieving phenomenal results in processing in
multiple natural languages that included tasks, including question-answering and sentiment analysis.22

2019 | OpenAl's AlphaStar defeated professional human players in StarCraft Il, showcasing the potential of reinforcement learning in complex real-
time strategy games.23

(Continued)
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Table | (Continued).

Year | Intervention

2021 | AlphaFold wins the CASP competition for predicting the 3D protein structure.?*

2022 | Organizations and initiatives, such as the Partnership on Al,%> OpenAl’s Charter,2® and the IEEE Global Initiative on Ethics of Autonomous
and Intelligent Systems,Z7 have emerged to address these challenges.

2023 | ChatGPT arrives, bringing much controversy.2®

2023 | The FDA issues two papers disclosing how the FDA is encouraging the adoption and applying AlI/ML in improving drug discovery and that
more than 100 regulatory filings to date have employed AI/ML approaches.?” Also released is the FDA Guidance

Table 2 Common myths of daily life

Field

Misconception

Computers

ChatGPT Can Destroy Humanity>*

Biology

Bats are Blind*®

Astronomy

Black Holes are Cosmic Vacuum Cleaners>®

Physics

Centrifugal Force®”

Psychology

Cognitive Biases and Heuristics>®

Physics

Glass is a Slow-Moving Liquid39

Physics

Heavier Objects Fall Faster*

Biology

Humans Evolved from Monkeys®*!

Biology

Humans Only Use 10% of Their Brains*

Physics

Lightning Never Strikes the Same Place Twice*

Climate Science

Misconceptions about Climate Change**

Biology

Misconceptions about Evolution*

Animal Behavior

Ostriches Bury Their Heads in Sand*

Ancient History

Roman Vomitoriums*’

Astronomy

The Dark Side of the Moon*®

Chemistry

Water Conducts Electricity*

Medicine

We Should Drink 8 Glasses of Water a Day*°

History

Witch Burnings in Salem®'

Medicine

You Can Sweat Out Toxins>?

However, these algorithms, acting much faster than humans can, also make and multiply mistakes. It is this concern

that the FDA and other US Federal Agencies have established stringent controls on using AI/ML, where applicable, in

developing new drugs.

e Lack of Accountability: One argument against the widespread use of AI/ML is that it lacks accountability since it

can generate false or misleading information. However, it is crucial to recognize that AI/ML are tools, and computer

software, developed by humans and trained on vast amounts of real-world data. The responsibility for using the
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content generated lies with the users, planning to utilize and deploy the technology. They are responsible for
ensuring the accuracy and reliability of the information shared. This expectation is no different from the respon-
sibility of the developers in validating the data reported to the FDA.

e Ethical Concerns: Concerns are frequently expressed regarding the ethical implications of Al particularly in areas such
as privacy, bias, and fairness. While these concerns are valid, it is essential to note that the ethical issues do not stem
from the Al system itself but rather the data it is trained on; Al cannot make a judgment; it is a regurgitation tool.
Regulating Al for drug development has the greatest potential and risk if the Al-generated data are not validated.”

e Job Displacement:>* Critics argue that AI technologies will lead to massive job displacement, leaving many
unemployed. However, historical evidence suggests that technological advancements have often created new jobs
and transformed existing ones. While Al may automate specific tasks, it can also augment human capabilities,
leading to increased productivity and new employment opportunities. Regulations should focus on ensuring
a smooth transition by fostering education and upskilling programs rather than stifling innovation that will
significantly increase new job opportunities.

e Safety and Security:> Concerns are raised in the public media about the potential misuse of Al systems, such as
spreading misinformation or generating harmful content. However, there should not be any ethical concerns about
using AI/ML for drug development; for example, the Al-driven protocols will not bring alternates to animal testing
to prevent currently against animals; how it is possible that if literature discusses such possibility, the Al may
propose, entirely on the perspective of reporting not judging. A good example is how one can easily get biased and
racist responses from ChatGPT based on how the question is designed. The focus of the search of ChatGPT shifts
based on the nature of inquiry with any bias or the ability to judge.

e Unintended Consequences:*® Critics worry that Al systems may have unintended consequences, such as amplifying data
biases or generating unexpected analyses or results. While these concerns are valid, they can be addressed through
ongoing research, development, and responsible deployment. Building Al systems that are transparent, explainable, and
subject to continuous evaluation and improvement can help identify and rectify any unintended consequences.

One prominent use of AI/ML has revolutionized drug discovery, development, and manufacturing. However, to minimize
the risk of faulty decision-making, the FDA and dozens of other agencies have taken significant steps as guidelines that
present the control requirements while suggesting more engagement of these new technologies. AI/ML is now widely
used to discover its applications, which have led to the entry of many novel tools and approaches that can help create new
entities and reduce the cost of development—a dire need to make drugs affordable.

The development and usage of pharmaceuticals will accelerate because of recent technological advancements in data
gathering and generation tools, reliable information management and exchange platforms, and enhanced computational
capabilities. According to the FDA’s latest studies, this dynamic ecosystem offers distinct opportunities, difficulties, and
ways to increase their use.’’

Various drug development efforts have used AI/ML to hasten the drug development process and improve the
efficiency and safety of clinical trials. However, it’s critical to determine whether AI/ML poses risks or harms.

When results are extrapolated outside of the testing environment, ethical and generalizability issues arise since the Al/
ML algorithms have the potential to exaggerate flaws and preexisting biases found in the underlying data sources. As
a result of its inherent complexity, an AI/ML system may also have limited explainability or may not be entirely
transparent for proprietary reasons. The FDA is creating guidelines for trustworthy Al to address specific qualities,
including explainability, reliability, privacy, safety, security, and bias reduction.

The fact that the FDA has raised these concerns points to better use of AI/ML. Some of these concerns can be better
understood from examples drawn from current research efforts, as presented in Table 3.

Drug Discovery
One of the areas where AI/ML is being used extensively is early drug development, which includes compound screening,

drug design, target identification, target selection, and target prioritization.
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Table 3 Examples of Recent Applications of Al/ML in Drug Discovery Applications

Adverse event detection
Identify adverse events associated with drugs by analyzing electronic health records, social media, and other real-world data sources. This can assist

in early detection, reporting, and mitigating potential drug risks.>®

Antibiotic discovery
Antibiotic resistance is a major public health concern, and there is a need for new antibiotics. Help discover new antibiotics by analyzing vast

amounts of chemical and biological data to identify potential antimicrobial compounds.*’

Autoimmune diseases
Aid in developing drugs for autoimmune diseases by predicting disease mechanisms, identifying potential therapeutic targets, and optimizing

treatment strategies.éo

Biomarker discovery
Analyze large-scale omics data, such as genomics, proteomics, and metabolomics, to identify potential biomarkers for disease diagnosis, prognosis,

and treatment response. This can aid in personalized medicine and drug development.®'

Biomedical images

Analyze biomedical images, such as images from microscopy, to identify potential targets for drug development. This can provide valuable

information about the effects of potential drugs on cells and tissues.®

Cancer immunotherapy
Development of cancer immunotherapies, such as immune checkpoint inhibitors and CAR-T cell therapies. Machine learning models can predict

patient responses, identify potential biomarkers, and optimize treatment protocols.63

Cell therapy
Developing cell therapies involves introducing new cells into a patient to treat a disease. Machine learning models can help optimize the production
of therapeutic cells and ir effects on patients.**

Clinical trial design optimization
Optimize clinical trial design by considering patient characteristics, treatment protocols, and trial outcomes. This can help improve the efficiency
and success rate of clinical trials.®®

Clinical trials
Help improve the efficiency of clinical trials, which are critical in drug development. This can involve predicting the outcomes of trials, optimizing the
design of trials, or identifying suitable patients for trials.®®

Clinical trials
Optimize the planning and execution of clinical trials, the research that examines the security and efficiency of novel drugs in people. The best trial

candidates, trial results, and trial data analysis can all be assisted by machine learning algorithms.®”

Combination optimization
Optimize the selection and dosing of drug combinations to maximize efficacy and minimize side effects. Machine learning models can analyze data on

drug interactions, synergistic effects, and patient characteristics to identify the most effective combinations.®®

Combination sensitivity prediction

Sensitivity of cancer cells to specific drug combinations, aiding in identifying effective treatment regimens for personalized cancer therapy.®’

Combination side effect prediction
Side effects of drug combinations by analyzing the known side effect profiles of individual drugs and their interactions. This can help identify

potential safety concerns and optimize drug combination therapies.”

Continuous manufacturing
Optimize continuous manufacturing processes in the pharmaceutical industry by monitoring and controlling key process parameters in real time.

) . : ; 71
This can enhance quality control, reduce waste, and increase efficiency.

De novo design
Creating new and effective drug molecules from scratch is a complex task given the many possible molecules. Help with this by generating and

optimizing potential drug molecules for specific targets or diseases.”?

(Continued)

Drug Design, Development and Therapy 2023:17 heeps: 2695

Dove!


https://www.dovepress.com
https://www.dovepress.com

Niazi Dove

Table 3 (Continued).

Delivery optimization
Optimize drug delivery systems by predicting drug release profiles, designing targeted delivery vehicles, and enhancing efﬁciency.73

Delivery systems
Design of drug delivery systems, which control the release and distribution of drugs in the body. Machine learning algorithms can the effectiveness
of different drug delivery systems, leading to better treatments with fewer side effects.”*

Dermatology
Analyze skin images to diagnose skin diseases and predict responses to treatment. This could aid in the development of drugs for dermatological

conditions.”

Disease mechanisms
Understand the mechanisms of diseases, aiding in the development of new treatments. Analyzing large amounts of biological and medical data

. ) . 76
reveals novel insights into how diseases develop and progress.

Disposition modeling
Predict drug disposition, including absorption, distribution, metabolism, and excretion (ADME), to understand drug pharmacokinetics and optimize

. ) 77
dosing regimens.

Drug-drug interaction prediction

Help discover potential drug-drug interactions and their implications on efficacy and safety, and predict probable drug interactions.”®

Environmental Impact of Pharmaceuticals
Help assess the environmental impact of pharmaceuticals, a factor that is increasingly considered in drug development. Machine learning models can

. . . . .. . . 79
reduce drugs’ environmental persistence, bioaccumulation, and toxicity, leading to safer and more sustainable treatments.

Epigenetic discovery
Analyze epigenetic data and identify potential epigenetic drug targets that modify gene expression patterns. This can aid in developing therapies for

diseases influenced by epigenetic modifications.®°

Formulation and Dosage Optimization

Assist in optimizing drug formulation and dosage to enhance drug efficacy, minimize side effects, and improve patient compliance. Machine learning

models can optimize formulation and dosage based on patient characteristics and drug properties,sl

Formulation prediction

Based on molecular descriptors and physicochemical characteristics, predict drug formulation properties, such as solubility and stability. This can aid

in the development of optimized drug formulations.®?

Gene editing
Assist in gene editing technologies such as CRISPR-cas9 by predicting off-target effects, guiding the design of gene editing tools, and optimizing

editing efficiency.®®

Gene therapy
Aid in developing gene therapies involves altering the genes within a patient’s cells. Machine learning models can find these alterations’ effects and
help design more effective therapies.84

Genome-wide Association Studies (GWAS)
Help analyze the results of genome-wide association studies, which involve scanning the genomes of many people to find genetic variations
associated with a particular disease. This can uncover new drug targets.®®

High-throughput Screening
Improve high-throughput screening, a common method for drug discovery, by predicting the properties and potential therapeutic uses of numerous
compounds quickly and accurately. Machine learning models can process and learn from vast amounts of chemical and biological data, making them

effective tools for drug screening.®

Imaging agents
Imaging agents are substances used in medical imaging to highlight certain structures or processes. Design of new imaging agents, which can be used

for diagnosis or for tracking the progress of disease or the effect of treatment.®”

(Continued)
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Table 3 (Continued).

Immunotherapy
Develop new immunotherapies, treatments that use the body’s immune system to fight diseases like cancer. Machine learning models can respond
to immunotherapy, identify potential targets, and help design more effective treatments.®®

Manufacturing and Quality Control
Optimize drug manufacturing processes, predict potential issues, and improve quality control measures. Machine learning models can analyze
production data, detect anomalies, and optimize manufacturing parameters to ensure consistent drug quality.®

Metabolism prediction

Metabolic fate of drugs in the body, aiding in identifying potential metabolites and facilitating drug development and optimization.”

Metabolomics
Analyze metabolomic data, which provides information about the metabolites in a biological sample. This can identify biomarkers for disease,

understand the mechanism of action of drugs, and identify potential drug targets.”'

Microbiome analysis
The microbiome, the collection of microorganisms living in the human body, can affect the effectiveness and toxicity of drugs. Help analyze the

complex data from microbiome studies, potentially leading to new strategies for personalized drug therapy.””

Nanomedicine
Assist in designing nanoscale drug delivery systems. Machine learning can properties of nanoparticles and their interactions with biological systems,

helping to design more effective nano-drugs.”?

Natural language processing
Analyze scientific literature, patents, and other text sources to extract knowledge and insights for drug discovery and development. Natural

language processing techniques can help in data mining, knowledge extraction, and text summarization.”

Natural product discovery
Analyze large-scale data on natural products and their biological activities to identify potential drug candidates. This can expedite the discovery of
novel compounds with therapeutic potential.”

Neglected diseases
Accelerate drug discovery efforts for neglected diseases by predicting potential drug candidates and repurposing existing drugs to treat these

conditions.”®

Neurodegenerative diseases
Discovery of new drugs to prevent diseases like Alzheimer’s and Parkinson’s. Machine learning models can analyze multi-omics data and predict
potential therapeutic targets for intervention.””

Neuropharmacology
Develop new treatments for neurological and psychiatric disorders. For example, machine learning models can analyze brain images and other data
to respond to treatment or to identify new drug targets.98

Ophthalmology

Al has also found applications in the development of drugs for eye diseases. For instance, deep learning has been applied to analyze retinal scans,

which can provide insights to understand and treat conditions such as age-related macular degeneration.99

Orphan diseases

Facilitate drug discovery efforts for orphan diseases by predicting drug-target interactions and repurposing existing drugs for these rare

conditions.'®

Pain management

Aid in the discovery of new drugs for pain management by analyzing large-scale genomic, transcriptomic, and proteomic data to identify potential

targets and pathways involved in pain signaling.'®'

Patient adherence prediction

Predict patient adherence to drug regimens by analyzing patient characteristics, social determinants, and past adherence patterns. This can help
102

identify patients at risk of non-adherence and develop interventions to improve drug adherence.

(Continued)
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Table 3 (Continued).

Patient stratification

Assist in patient stratification, which involves grouping patients based on their predicted response to treatment. Identifying patients who can most

benefit is a main goal, facilitating the move towards personalized medicine.'®

Peptide design

Design of peptide drugs, which are a unique class of therapeutic agents. Machine learning algorithms can stabilize potential peptide drugs’ toxicity

and activity, facilitating their design.'%*

Personalized combination therapy

Effectiveness of different drug combinations for individual patients based on their genetic and clinical characteristics. This can help in the

development of personalized combination therapy for complex diseases.'®®

Personalized dosing

Optimize drug dosing for individual patients by considering age, weight, genetics, and biomarker data. This can help achieve optimal therapeutic

S 106
outcomes while minimizing adverse effects.

Personalized medicine

By analyzing genetic data, predict individual drug responses and help develop personalized treatment plans. This is particularly relevant in oncology,

where genetic variations can significantly affect treatment outcomes.'®’

Pharmacoepidemiology
Be used in pharmacoepidemiology, the study of the uses and effects of drugs in large numbers of people. For example, machine learning models can
analyze large health record databases to identify drug use patterns, drug effectiveness in real-world conditions, and the factors influencing these

OUtCOn'leS.IOB

Pharmacogenomics

Analyze genetic variations and drug response data to predict individual drug responses and identify potential adverse reactions, enabling

personalized medicine approaches.'®®

Pharmacokinetic modeling

Enhance pharmacokinetic modeling, which involves studying how drugs are absorbed, distributed, metabolized, and excreted by the body. Machine

learning models can predict drug concentrations in different tissues and optimize dosing regimens.''®

Pharmacokinetics and Pharmacodynamics (PK/PD) Modeling

Help develop PK/PD models, which predict how the body will affect the drug (pharmacokinetics) and how the drug will affect the body

(pharmacodynamics). Optimal dosing and frequency are one main element of understanding for individual patients."'"'

Pharmacovigilance signal detection

Analyze large-scale pharmacovigilance databases and real-world data to detect potential safety signals and adverse drug reactions. This can enhance

the early detection and monitoring of drug safety concerns.''?

Interaction of drugs with multiple targets, a field known as polypharmacology. Understanding these interactions can help design drugs to achieve the

desired effects and minimize undesired side effects.''

Precision medicine
Enable precision medicine by integrating diverse patient data, including genomic information, clinical records, and lifestyle factors. Machine learning
models can analyze these data to predict individual treatment responses and tailor therapies for optimal outcomes.''* Best drug combinations for

individual cancer patients based on their genetic and clinical data, helping to move toward personalized and precision medicine in oncology.''®

Preclinical safety assessment

Aid in the preclinical safety assessment of drugs by predicting their potential toxicities and identifying safety risks, leading to more efficient and

reliable safety evaluation.''®

Predicting interactions

Predict potential drug-drug interactions, which are situations where one drug affects the activity of another. This is critical for ensuring patient

safety, as drug-drug interactions can lead to adverse effects or reduced treatment efficacy.''”

(Continued)
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Table 3 (Continued).

Predicting side effects

Potential side effects of drugs contribute to better patient safety and care. Machine learning models can utilize chemical properties, known side

effects, and biological data to make these predictions.' 18

Predictive toxicology
Toxicity of chemical compounds and drugs, aiding in the early identification of potential safety issues and reducing the need for animal testing.

Pricing and Market Access
Analyze healthcare data, market dynamics, and pricing information to optimize drug pricing strategies and improve market access for

pharmaceutical companies. This can help ensure the affordability and availability of essential drugs.

Proteomics

Analyze proteomic data, which provides information about the proteins in a biological sample. This can help to understand the mechanism of action

of drugs, identify potential drug targets, and identify biomarkers for disease.'"®

Quantitative structure-activity relationship (QSAR) models

Help develop QSAR models, which show the biological activity of compounds based on their chemical structure. This can accelerate the

identification of potential new drugs.'*®

Rare disease discovery

Aid in discovering drugs for rare diseases by analyzing various data sources, including genetic and clinical data, to identify potential therapeutic

targets and repurpose existing drugs.'?'

Regulatory Compliance and Safety Surveillance

Aid in regulatory compliance by automating the analysis of safety data, detecting adverse events, and monitoring post-market drug safety. This can

. - - - 122
improve pharmacovigilance and regulatory decision-making processes.

Regulatory processes

Streamline regulatory processes in drug development, including drug approval and post-marketing surveillance, by automating data analysis,

identifying safety signals, and facilitating regulatory decision-making.'**

Repositioning for Rare Diseases

Identify potential drug candidates for treating rare diseases by analyzing molecular profiles, gene expression data, and clinical information.'*

Repositioning, or drug repositioning or repurposing, is finding new uses for already-existing drugs. Predict new therapeutic uses for already-on-The-
market drugs by studying data on drug structures, actions, and targets.
Repositioning
Help identify new uses for existing drugs, a process known as drug repositioning or repurposing. By analyzing data on drug structures, effects, and

targets, predict new therapeutic uses for drugs already on the market.'?®

Reproduction

Reproduce discontinued or scarce drugs by analyzing their chemical structures and properties. This can help ensure the continuous availability of

essential drugs.|26

Repurposing drugs

Find new uses for existing drugs, a process known as drug repurposing or repositioning. This can be a quicker and less costly way of developing new

treatments than traditional drug development processes.|27

Repurposing for Rare Diseases

Identify potential drug candidates for treating rare diseases by analyzing drug databases, genomic data, and clinical information. This can expedite the

development of therapies for rare conditions.'?®

Resistance prediction

Predict drug resistance in pathogens and cancer cells, aiding in developing strategies to overcome resistance and optimize treatment.'?’

Response Prediction for Personalized Medicine

Predict individual drug responses based on patient-specific factors, such as genetics, clinical data, and environmental factors. This can enable
130

personalized treatment selection and optimization.

(Continued)
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Table 3 (Continued).

Safety and Adverse Event Prediction

Predict and prevent adverse drug events by analyzing data from electronic health records, clinical notes, and other sources. Machine learning models

can identify patterns and risk factors associated with adverse events, enabling early detection and prevention.I3I

Structure-based design

Ai/mL models can be utilized in structure-based drug design, which involves drug design based on the drug target’s molecular structure. These

models can predict how well potential drugs will bind to the target, helping to identify promising drug candidates.'*?

Supply chain optimization

Optimize the supply chain of pharmaceutical products, including inventory management, demand forecasting, and distribution logistics. This can help

improve efficiency, reduce costs, and ensure timely availability of drugs.'*?

Synergistic combinations
Identify combinations of drugs that work synergistically; their combined effect is greater than the sum of their individual effects. This could lead to

the development of more effective treatments, particularly for complex diseases like cancer.”

Synthesis planning

Assist in planning the synthesis of new drugs by proposing the most effective and feasible routes and steps. This can save time and resources in drug

development.'**

Synthetic Biology and Biotechnology

Optimize the production of bioactive compounds through synthetic biology and biotechnology. For example, machine learning models can optimize

the genetic engineering of microorganisms to produce drugs.'?®

Target binding affinity prediction

Small molecule target protein binding affinity facilitates the invention and improvement of therapeutic candidates.'>®

Target druggability prediction
Druggability of potential drug targets, helping to prioritize targets for further investigation and optimizing drug discovery efforts.'>’

Target identification

Identifying potential drug targets by analyzing genomic, proteomic, and other biological data. Machine learning models can uncover associations

between targets and diseases, facilitating the discovery of new therapeutic 'cargets.'38

Target validation

Also assist in target validation, which involves confirming that a biological target (such as a protein or gene) is related to disease and can be acted

upon by a drug. Machine learning models can analyze and interpret complex biological data to uncover and validate new drug targets.'>’

Toxicology predictions

Potential drug toxicity is a critical component in drug development. Early detection of adverse effects can reduce the likelihood of expensive failures

during the latter phases of drug development.|40

Vaccine design

Machine learning models can provide immune responses to different vaccine candidates, which can help design more effective vaccines.'*!

Virtual screening
Accelerate the virtual screening process to identify potential drug candidates from large compound libraries. Machine learning models can increase
the likelihood of a compound binding to a specific target, aiding drug discovery. 142

Withdrawal prediction
Likelihood and severity of withdrawal symptoms when discontinuing certain drugs. This can help healthcare providers develop tapering strategies

and support patients in safely discontinuing drugs.'*

Drug Target Identification Technologies Before Al/ML
e Genomics and Proteomics: Genomics and proteomics helped identify disease-associated genes and proteins. By
understanding which genes were involved in a particular disease process, scientists could target the proteins those

genes encoded.'**
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¢ Biochemical Assays: These were used to identify and understand the function of potential targets. Scientists would

isolate a particular protein or enzyme involved in a disease process and test compounds that might inhibit or

enhance its activity.'*’

¢ Animal Models: By studying disease progression in animal models, researchers could identify the proteins and
pathways involved in a disease, giving insight into potential targets.'*®

e Cell-Based Assays: Using cultured diseased cells, researchers would test how different compounds affected the

cells. To identify potential targets, they would look at how the compounds impacted cell growth, death, and other
processes.'*’
e High-Throughput Screening (HTS): This involved testing thousands of compounds against a particular protein or

enzyme to see which ones had the desired effect. Although not as efficient as modern Al-driven methods, it was

a vital tool for drug discovery.'*®

e Structure-Based Drug Design: If the 3D structure of a target protein was known, scientists could design new
molecules that fit into the protein’s active site. This was an essential method in rational drug design.'*

e Phenotypic Screening: This approach looked at the effects of a compound on the phenotype of a cell or organism.

Instead of focusing on a specific target, it aimed to identify compounds that had a desired effect, like killing cancer

cells. The targets were then identified later using various methods.'*"

e Literature and Knowledge Mining: Accumulated knowledge and scientific literature were used to draw connections

between disease mechanisms and potential targets. Collaboration and information sharing across the scientific

community were vital in this process.'”’

e Patient Data Analysis: Clinical observations and epidemiological studies helped identify correlations between
molecules or pathways and diseases, leading to hypotheses about potential targets.'>?

e Collaboration with Academia: Many times, insights into potential drug targets came from academic research into

the fundamental biology of a disease.'>

Drug Target ldentification in the Al/ML Era

The advent of artificial intelligence (AI) and machine learning (ML) has revolutionized the field of drug target
identification by enhancing predictive modeling, expediting the screening process, integrating vast and complex data
sets, and fostering personalized medicine approaches. Integrating AI/ML in drug target identification has undeniably
transformed the field, providing new avenues and methodologies for accelerating drug development.

¢ Enhanced Predictive Modeling: AI/ML algorithms can learn from existing data to predict how potential drug targets
might behave, even before being experimentally tested.'>*

¢ Speeding Up Screening Processes: Al has dramatically enhanced high-throughput screening, which can analyze vast
numbers of compounds more quickly and accurately.'>

e Data Integration and Mining: AI/ML has enabled the integration of various data sources like genomics, proteomics,
and clinical data, resulting in a more comprehensive understanding of disease biology and potential targets.'®

¢ Improving Structure-Based Drug Design: AI/ML techniques can analyze the 3D structures of proteins and predict
how different molecules might interact with them, enhancing drug design.">’

e Personalized Medicine Approaches: AI/ML can analyze patient-specific information to tailor drug therapies,
allowing for more personalized and effective treatments.'>®

e Collaborative Drug Discovery: Al-driven platforms enable collaborations across different institutions, combining
various expertise and data, leading to more innovative drug target identification."’

e Fostering Drug Repurposing: Al can identify new potential targets for existing drugs, a process known as drug
repurposing or repositioning, thus maximizing the therapeutic potential of already approved drugs.'®’

¢ Cost-Effectiveness: By enhancing the efficiency and accuracy of drug target identification, AI/ML reduces the
overall cost of the drug discovery process.'®!

e Network Analysis for Disease Understanding: AI/ML algorithms can analyze complex biological networks,

revealing underlying mechanisms and potential drug targets.'®*
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e Enhanced Safety Profiling: AI/ML models are used to predict the toxicological properties of compounds, con-

tributing to the selection of safer drug targets.'*?

e Improvement in Clinical Trials: Al and ML facilitate the design and monitoring of clinical trials, making predicting
patient responses to specific drugs possible.'®?

e Integration with Real-World Evidence (RWE): The use of Al to analyze real-world data from electronic health
records and other sources enhances the identification of drug targets.'®*

e [dentification of Biomarkers: AI/ML techniques help in the title of disease-related biomarkers, which can be crucial
for targeted therapies.'®

e Facilitating Drug Combination Strategies: Al helps design drug combinations that can be more effective in treating
complex diseases.'®

e Understanding Drug Resistance: AI/ML models help understand the mechanisms of drug resistance, aiding in

designing more effective treatments.'®’

Applications in the Development of Small Molecules

Al and ML have been applied extensively to developing and identifying small molecule targets. The convergence of Al
and ML with chemistry, biology, and pharmacology fosters an era of unprecedented innovation in developing and
identifying small molecule targets. Through intricate modeling, prediction, and optimization, these techniques push the
boundaries of traditional approaches, paving the way for safer, more effective, and more personalized therapies.

In summary, the application of AI/ML in identifying and developing small molecule targets spans various stages and
aspects of the drug discovery process. By integrating information on molecular structure, biological function, pharma-
cokinetics, and synthesis, these computational tools enable more efficient and targeted development of small molecule
therapeutics.

These applications can be broken down into specific areas:

e Virtual Screening: AI/ML models can screen millions of small molecules, predicting their binding affinity to
specific biological targets, a critical factor in drug development.'®®

e Structure-Based Drug Design: By understanding the 3D structures of proteins, AI/ML algorithms facilitate the
design of small molecules that can effectively interact with those targets.'”’

e Prediction of ADMET Properties: AI/ML can predict the Absorption, Distribution, Metabolism, Excretion, and
Toxicity (ADMET) of small molecules, which are critical in drug development.169

e Biomarker Identification: AI/ML assists in identifying biomarkers that small molecules might target, providing
insights into potential therapeutic applications.'®®

e Chemoinformatics and Compound Property Prediction: AI/ML models predict various physicochemical properties
of small molecules, such as solubility and stability.'”

e Drug Repurposing: Identifying new targets for existing small molecules is another area where AI/ML shines. This
approach can significantly reduce the time and cost associated with drug development.'®

e Synthesis Prediction: AI/ML can predict the synthetic routes to small molecules, a crucial step in drug
development.'**

e Understanding Drug Resistance: AI/ML models help in understanding mechanisms of drug resistance to small
molecules, aiding in the design of more effective treatments.'®’

e Multi-Target Prediction: AI/ML models can predict the interaction of small molecules with multiple targets, which
is essential for understanding off-target effects and polypharmacology.'”!

e Designing Small Molecule Libraries: AI/ML helps design compound libraries with desirable properties, accelerat-
ing drug discovery.'”?

e Molecular Dynamics Simulations: AI/ML algorithms can run and analyze molecular dynamics simulations,
providing insights into the behavior of small molecules in biological systems.'”

e Patient-Specific Treatment: AI/ML helps identify small molecules that could be particularly effective in individual

patients, contributing to personalized medicine.'>®
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e Quantum Mechanics (QM) and QM/MM Calculations: AI/ML has been employed to facilitate and interpret QM
and QM/MM calculations, offering detailed insights into molecular interactions at the atomic level.'™*

e Toxicity Prediction: AI/ML models can accurately predict the toxicity of small molecules, an essential aspect of
drug safety.'*

¢ Enhancing Collaboration: AI/ML tools enhance collaboration between chemists, biologists, and pharmacologists,
allowing for a more integrated approach to small molecule discovery.''*

e Optimizing Clinical Trials for Small Molecules: AI/ML models can help design and monitor clinical trials
specifically for small molecules, reducing the time and cost of development.'”

e Developing New Therapeutic Strategies: AI/ML can be used to understand complex disease mechanisms, leading to

the development of novel therapeutic strategies involving small molecules.'’®

Applications in the Development of Large Molecules

Identification, Selection, and Prioritization of Drug Targets

A crucial step in the early stages of drug development is identifying an appropriate biological target for therapeutic prospects.
To begin with, AI/ML can be used to evaluate and synthesize large amounts of data from recent scientific papers, research
studies, and other data sources to identify biological targets and elucidate disease correlations. By enhancing transcriptomic,
proteomic, and other data sources from healthy individuals and those with a particular condition of interest, a significant
opportunity to influence biological target selection is given by the datasets that usually involve complexity and originate from
a variety of sources them excellent for use with AI/ML approaches.'”” To provide reliable, potential structure and function of
biological targets and predict their involvement in a disease pathway, AI/ML can help mine and assess these huge multi-omics
and other datasets, drawing on existing validated data.''*'”® Although the early target discovery and prioritization stage is
vital where AI/ML could improve the efficacy and efficiency of drug development, it is necessary to confirm the biological
target’s involvement in the pertinent disease through further studies.'”” Only when AI/ML tools are combined with such
applications can be made quickly evolving databases can such applications be made.

Compound Screening and Design
To uncover possible therapeutic candidates that affect the function of the indicated biological targets of interest, substantial in
silico or experimental screening of chemical libraries is required to improve the specificity and selectivity of a chemical for the
biological target. Potential AI/ML uses for compound screening include predicting compounds’ chemical properties,
bioactivity, effectiveness, and land effects based on their specificity and affinity for a target. '7%'°

To forecast the toxicity of a chemical based on its recognized properties, AI/ML can detect drug-target interactions and
provide predictions about classes of drugs that may interact with the same targets or have a similar mechanism of action. By
leveraging previously described molecules, this technique further directs drug repurposing. The greater accessibility to pertinent
real-world data (RWD) from many sources, such as electronic health records (EHRs, registries, and DHTS), is highly beneficial
for drug repurposing initiatives using AI/ML to find previously unrecognized impacts of drugs on disease pathways.'*!

Finally, de novo drug design is also advancing because AI/ML may be used,'* for example, to assist in predicting the
3D structure of target proteins to direct chemical production and the total impact of a drug candidate on the target,
including predicting affinity and probable toxicity.''*'”*"'®> When using AI/ML to predict potential structures, one must
employ caution because many proteins made for pharmaceutical purposes are codon-optimized (with several synon-

ymous mutations included). The effects of these codon optimizations on protein structure are still poorly understood.

Structure Prediction

The first protein structure prediction algorithm was reported in the late 1960s, yet protein structure prediction has long
remained a paradox for longer. Levinthal’s dilemma was put forth in a seminal study by Cyrus Levinthal in 1969 titled
“How to Fold Graciously” in Science.'® The paradox demonstrated the enormous range of potential conformations
a protein might adopt, indicating that it would be unrealistic to sample all potential conformations and determine the
native structure of the protein by random search. Even though Levinthal did not suggest a precise algorithm to predict
protein structures, his study generated considerable interest and served as a springboard for further investigation.
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Numerous strategies and methods have been created to address the protein folding issue and forecast protein structures.
These include approaches using machine learning techniques, potentials based on knowledge, and simulations based on
physics. The creation of the first successful protein folding algorithm, named “DREIDING”, by Richard Corey and Irving
Kuntz in 1974, represents a significant turning point in the history of protein structure prediction algorithms. DREIDING
predicted the folding of tiny proteins using a distance geometry technique.'®

The following steps were homology modeling,'®® ad initio folding,'®” energy minimization, molecular dynamics

simulations,'**'% fragment assembly,'**'*"

machine learning, and deep learning. Since then, many methods have
emerged to investigate the conformational space and find the natural state of proteins that is energetically advantageous.

However, the AlphaFold 2 (AF2) report,'® which won the 14th Critical Assessment of Protein Structure Prediction
(CASP14) with predictability, sparked a lot of interest and gave rise to the idea that we might now be able to tackle
problems with protein structure folding that go beyond simple structure prediction from a sequence. The performance of

1927194 therefore, a pool of excellent 3D

3D-based predictors has been consistently superior to 1D-based predictors;
predicted structures could mark a significant shift in applications for understanding protein structure. The consequences
of mutations on protein stability and several protein interactions, such as protein-protein, protein-ligand, and protein-
DNA/RNA, were also expected to be predicted by these algorithms. As a result, developers have continued to discover
applications of predicted 3D structures,'®> enabling assessment of the stability and function of a mutation associated with
many diseases.'”® After all, if there is a reported confidence score in the predicted structure, it must somehow be related
to the structure; it was assumed, despite the disclaimer by AF2, that it “has not been validated for predicting the effect of
mutations”."”” While AI/ML was anticipated to yield a paradigm shift to overcome the Levinthal paradox, it seems that

the paradox stays. The current algorithms can regurgitate on reported structures, with added errors, nothing more.

Comparison of Modeling Methods Between Small and Large Molecules
The comparison showcases specialized techniques and methodologies applied to small and large molecules. It under-
scores the complexity of extensive molecule modeling, often requiring multi-scale approaches and integration with other
biological disciplines. The cited literature provides the basis for these insights and differences.

Table 4 lists a comparative analysis of the most common modeling approaches used in small and large molecule
discovery. The table summarizes the similarities and differences between the methods and challenges in small and large-
molecule drug discovery. It also includes references to specific citations for each aspect.

Table 4 Comparison of applications of modeling methods in small molecules and large molecules

Aspect Small Molecules Large Molecules

Ligand Efficiency

Focuses on binding modes and ligand

efﬁciency|98

Specialized modeling for complex structures like

protein-protein interfaces.'”?

Scalability & Complexity

Less complex, allowing for exhaustive

computational methods>%°

Requires specialized techniques due to higher

complexityzo'

Fragment-Based Drug Design

Focus on stepwise assembly of small
fragments®®?

It needs to be integrated with other methods for

large targets®®®

Computational Requirements

Generally requires fewer computational

resource52°4

Requires substantial computational power and

specialized software?®®

Flexibility Analysis

Analysis of small molecule adaptability within

binding pockets?%

Focus on conformational changes in large biological

contexts?®’

High-Throughput Screening

A common method for quickly assessing the

. 208
activity of small molecules

More complex due to larger structural variability'“®

(Continued)
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Table 4 (Continued).

Aspect Small Molecules Large Molecules

Machine Learning & Al Used for predictive modeling, virtual Requires more sophisticated algorithms for large
screening, and QSAR''* molecule interactions'>’

Structure-Activity Relationship The key to optimizing small molecule leads®®® | More intricate analysis focusing on domains or

epitopes2|0

Molecular Dynamics Simulations Studies binding mechanisms and predicts free | Crucial for understanding folding, conformational
energy Iandscapes2II changes, and large-scale motions>'2

Experimental Integration Complemented with in vitro assays to validate | Requires integration with high-resolution methods
predictions2|3 like cryo-EM or X-ray crystallography®'*

Quantum Mechanics (QM) Used for detailed electronic structure analysis | Often integrated with Molecular Mechanics (MM) for

Methods®'® large systems (QM/MM)

Pharmacophore Modeling®'® Identification of essential features for Used for mapping interaction sites within large
biological activity complex structures

Cheminformatics®'” Extensive use for managing chemical Used for large compound libraries, handling
information, similarity searching, clustering biological sequences

Virtual Screening?'® Utilized for identifying potential hits from Applied for identifying lead candidates in large
chemical libraries molecular libraries

Bioinformatics Integration®'’ Interconnected with genomics and Essential for understanding large molecule
proteomics for target identification interaction networks

Free Energy Calculations?® Used for predicting binding affinities, often Requires advanced methodologies due to the
with simplified models complexity of large molecules

Antibody Modeling??' Less relevant for small molecules Specialized methods for modeling antibody-antigen

interactions

Docking & Simulation'*’ Essential in predicting how small molecules Highly complex and requires refined algorithms for
bind to their targets large-molecule docking

Multi-Scale Modeling'®’ Used in context with multiple scales (eg, QM/ | Essential to capture different levels of structural
MM) detail in large molecules

Nonclinical Investigation
Nonclinical research is intended to advance novel drugs for further human clinical study. It includes in vitro and in vivo
experiments. Nonclinical studies that promote the development of new drugs can be carried out at any stage of the
development process, including before clinical trials, concurrently with those trials, and even in post-marketing settings.
Data from animal-based pharmacokinetic, pharmacodynamic, and toxicologic studies, exploratory in vitro and in vivo
mechanistic studies, organ-on-chip and multi-organ chip systems, and cell assay platforms may be used to evaluate
toxicity, explore mechanical models, and develop in vivo predictive models.?** %2

Pharmacokinetics (PK) studies show drugs are absorbed, distributed, metabolized, and excreted over time.
Pharmacodynamics (PD) investigates how drugs affect the body biologically. A model incorporating PK and PD can
forecast how a drug’s effects will change depending on dosage or dosing regimen. Drug development has long employed
pharmacokinetic/pharmacodynamic (PK/PD) modeling, which can be used in nonclinical and clinical stages.”?’ Along
with improvements in computational tools and technology and the availability of modeling platforms, the use of
physiologically-based pharmacokinetic (PBPK) and physiologically-based PK/PD (PBPK-PD) modeling is growing.***
Other applications use more cutting-edge AI/ML techniques for PK/PD modeling, including tree-based and artificial
neural network models. For instance, in excessively complex PK/PD data analysis, a recurrent neural network, a machine
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learning (ML) approach widely used for time series data analysis, may be used with traditional PK/PD models, perhaps
increasing accuracy for nonclinical and clinical applications.**’

In addition to the FDA’s studies on AI/ML, the Agency recently released a pivotal guideline. “Generally Accepted
Scientific Knowledge (GASK) in Applications for Drug and Biological Products: Nonclinical Information”,*° In two
scenarios, sponsors can rely on GASK to satisfy applicable approval requirements: (1) One can depend on GASK on
a substance’s known effects on bi when a product contains one (whether synthetically created or organically derived). For
instance, a drug may occasionally have either on- or off-target effects on a biological pathway or molecular mechanism
of action known to have harmful effects at clinically significant quantities depending on how the biological system
functions. Therefore, it may be preferable to rely on GASK regarding the influence of the pathway rather than doing
specific pharmacological and toxicological tests to determine the impact of the path. Therapeutic proteins bind to
receptors, triggering a pharmacodynamic response that results in the pharmacological response, the basis of which is
the clinical response. The FDA’s progressive thinking has resulted in more logical approaches to drug development.
However, optimal use of the GASK will need AI/ML applications since finding what is “scientific”’ and what is
“knowledge” requires extensive data analysis.

Clinical Studies
The FDA encourages cutting-edge clinical trial designs based on RWD analytics and digital health data (DHT). The FDA

1,! there will be

has noticed a sharp increase in regulatory filings mentioning the. Use of AI/ML in recent years. In 202
more than 100 submissions across all pharmacological and biological product categories, including those involving Al/
ML. These submissions span various stages of the drug development process and include the uses of AI/ML in a range of
therapeutic areas, from the creation of new drugs and the enhancement of clinical trials through the assessment of
endpoints and post-market safety monitoring.

In summary, integrating Al and ML into clinical trials is a multifaceted approach that continues to revolutionize
various aspects of clinical research. From patient recruitment to real-time adaptation, predictive modeling, and ensuring
ethical conduct, these technologies offer a comprehensive set of tools to make the development of new medical
interventions faster, more efficient, and patient-centric. They provide the opportunity to bridge the gap between
traditional methods and modern needs, creating a more streamlined and responsive approach to medical research and
healthcare innovation.

Clinical development in research phases continues to be the significant and most frequent application of AI/ML.
Clinical research often entails a progression of clinical trial phases involving increasing numbers of human volunteers to
evaluate a drug’s efficacy and safety, with significant help from AI/ML. For instance, AI/ML assists in analyzing
substantial volumes of data from both interventional and non-interventional trials to conclude the efficacy and safety of
a treatment. AI/ML may also impact the layout and efficiency of non-traditional trials, such as decentralized clinical trials
and studies using RWD obtained from electronic health records (EHRs), medical claims, or other data sources. The
analysis and interpretation of data obtained from DHTs used in clinical research are also aided by AI/ML. Finally, AI/ML
enhances the efficiency of trials.

Trial Design

Natural Language Processing (NLP) techniques assist in rapidly mining information from medical literature, clinical
notes, and other textual data, thus expediting the design and conceptualization of trials.”** Predictive analytics using Al
models can predict patient responses to treatment. This helps in designing more effective and personalized treatment
strategies.”>> Al also enables adaptive trial designs where ongoing results may influence the course of the trial, such as
modifying dosages or allocating more patients to more promising treatment arms.

AI/ML gathers data from previous clinical trials to assist in designing new clinical trials through a combination of
techniques, including data mining, predictive modeling, natural language processing (NLP), and machine learning
algorithms. These examples illustrate the multifaceted ways in which AI/ML can leverage data from previous clinical
trials to support the design of new ones.
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e Data Mining from Existing Repositories and Databases: Al can mine data from previous clinical trials stored in
various databases, such as ClinicalTrials.gov, to analyze trends, outcomes, and patient characteristics.>**

e Natural Language Processing for Information Extraction: NLP can extract relevant information from unstructured
clinical documents, publications, and trial protocols to inform the design of new trials.**

e Predictive Modeling for Identifying Success Factors: Machine learning models can analyze previous clinical trial
data to identify factors contributing to success or failure, assisting in designing new, optimized trials.>*®

¢ Integrating Real-World Evidence (RWE): Al can integrate and analyze real-world and clinical trial data to
comprehensively understand patient populations and treatment effects.'®*

e Adaptive Trial Design Using Reinforcement Learning: Reinforcement learning algorithms can dynamically adapt
trial designs based on interim results and other data, potentially improving efficiency.?’

e Utilizing Public Databases for Biomarker Discovery: Machine learning models can analyze public genomic

databases to discover new biomarkers that can be targeted in clinical trials.>*®

Recruitment
AI/ML helps match people with clinical trials for experimental treatments where participants may benefit from these
trials.”* AI/ML mines vast data to compare patients to trials, including clinical trial databases, trial announcements,
social media, medical literature, registries, and structured and unstructured data in EHRs. Even though these algorithms
are trained on massive amounts of patient data and enrollment criteria from prior trials, it is crucial to ensure adequate
representation of populations that are likely to use the drug (eg, gender, race, and ethnicity) as matching algorithms are
created and, when used, to confirm that equitable inclusion was achieved during the recruitment process. If properly
vetted, these technologies might play a more significant part in connecting people with experimental treatments in the
future.

Al algorithms can analyze vast amounts of patient data to identify the best candidates for clinical trials more quickly
and accurately. This helps to reduce the time spent on the recruitment phase.**

Trial Participants’ Selection and Stratification

In clinical studies intended to show the efficacy of drugs, enrichment strategies can help with participant selection based
on baseline information, eg, demographic data, clinical data, vital signs, labs, medical imaging data, and genomic
data.>%**""2** AI/ML has made predicting a participant’s clinical outcome possible. These prediction models can
improve clinical trials by identifying participants at high risk or more likely to respond to the treatment. Using these
AI/ML algorithms for patient screening and selection before randomization may reduce variability and increase study
power.**

For example, if an AI/ML model could predict the likelihood of a severe adverse event before administering an
investigational treatment, participants could be divided into different groups and subsequently monitored (or excluded
depending on the predicted severity of the adverse event). Such predictive models can also be used for participant
stratification and enrichment strategies.

Al can match patients with suitable clinical trials by analyzing their medical records and conditions. This not only
expedites recruitment but ensures the most relevant candidates are chosen.?*® AI can be used to ensure that clinical trials
are conducted cthically and that the patient population is diverse and representative, thus improving the fairness and
inclusivity of trials.?*’

Al-powered sentiment analysis can understand patient feedback, enhance patient experience, and ensure patient

voices are considered during clinical trial phases.>*®

Optimization of the Dose/Dosing Regimen

After administering a drug, PK profiles can be described and predicted using AI/ML. It can also examine confounding
factors when examining the relationship between drug exposure and response.”>**** The ideal dose and dosing regimen
for a study can be chosen using these models. This can involve assisting with dose optimization in particular populations
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where data may be scarce, such as those with rare diseases, children, and pregnant women. AI/ML can be used to design
optimal trial protocols, reducing potential errors, inconsistencies, and inefficiencies in the clinical trial process.?>°

Adherence
AI/ML can be used to monitor and improve adherence during a clinical study with tools like smartphone notifications and

reminders, eTracking of drugs (eg, intelligent pillboxes and tools for visual confirmation),>"

and eTracking of missing
clinical sessions, which generates non-adherence alerts. Examples of how AI/ML is used in clinical research to improve
drug adherence include applications that use digital biomarkers, such as facial and vocal expressivity, to monitor drug
adherence remotely. Machine learning algorithms can monitor patient data in real time, allowing early detection of
adverse effects and ensuring patient safety. This real-time monitoring helps in quickly adapting the trial processes.”>* Al-
driven wearables and sensors can enable continuous remote monitoring of patient health. This data feeds into real-time

algorithms that can adapt trials, ensuring safety and efficacy.>>**>*

Retention

AI/ML can improve participants’ access to important trial information by enabling features like Al chatbots, voice help,
and intelligent search. AI/ML can minimize the strain on participants by adopting passive data collection techniques and
extracting more information from the data already collected during clinical practice or study activities.'’® Data from
DHTs and other systems can be used to construct patient profiles that can be used to predict participant retention, adverse
events, and dropout rates.

Site Choice

Operational trial conduct could be enhanced by utilizing AI/ML to identify which sites have the best chances of
a successful trial and to help sites identify process deficiencies. For instance, algorithms can evaluate site performance
and help identify which sites may be more likely to run behind schedule using data from prior trials at a site. AI/ML can
significantly reduce costs and time by automating various aspects of the clinical trial process. This efficiency may enable

more trials to be run simultaneously.'®

Data Gathering
Clinical trials increasingly utilize DHTs, including wireless and smartphone-connected gadgets, wearables, implantable,
and ingestible, to gather objective, quantitative, longitudinal, and continuous physiological data.>>> Furthermore, a lot of
these DHTs support the use of AI/ML, either as embedded algorithms within the DHT or applied to the data generated
after the DHT’s data are collected, and have been used to predict the status of a chronic disease and its prognosis for
treatment™® or to identify novel traits of an underlying condition. The vast and varied data created from continuously
watching patients using these technologies can only be analyzed using AI/ML. This might involve utilizing AI/ML to
evaluate multimodal data and composite measures incorporating distinct measurements gathered through various
DHTs.*”’

Deep learning algorithms can analyze medical imaging data such as MRI and CT scans more accurately and quickly

than traditional methods, providing critical insights into patient response to treatments.**

Data Management

AI/ML can perform several data cleaning and curation activities, including locating duplicate participants, imputing
values for missing data,>>” and standardizing regulated terminology throughout drug development projects. AI/ML could
significantly enhance data integration efforts by using supervised and unsupervised learning to support integrating data
submitted in various forms and carrying out data quality assessments. AI/ML can also be utilized for data curation by
creating metadata, masking and de-identifying personally identifiable information, and searching and retrieving stored
data. These programs might increase the accuracy of the data and the efficiency with which the data are processed for
analysis.
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Analysis of Data
AI/ML has analyzed large volumes of complex and variable RWD from various sources, including sickness registries,
medical claims, and EHRs. Predictive modeling and counterfactual simulation utilizing AI/ML are also used to study
clinical trial designs. For instance, computer simulation and modeling are used in silico clinical trials to evaluate drug
candidates using a virtual cohort of simulated people with traits representing the desired participant population.**® In
these circumstances, AI/ML could help estimate counterfactual simulations and forecast trial results before human trials.
Digital twins of patients, a new technique that may be employed in clinical research, are another way that AI/ML can
be applied more individually. To create digital twins of patients, AI/ML can create in silico representations or duplicates
of people that can dynamically reflect molecular and physiological status across time.?*' %> Compared to a clinical trial
participant who received an innovative treatment, the digital twin may provide a thorough, longitudinal, and computa-
tionally generated clinical record that details what may have happened to that subject if they had received a placebo.
Automated systems powered by Al can handle the vast paperwork involved in clinical trials, ensuring regulatory
compliance and thus speeding up administrative tasks.”**
Machine learning algorithms can efficiently analyze large and complex clinical datasets. By automating data

processing and analysis, AI/ML helps draw quicker insights and aids decision-making.?®®

Evaluation of Clinical Endpoints

The clinical endpoint is critical to evaluating the efficacy and safety of medical treatments in clinical trials. A potential
safety signal might be identified using groupings of symptoms and indicators by AI/ML-enabled algorithms, which could
also help with the real-time detection of situations posing a safety risk.2*®**” AI/ML could help evaluate clinical trial
outcomes gathered from many sources (such as DHTs and social media), especially those with enormous amounts of data
for which manual assessment might be impossible.

Algorlthms for AI/ML Application in Clinical Trials
e IBM Watson Health: Offers various Al-powered healthcare solutions, including patient engagement, medical
imaging, and clinical trial management. https://www.ibm.com/watson-health

¢ Siemens Healthineers: Provides Al-based medical imaging solutions, including deep learning applications.
https://www.siemens-healthineers.com/en-us

e Flatiron Health: Offers platforms that use Al and machine learning for oncology research and patient matching in
clinical trials. https://flatiron.com

e Deep 6 Al Specializes in patient recruitment for clinical trials using Al and natural language processing. https://deep6.a
e Tempus Labs: Utilizes machine learning to provide personalized cancer care, genomic sequencing, and other data-
driven healthcare solutions. https://www.tempus.com

e Medidata Solutions: Offers Al-powered solutions for clinical trial design, patient recruitment, and data manage-
ment. https://www.medidata.com

e Google Health: Works on applying Al to healthcare problems, including predictive modeling, medical imaging, and
disease detection. https://health.google

¢ GE Healthcare: Provides various Al-driven medical imaging and monitoring solutions. https://www.gehealthcare.com

e Bayer’s Al-driven Drug Discovery Platform: Collaborates with Al technology companies like Exscientia to
accelerate drug discovery using Al algorithms. https://www.bayer.com

e Owkin: Focuses on developing machine learning algorithms for medical research, including predictive modeling
and treatment analysis. https://www.owkin.com/

e Philips: Offers Al-driven solutions for diagnostics, patient monitoring, and healthcare informatics. https://www.usa.
philips.com/healthcare/solutions/ai-in-healthcare

¢ NVIDIA Clara™: Provides Al-powered medical imaging and genomics capabilities, supporting the development of
Al algorithms in diagnostics and treatment planning. https://developer.nvidia.com/clara

e Quartic.ai: Offers Al-powered pharmaceutical manufacturing and research solutions, including drug discovery and
development analytics. https://quartic.ai/
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e Roche’s NAVIFY Decision Support: Uses Al algorithms to enhance clinical decision-making through its portfolio,
including tools for tumor board solutions and trial matching. https://diagnostics.roche.com/

e GNS Healthcare: Employs machine learning for drug discovery and development, helping to create precision
medicines and optimize clinical trials. https://www.gnshealthcare.com/

e DataRobot: Provides enterprise Al solutions that can be applied to healthcare for predictive modeling, risk
stratification, and other data-driven insights. https://www.datarobot.com/

e BlackThorn Therapeutics: Uses a data-driven approach to neurobehavioral health, leveraging Al and machine
learning for patient selection and clinical trial design. https://www.blackthornrx.com/

e CureMetrix: Provides Al-driven mammography solutions, which can be utilized in clinical trials related to breast
cancer screening and diagnosis. https://curemetrix.com/

e Bioclinica: Offers specialized technology and services for clinical trials, including medical imaging, patient
recruitment, and risk-based monitoring using Al. https://www.bioclinica.com/

e CloudMedx: Utilizes Al to generate real-time insights across the healthcare continuum, including predictive risk
models that can be applied to clinical trials. https://www.cloudmedxhealth.com/

e TriNetX: Offers a global health research network that uses AI to enhance clinical trial design and patient
recruitment. https://www.trinetx.com/

e Zebra Medical Vision: Specializes in reading medical imaging, providing Al solutions that may be useful for
radiological assessments in clinical trials. https://www.zebra-med.com/

e Insilico Medicine: Utilizes Al for drug discovery and aging research, offering solutions for target identification and
biomarker development. https://insilico.com/

Post-Marketing Safety Monitoring
In the post-approval period, post-marketing safety reporting of adverse events related to drug utilization is part of post-
marketing safety monitoring or pharmacovigilance (PV) activities. The research and practices involved in identifying,
evaluating, comprehending, and preventing adverse events or other drug-related difficulties (such as drug errors and
product quality concerns) are known as pharmacovigilance (PV). Adverse occurrences after a product’s launch are
reported to the FDA using an individual case safety report (ICSR). It is a crucial source of information about potential
drug safety risks for monitoring post-market safety. A patient’s medical history, clinical course, and result can all be
included in the clinical lead in ICSRs, as well as any questionable items or products and temporal data relating to product
usage and the incidence of adverse events. Complete and accurate reporting of ICSRs is crucial to understanding a drug’s
safety profile.”®

Al in pharmacovigilance helps in the early detection and reporting of adverse drug reactions, contributing to patient
safety during clinical trials.?®’
The FDA is looking into AI/ML applications to assist regulatory bodies in processing and evaluating ICSR

submissions, anticipating a tremendous increase in the ICSR reported.

Processing of Cases
There may be opportunities to automate the ISCR processing process using AI/ML. There are many complex data
sources on adverse events for ICSRs, including spontaneous reports, clinical trials, EHRs, social media, phone calls,
emails, patient registries, claims data, and post-approval safety studies. Identifying negative occurrences for ICSR
submission could be aided by using AI/ML to extract information from source documents. For instance, utilizing Al/
ML to filter social media for adverse events and find and assess drug event connections from literature has been
investigated.®”*702"2

After determining an adverse event from a data source, AI/ML could be used for case validity, prioritization,
duplicate check, coding, and quality control. AI/ML can assist in determining whether a case is authentic if it satisfies
the minimal reporting requirements, such as having an identifiable patient, a suspect drug or biological product, adverse
event(s), and an identifiable reporter.?’>*’* To aid in prioritizing cases, AI/ML has been used to classify adverse events
by expectedness (if an adverse event is known and on the product labeling).”’> Automated duplicate checks leveraging
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AI/ML are being carried out to determine whether the issue is an accurate duplicate, a follow-up version of an earlier
case, or a new case. Another area where AI/ML has been employed is to code adverse events from ICSRs to structured
medical vocabulary phrases for quality control.

Case Analysis

Cases of adverse events are evaluated clinically. The case review procedure includes determining the possibility of
a causal connection between a drug and an adverse event and the case’s outcome.>’® Based on relevant variables used in
causality assessments, an Al model was developed, validated, and tested to classify patients according to the likelihood
that a causal association between drugs and adverse events occurs. The gravity of the results of ICSRs has also been
assessed using AI/ML, supporting case evaluation, and the timely filing of individual cases that call for expedited
reporting.*®’

Submission of a Case

The filing of ICSRs is generally the last action after case processing. To send ICSRs to the FDA, reporting rules have
been automated using AI/ML algorithms. It is necessary to report ICSRs both individually and collectively.?’® Gathering
safety information for a product and submitting it according to the required schedule regularly is the bulk reporting of
adverse occurrences. For reporting reasons, aggregate reports incorporating numerous adverse events for items that

happen over time can be created using AI/ML.>”’

Modern Manufacturing

The methods, conditions, and controls employed in the manufacture, processing, packaging, and storage of a drug are
essential elements of drug development because they help to ensure that the drug satisfies requirements for quality, purity,
and identity as well as safety and effectiveness standards. Applications for advanced analytics leveraging AI/ML in the
pharmaceutical manufacturing sector include but are not limited to improving process control, increasing equipment
reliability and throughput, monitoring for early warning signs or signals that the manufacturing process is out of control,
identifying recurrent problem clusters, and preventing batch losses.

A novel pharmaceutical manufacturing technique or strategy that has the potential to increase the supply chain’s
resilience, as well as the process’s robustness and dependability, is referred to as “advanced manufacturing.” Advanced
manufacturing might incorporate cutting-edge technical solutions, creatively employ tried-and-true procedures, or utilize
production processes in an uncharted field. It applies to both new and already available large and small-molecule
pharmaceutical drugs.

With the Emerging Technology Program (ETP)*"®

which the FDA started promoting in 2014, sophisticated
manufacturing technologies have quickly emerged. To promote prompt technological adoption, adjustments in regulatory
rules were also necessary. The FDA uses its risk-based regulatory framework for artificial intelligence (AI) technologies
in drug manufacturing, including both chemical and biological drugs. This could entail looking at the use of Al in
bioinformatics pipelines as a step in upstream manufacturing to create and select candidates for complex biological
products utilized in precision medicine, such as cancer vaccines, cellular therapies, and gene therapies. Stakeholder input
on this issue is something we are interested in hearing.

AI/ML could forecast product demand, examine production schedules, and estimate and mitigate the industrial supply
chain’s reliability risks.

Artificial intelligence (AI) has several potential uses in the pharmaceutical industry, including but not limited to
process design and control optimization, intelligent monitoring and maintenance, and trend tracking for continuous
development. Al for pharmaceutical manufacture can be used with other sophisticated manufacturing technologies to
obtain desired results. The implementation of an Industry 4.0 paradigm, which might lead to a tightly managed, highly
connected, digitalized ecosystem and pharmaceutical value chain for the producer, is made possible by Al
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Design of the Process and Scale-Up

By leveraging process development data to construct Al models like machine learning, it is possible to find the best
processing parameters and scale up processes more quickly, cutting down on waste and development time. Process
design optimization can use digital twins,?’® digital representations of actual processes used to assess, predict, and
improve performance. The digital twin may be helpful when analyzing manufacturing processes with little development
data. AI/ML models may then use prior product and process knowledge (from, for instance, studies, programs, and
scientific literature) to identify the best processing parameters more quickly, reducing design time and waste.

APC (Advanced Process Control)

APC enables manufacturing process dynamic control to produce the required result. Al techniques can also create
process controls that can foresee a process unfolding by combining Al with in-The-moment sensor data. APC methods,
which combine an understanding of the underlying chemical, physical, and biological transformations occurring in the
production process with Al techniques, have been used by several pharmaceutical producers in the past. Conventional
process controls maintain the input process parameters’ constants. They cannot concurrently change several input
parameters to keep the process output parameters at the correct levels.

On the other hand, advanced APC permits dynamic control of the process to achieve the desired outcome.”®® Like
neural networks, APC can be implemented using AI/ML, with real-time process data as inputs. By combining real-time
sensor data with AI/ML tools, these techniques can also be used to create process controls that can predict whether
a process operates within a state of control, such as in conjunction with smart production line monitoring to boost
current manufacturing line output and efficiency. It is anticipated that APC methods, which combine physical and
chemical knowledge with AI/ML approaches, will soon be employed more frequently. Several pharmaceutical
manufacturers have already reported using APC methods. High-quality model inputs influence these APC applications’
structure and process comprehension. These reliable inputs enable the generation of model parameters when used in
conjunction with data-driven modeling.”®' These models increase model resilience while utilizing the data needed for
model development.

Process Observation and Fault Finding

Al techniques can monitor equipment and identify deviations from the norm that demand maintenance, cutting down on
process downtime. For instance, Al-based software is used in vision-based quality control to scan images of packaging,
labels, or glass vials to find deviations from the standards of a product’s specified quality feature. AI methods can be
applied to monitor product quality, including packaging quality. Without sacrificing the quality of the final product,
automation and real-time monitoring of manufacturing processes can lead to more efficient inventory control, shorter
lead times, and higher production output. By monitoring equipment and detecting irregularities in performance, AI/ML
algorithms can suggest maintenance processes and reduce process downtime. Another example is computer vision-based
quality control, which uses photographs (such as images of labels, packaging, or glass vials) that are inspected by Al/
ML-based software to spot discrepancies and guarantee that pictures correspond to specifications for a given quality
attribute of a product.

Trend Recognition

To highlight areas for ongoing improvement, Al can be used to analyze deviation reports and consumer complaints that
contain enormous amounts of text. To provide a more thorough root cause analysis, this identifies trends in manufactur-
ing-related aberrations. Manufacturing operations can be proactively monitored for trends using Al approaches and KPIs
for process performance and capabilities. These techniques can also forecast the points at which effectiveness assess-
ments of corrective and preventive actions will be triggered. AI/ML can enhance manufacturing, including increased
output, decreased waste, better-informed decisions, and improved quality control. Analysis of process irregularities is
primarily the responsibility of quality professionals and applicable subject matter experts. When examining deviation
reports containing enormous amounts of data or text, AI/ML could help identify manufacturing-related deviation
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patterns, cluster trouble regions, and highlight areas for continuous proactive development. This makes root causes more
straightforward to identify because the human evaluation of deviation patterns can be time-consuming. AI/ML
approaches can predict thresholds for starting CAPA effectiveness evaluations and proactively monitor manufacturing
operations for trends and out-of-control situations. These indicators include process performance (Ppk) and process
capability (Cpk) indicators.

Industry 4.0

AI/ML can be used with other cutting-edge manufacturing technologies (such as process analytical technology and
continuous manufacturing) to achieve the desired results. AI/ML can be used to implement Industry 4.0. This phrase
describes the fourth industrial revolution, which combines rapidly evolving technology and may provide a well-
controlled, hyper-connected, and digitalized pharmaceutical value chain for the producer.”®* “Industry 4.0” refers to
the fourth industrial revolution, which combines several rapidly evolving technologies to modify the manufacturing
environment profoundly. Integrated, autonomous, and self-organizing production systems define Industry 4.0.2%% The
National Academies of Sciences, Engineering, and Medicine recognized advancements in integrated pharmaceutical
manufacturing processes in a report from 2021 titled Innovation in Pharmaceutical Manufacturing on the Horizon
Technical Challenge, Regulatory Issues, and Recommendations. Since these developments require measurement, model-
ing, and control technology, Al can significantly contribute to them.

8.1 5.6 Real-Time Improvement

Al can control industrial processes in APC applications by altering process parameters in response to real-time data.
Aside from supporting analytical procedures for in-process or final product testing, Al models can provide real-time
release testing, forecast in-progress product quality attributes, and support in-process or final product testing. Few
industry standards and FDA recommendations are available for the development and validation of models that affect
the quality of the products, which may make it difficult to prove the validity of a model in a particular application.

Verification and Validation (V&V 40)

American Society of Mechanical Engineers (ASME) (American Society of Mechanical Engineers, 2018) is the organiza-
tion that first created this method for assessing the reliability of computational models used in medical devices. Later, it
was utilized in the modeling process used to create drugs.”®*> Given that AI/ML is also used for computational models,
the V&V 40 framework may reveal information on how trustworthy the AI/ML model is for drug development.”®* The
V&V 40 Standard has been altered for medical devices and model-informed drug development. It is not AI/ML-specific
and does not specify activities or establish criteria required to demonstrate model credibility for a specific context of
usage or application.”®**®* In addition to the V&V 40 Standard for determining the prognosticative power of computa-
tional models for medical devices, the FDA, Health Canada, and the Drugs and Healthcare Products Regulatory Agency
(MHRA) of the United Kingdom jointly published ten guiding principles to direct the development of Good Machine
Learning Practices (GMLP) for medical devices that use AI/ML.?*® Some guiding principles include using a complete
product life cycle approach, leveraging various information during product development, and thoroughly understanding
how the model is integrated into the clinical workflow. The framework suggested a predetermined change control plan
mechanism to set the stage for AI/ML-enabled devices with improved adaptability. This mechanism would enable
a sponsor to proactively specify intended modifications to devise software incorporating AI/ML and the procedures used
to ensure their safety and efficacy.

Regulatory Conformity

A growing amount of information and a clear understanding of the advantages and disadvantages of using AI/ML in drug
development support the FDA’s consideration of strategies to give regulatory clarity surrounding this practice. The use of
AI/ML in drug development may present unique issues that could draw attention to other considerations, even while
some standards and methods may be modified to suit them. Considerations or important areas of practice for implement-
ing AI/ML in drug development can be aided by Al In addition to meeting current requirements to support regulatory
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decision-making regarding a drug’s safety and effectiveness, the use of AI/ML in drug development raises challenges
related to human-led AI/ML governance, accountability, and transparency; data considerations; and model development,
performance, monitoring, and validation. Through openness and documentation across the product life cycle, AI/ML can
make it easier to develop trust. Consideration of the pre-specification and documentation of the target or research
question, the usage context, risk, and AI/ML development may be essential. Regarding data quality, relevance, and
dependability, several issues about using AI/ML in the drug development are not particular.

Improvement of AI/ML Utility
To support Al innovation and adoption, the federal government and the international community have increased their
commitment (Executive Order No. 13859, Maintaining American Leadership in Artificial Intelligence, February 11,
2019;*” Exec. Order No. 13960,>%*2% Promoting the Use of Trustworthy Artificial Intelligence in the Federal
Government, December 3, 2020).>* This includes encouraging trustworthy and ethical Al

One of the ways the FDA has supported the development of creative and effective AI/ML is through the CDER Al
Steering Committee (AISC), which coordinates the work surrounding AI/ML utilization throughout therapeutic research.
Utilizing its commitment to advancing novel approaches and fostering collaborative efforts across the Agency, CDRH,

including the DHCOE, has offered consultations for drug submissions involving AI/ML*

and is currently developing
a framework for AI/ML-based devices, including predetermined change control plans for devices incorporating AI/ML,
as well as a foundation for Good Machine Learning Practices for medical device development.”® To evaluate the
security and effectiveness of new AI/ML systems, the FDA has also financed regulatory science research on robustness,
user-centered transparency, and bias identification and management through external academic and clinical partnerships.
Additionally, the FDA has conducted several workshops and a Patient Engagement Advisory Committee (PEAC)
meeting on subjects relevant to DHT and AI/ML. 2°-2%2

The CDER-created Innovative Science and Technology Approaches for New Drugs (ISTAND) Pilot Program aims to
broaden the categories of drug development tools (DDTs) covered by DDT certification processes, including those that
employ DHTs. Applications of AI/ML could hasten the delivery of innovative drugs to patients by enhancing the data at
hand. Applications of AI/ML may represent new DDTs or aid in the interpretation and analysis of established DDTs
(such as clinical outcome evaluations or biomarkers).””> The FDA’s CDER and CBER have developed a MIDD Pilot
Program to simplify the development and application of exposure-based, biological, and statistical models derived from
nonclinical and clinical data sources.”’* In the context of MIDD, AI/ML could improve mechanistic or predictive safety
assessments, dose selection or calculations, and clinical trial simulations.

The FDA’s Sentinel Initiative is looking into AI/ML techniques to improve the current systems for post-market safety
surveillance. These systems include the Sentinel System”®> from CDER, the Biologics Effectiveness and Safety (BEST)
system”™® from CBER, and the National Evaluation System for Health Technology (NEST) initiatives from CDRH.*"’
The FDA outlined its goals for using connected claims and EHR data supported by sophisticated analytics in the five-
year Sentinel System strategic plan.’® The Sentinel System Innovation Center has proposed a four-pronged approach to
implementing this plan by incorporating emerging data science innovations and EHR data for medical product safety
surveillance. The four pillars of this approach are data infrastructure, feature engineering, causal inference, and detection
analytics.>® Examples of AI/ML applications in this strategy include natural language processing (NLP), automated
feature extraction from unstructured EHR clinical notes for computable phenotyping, and enhanced confounding
adjustment from EHR-based variables. The “Super Learner” algorithms, targeted maximum likelihood estimates, and
other advanced statistical and ML techniques are used in these methods.**°

Better data sources, approaches, strategies, resources, skills, and infrastructure are all part of CBER’s BEST system,
intended for surveillance and epidemiological research. This program endeavors to forecast or better understand adverse
outcomes related to utilizing biological products and other items that CBER regulates by applying AI/ML tools to
evaluate EHRs. The FDA’s perspective of using AI/ML techniques for creating valid data about product efficacy will
expand through these efforts.>"!

CDER is also considering using Al to enhance the evaluation of ICSRs submitted to the FDA Adverse Event

Reporting System (FAERS).**? With the aid of AI/ML, the Information Visualization Platform (InfoViP) was developed
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to recognize duplicate ICSRs, classify ICSRs based on the quality of the information they include, and produce timeline
representations of clinical events to aid in the analysis of reported adverse events.>*> >

AI/ML techniques have been investigated to automate the detection of adverse events in drug product labeling, which
will help safety reviewers prioritize ICSRs to facilitate the identification of unrecognized or unexpected safety
concerns.’*®*” Another Al-based technology that focuses on drug product labeling is the Computerized Labeling
Assessment technology (CLAT), which automates the analysis of labels and labeling (such as prescribing information,
carton, and container labeling). NLP and ML are also being researched to classify free-text narratives in FAERS ICSRs
into structured medical vocabulary drug error terms, improving the human evaluation of coding quality. Additionally,
through the FDA Quality Metrics Reporting Program,’®® CDER’s Emerging Technology Program, and CBER’s
Advanced Technologies Team (CATT) Program,’®® FDA engaged the industry and gathered crucial feedback on Al/
ML use cases in pharmaceutical manufacture.

309 {0 obtain extramural submissions that address

The FDA also uses methods like a Broad Agency Announcement
new regulatory and scientific goals. These proposals may use outside infrastructure and expertise to illuminate the
approaches to integrating and assessing AI/ML in drug development.

The Al model’s decisions are influenced by how reliable the underlying data is. Due to this, preventing unintentional
biases during model building and validation can be difficult. To speed up model building. Al programs can store
knowledge obtained while working on a particular use case and subsequently use it to construct a related use case.
Applications and manufacturers could be unsure how the potential for learning transfer from one Al model to another can
be considered during the model design and validation process. As Al techniques become more complex, it becomes more
difficult to describe how changes in model inputs affect model outputs. In these circumstances, applicants can have
trouble articulating standards that verify the model, uphold the model’s output’s explicability, and affect product quality.

To address these concerns and predict the future, the CDER, CBER, and CDRH at the FDA and DHCoE are looking
into human-led governance, accountability, and transparency, as well as model development, performance, monitoring,
and validation. They achieve this by modifying the General Accountability Office Al accountability framework’s general
concepts.”® In each of these groups, a risk-based approach is recommended.

Software as a Medical Device (SaMD)

The ability of AI/ML software to improve performance and learn from actual use and experience is a crucial benefit. The
power of AI/ML software to learn from real-world feedback (training) and improve its performance (adaptation) puts it in
a favorable position for software as a medical device (SaMD) and a fast-expanding field of study and development.
SaMD enabled by AI/ML can provide precise and practical software functionality that improves patient care standards.
Meetings for the Critical Path Innovation Meetings (CPIM),*'® ISTAND Pilot Program,*'' Emerging Technology
Program,*'? and Real-World Evidence Program®'? are other forums for exchanging ideas and discussing a suitable Al/
ML methodology or technology to improve drug development’s efficiency and quality. These programs are among other
significant projects.

Conclusions

The AI/ML models are now extensively used to expedite drug discovery; the FDA has taken proactive actions to ensure
that machine-made decisions are at least as robust and reliable as human analysis; in certain instances, AI/ML is now
used to enhance human decision-making ability. Dozens of regulations, guidelines, and White Papers have been
introduced to ensure that machine-driven decisions are continuously challenged.

Of the tremendous significance of AI/ML, the first is its ability to process extensive data that is impossible to achieve
otherwise. The entry of quantum computers is waiting to make these analyses more efficient. Second, data analysis in the
research and manufacturing to optimize the process and validate findings. An excellent example of how this aspect has
been the mainstream is the 21CFR Part 11°'*
unalterable. Third, AI/ML allows experimental design creation that can be the most creative application to avoid

compliance that ensures digital data storage remains accurate and

following traditional paths, despite their efficiency or inaccuracies. The design space includes statistical modeling that
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can help reduce the study size by calculation from large databases that would generally not be possible using human
inquiry alone.

The AI/ML applications will expand exponentially; while, in 2021, more than hundreds of FDA filings deployed Al/
ML tools, I anticipate most filings to engage these tools somehow; thus, scientists must receive proper training in using
these tools. The FDA and related agencies have published many guidelines, policies, and data handling suggestions that
require personnel trained to identify redundancies in implementing AI/ML at every stage of development and
manufacturing.

The role of AI/ML in manufacturing brings the traditional models to a different stage—advanced manufacturing that
has benefitted significantly from automation, machine learning, and decision-making in continuous process control. None
of these improvements were possible by human interaction alone.

While AI/ML enhance productivity, this will not impact the job market since humans will still be needed to create the
algorithms, supervise their operation, and finally judge their conclusions.

To introduce the many applications of AI/ML, the FDA is open to earlier meetings to discuss the nature and extent of
reliance on AI/ML in drug development or manufacturing. Developers should capitalize on these opportunities. It should
be noted that the FDA guidelines admit that they are learning too when these interactions arise; the goal is to make the
discovery more efficient, and thus more affordable; and manufacturing more reliable and efficient. All these plans will
help reduce the cost of drugs to patients, and that alone should be a sufficient reason to remove mindsets about AI/ML,
perhaps using another AI/ML model.

However, it all starts with assuring that the myths around AI/ML are curbed at the onset. The industry should trust the
FDA’s efforts to make drug discovery more productive, manufacturing more compliant, and clinical testing more ethical.
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