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Abstract: Gout is an inflammatory arthritis characterized by abrupt self-limiting attacks of 

inflammation caused by precipitation of monosodium urate crystals (MSU) in the joint. Recent 

studies suggest that orchestration of the MSU-induced inflammatory response is dependent on 

the proinflammatory cytokine IL-1β, underlined by promising results in early IL-1 inhibitor 

trials in gout patients. This IL-1-dependent innate inflammatory phenotype, which is observed 

in a number of diseases in addition to gout, is now understood to rely on the formation of the 

macromolecular NLRP3 inflammasome complex in response to the MSU ‘danger signal’. 

This review focuses on our current understanding of the NLRP3 inflammasome and its critical 

role in MSU-crystal induced inflammatory gout attacks. It also discusses the management of 

treatment-resistant acute and chronic tophaceous gout with IL-1 inhibitors; early clinical studies 

of rilonacept (IL-1 Trap), canakinumab (monoclonal anti-IL-1β antibody), and anakinra have 

all demonstrated treatment efficacy in such patients.
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Introduction
Gout is one of the oldest recognized afflictions in humans, with a documented history 

reaching back to the Egyptians in 2640 BC. Described by Hippocrates as the ‘arthritis 

of the rich’ due to its association with food and alcohol, gout is an inflammatory arthri-

tis caused by precipitation of monosodium urate (MSU) in articular joints and bursal 

tissues of individuals with hyperuricemia and is characterized by abrupt, self-limiting 

attacks of joint inflammation. Although MSU was identified in gout in the 1700s1 and 

shown to be the causative agent in 1899,2 the mechanisms by which MSU crystals 

trigger acute inflammation have only recently begun to be understood.

Proinflammatory cytokines undoubtedly have a critical role in orchestrating the 

inflammatory reaction to MSU crystals. Recent studies have implicated interleukin-1β 

(IL-1β) as a key regulatory proinflammatory cytokine in gout, promoting a neutro-

phil influx into the synovium and joint fluid that is the pathological hallmark of an 

acute inflammatory attack.3 Compelling evidence for IL-1β’s role in gout-associated 

pain and inflammation is provided by studies in both animals and man. In a murine 

gout model, inflammation following MSU injection into the mouse ankle joint was 

significantly reduced both in mice deficient for the IL-1 receptor and in wildtype 

mice treated with the IL-1 inhibitor IL1 Trap (rilonacept).4,5 In clinical studies, a 

rapid response was observed in patients with acute gouty arthritis following treat-

ment with a number of anti-IL-1 agents (IL-1RA [anakinra], IL-1Trap, and anti-IL-1β 

monoclonal antibody [canakinumab]) thereby reinforcing the argument for a pivotal 
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role for IL-1β in gout pathogenesis.6–8 It is currently unclear 

whether IL-1α is also involved in gout pathogenesis since 

early IL-1  inhibitors (anakinra and rilonacept) inhibit both 

members of the IL-1 family; however the rapid and sustained 

response of gout patients to canakinumab in a recent Phase II 

study9 suggests that IL-1β may be the more essential of the 

two IL-1 cytokines.

IL-1β is produced as an inactive pro-molecule by 

immune cells, including macrophages, monocytes, and 

dendritic cells, following immune stimulation and is then 

cleaved to its active, p17 form by caspase-1 (also termed 

IL-1-converting enzyme or ICE), itself existing as a pro-

form until the initiation of the innate immune response. The 

mechanism of caspase-1 and IL-1β activation  following 

MSU deposition has been the focus of a number of recent 

high profile studies and is now understood to involve the 

formation of macromolecular complexes termed ‘inflam-

masomes’. Since its discovery less than a decade ago, 

the NLRP3 inflammasome complex has been implicated 

as a key regulator of the innate inflammatory phenotype 

of several diseases, including gout and type 2 diabetes. 

In addition, mutations in NLRP3  inflammasome com-

ponents have been shown to be responsible for the dys-

regulated IL-1β production observed in a number of (auto)

inflammatory disorders, including Muckle–Wells syndrome 

(MWS),  familial cold autoinflammatory syndrome (FCAS), 

and chronic infantile neurologic, cutaneous, and articular 

 syndrome/neonatal onset multisystem inflammatory disease 

(CINCA/NOMID).

In this review we discuss the mechanisms and pathophysi-

ology of the inflammasome complex and, in particular, its 

role in mediating the innate immune inflammatory response 

to MSU crystal deposition in gout.

Structure and molecular  
mechanisms involved  
in inflammasome activation
The innate immune system is characterized by its ability to 

recognize and respond to an array of pathogens (including 

viruses, bacteria, and fungi) and to endogenous molecules 

released by host cells as a result of necrosis, infections, 

membrane,10 and lysosomal11,12 damage, injury, or certain 

pathological conditions (including mammalian dsDNA, 

extracellular ATP, and MSU crystals),13–16 through detection 

of pathogen-associated and danger-associated molecular 

patterns (PAMPS and DAMPs respectively). This response 

is mediated by germline-encoded receptors termed pattern-

recognition receptors (PRRs).

Among the PRR families that have been described to 

date include the Toll-like receptors (TLRs), which are 

associated with extracellular (TLRs 1, 2, 5, 6, and 10) 

or endosomal (TLRs 3, 7, 8, and 9) membranes and the 

intracellular RIG-like helicases (RLHs) and NOD-like 

receptors (NLRs). TLRs, of which there are 10 known in 

humans (TLR 1-10) and 12 in mice (TLR 1-9 and 11-13), 

are type 1 transmembrane proteins composed of three 

major domains and characterized by leucine-rich repeats 

(LRRs) in the ectodomain which mediate PAMP/DAMP 

recognition. TLRs are expressed on many cell types and 

are known to respond to a variety of PAMPs and DAMPs, 

including bacterial DNA,13 lipopolysaccharide (LPS),16 

peptidoglycan,17 teichoic acids,17 flagellin18 pilin,19,20 viral 

dsRNA,21 and fungal zymosan.22 Upon activation they 

differentially trigger signaling cascades that mediate 

production of the transcription factors NF-κβ, AP-1, and 

interferon-regulatory factor (IRF)-3, which, in turn, mediate 

transcription of proinflammatory cytokines, such as inter-

leukins, interferons, and TNF, that drive the inflammatory 

response. The TLRs have been the subject of extensive 

investigation and review over recent years and will therefore 

not be discussed in depth in this review. The two known 

RLHs, RIG-1 and MDA5, are viral RNA sensors which, 

upon stimulation, activate NF-κB and IRF3/7 leading to 

transcription of type I interferons.23

The intracellular NLRs, like TLRs, are capable of recog-

nizing both PAMPs and DAMPs, and have become a focal 

point for investigation of the immune response to foreign 

agonists and endogenous molecules. Known activators of 

the NLRs include bacterial muramyl dipeptide (MDP),24 

microbial toxins (such as alpha hemolysin of Staphylococcus 

aureus),25 RNA of bacterial and viral origin,26,27 MSU and 

calcium pyrophosphate dihydrate (CPPD) crystals,15 alum,28 

asbestos,29,30 silica,29,30 and extracellular ATP14 (Table 1). To 

date, at least 23 human and 34 murine NLR genes have been 

identified, although the physiological functions of many 

of these are still poorly understood.31 NLRs are character-

ized by three domains: a C-terminal LRR ‘sensor’ domain, 

a central nucleotide-binding domain (NOD, also called 

NACHT domain) which regulates self-oligomerization and 

an N-terminal interaction domain which mediates protein–

protein interactions with downstream signaling intermedi-

ates (Figure 1). The N-terminal domain can also be used to 

categorize the NLRs into 5 subfamilies: NLRA (containing 

an acidic transactivation domain), NLRB (containing a 

baculovirus inhibitor of apoptosis protein repeat [BIR]), 

NLRC (containing a caspase-recruitment domain [CARD]), 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2011:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

41

Inflammasome and gout

Table 1 Inflammasome activators

Inflammasome Stimulus

Whole pathogen PAMP DAMP

NLRP1 MDP
Bacillus anthracis lethal toxin

NLRP3 Staphylococcus aureus
Listeria monocytogenes
Neisseria gonorrhoea
Escherichia coli
Mycobacterium marinum
Candida albicans Influenza A
Adenovirus
Sendai virus
encephalomyocarditis
vaccinia virus

DNA
R837
MDP
LPS
α-toxin
Bacterial RNA
Poly(I:C)
Nigericin
Listeriolysin O
Aerolysin
Maitotoxin

Uric acid
Cholesterol
Asbestos
Silica
Nanoparticles
β amyloid
Hemozoin crystals
Calcium pyrophosphate
dihydrate crystals
Alum
Islet amyloid polypeptide
UvB
Mutations
ATP
Hyaluron
Glucose

NLRP4 (IPAF) Salmonella typhimurium
Shigella flexneri
Legionella pneumophilia
Pseudomonas aeruginosa
vaccinia virus
Mouse cytomegalovirus

Flagellin

AIM2 dsDNA

Abbreviations: DAMP, danger-associated molecular pattern; LPS, lipopolysaccharide; MDP, muramyl dipeptide; PAMP, pathogen-associated molecular pattern; poly(I:C), 
polycytidylic acid.

NLRP (containing a Pyrin domain), and NLRX (containing 

an unknown domain). Of these the best characterized, and the 

most important in the context of this review, are the NLRPs 

and, in particular, NLRP3.

NLRs respond to PAMPs/DAMPs through the formation 

of ‘inflammasomes’; multimeric cytoplasmic protein com-

plexes which act as molecular platforms for the activation 

of inflammatory caspases following stimulation by foreign 

agonists.32 A typical inflammasome is composed of an NLR, 

an adaptor protein such as apoptosis-associated speck-like 

protein containing a CARD (ASC) and an effector caspase 

that activates proinflammatory cytokines, in particular 

IL-1β32 (Figure 1). To date three NLR proteins have been 

identified to form inflammasomes: NLRP1, NLRP3, and 

NLRC4 (also known as IPAF). NLRP3 (NALP3, also 

known as cryopyrin or PYPAF1 [Pyrin-containing Apaf1-

like protein 1]), probably the best understood NLRP, has 

been shown to be involved in the recognition of numerous 

exogenous and host ligands, including bacterial RNA, ATP 

and microbial toxins.33 Stimulation of the NLRP3 LRR 

domain by a foreign agonist is postulated to unfold the 

NLRP3 molecule enabling recruitment of the ASC adaptor 

proteins and  pro-caspase-1. This process of inflammasome 

assembly results in cleavage of pro-caspase-1 to produce 

active caspase-1, which in turn cleaves pro-IL-1β to produce 

IL-1β and also activates IL-18.

Notably no study has yet demonstrated direct interaction 

between the LRRs of NLRs and their respective activators, 

suggesting that indirect mechanisms of sensing and activa-

tion may be involved. Conceptually, given the diverse array 

of molecules now known to activate NLRs it follows that 

additional indirect mechanisms may play a role in mediating 

inflammasome activation. Although the precise molecular 

details have not yet been fully elucidated, current evidence 

points to the potential roles of three signaling pathways in 

mediating agonist recognition and inflammasome  activation. 

Firstly, recent studies suggest a central role for P2X7 

receptor-mediated K+ efflux in NLRP3 activation, with 

prevention of K+ efflux abolishing NLRP3 in response to 

almost all known activators.34–36 Secondly, activation of the 

NLRP3 inflammasome by crystals and particulates appears 

to involve the phagocytic pathway, with particle uptake 

disrupting the phagolysosome acidic compartment and subse-

quent release of capthepsin B.12,37,38 Finally, reactive oxygen 
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 species (ROS) generation has been suggested to be critical 

for inflammasome activation in response to a number of 

stimuli. Inhibition of ROS generation, either through pharma-

cological inhibitors of NAPDH oxidase or siRNA-mediated 

knockdown, prevents IL-1β release in response to MSU and 

a number of other stimuli.29,30 However, the role of ROS is 

still unclear since further studies suggest that increased ROS 

production may actually inhibit caspase-1 activation.39 It is 

conceivable that the mechanisms involved in inflammasome-

activation may differ according to both agonist and cell type. 

A recent study supports this hypothesis, demonstrating that 

whilst IL-1β release by in vitro monocyte cultures required 

only a single exogenous stimulus, two distinct exogenous 

stimuli were required for IL-1β production in macrophage 

cultures.40 The difference between these two cell types is 

understood to be due to the presence of constitutively active 

caspase-1 in monocytes and also the ability of monocytes to 

release endogenous ATP, which can act as a second stimulus 

to trigger IL-1β release. In contrast, macrophages require a 

primary signal to induce transcription and translation and a 

second distinct signal for caspase activation, which leads to 

IL-1β processing and release.

Recently an additional inflammasome sensor was described,  

which triggers caspase-1 and IL-1β cleavage in an ASC-

dependent, NLR-independent manner. The AIM2 inflam-

masome contains a HIN200 domain that binds cytosolic 

DNA, including that of bacterial, viral, and  mammalian 

origin, leading to recruitment of the ASC adaptor protein 

to its PYD and subsequent activation of caspase-1 and 

IL-1β.41–44

Negative regulation of inflammasomes is mediated by 

a family of small proteins composed of a CARD or PYD 

only domain. Five CARD-only proteins have been identi-

fied to date – ICEBERG, Pseudo-ICE, Caspase-12, INCA 

(Inhibitory CARD), and Nod2-S – which, with the exception 

of the Rip2-interacting Nod2-S protein, regulate NLRP3 

activity through interaction with the caspase-1 CARD 

domain, thereby preventing its interaction with other inflam-

masome components.45–48 Two PYD-only proteins, POP1 and 

POP2, interact with ASC or NLRP thereby preventing their 

recruitment into inflammasome complexes. Limited data cur-

rently exist as to how these negative regulators are themselves 

regulated, their different roles in mediating inflammasome 

response and their involvement in inflammatory disease. 

Notably, Caspase-12 deficient mice show increased IL-1β 

secretion49 whilst caspase-12 gene polymorphisms have 

been linked to the modulation of inflammatory and innate 

immune responsiveness.50 In addition to these molecular 

mechanisms of regulation, CD4+ effector and memory 

T-cells were shown to negatively regulate inflammasome 

activity in a CD40L-dependent manner.51 Inhibition of 

the NLRP3 inflammasome was found to be dependent on 

both T-cell activation and antigenic stimulation, suggest-

ing that migration of T-lymphocytes to inflammatory sites 

may provide a feedback loop to regulate the production of 

inflammatory mediators during the later phases of inflam-

matory responses.

Pathophysiology and role  
in various disease states
Inflammasomes are now understood to have a fundamental 

role in the development of autoinflammatory diseases and 

additional roles in infection control, development of immune 

pathologies, and recognition of tissue damage. The last decade 

has seen the emergence of evidence supporting this concept, 

with the first established link to pathological processes pro-

vided by genetic studies of autoinflammatory diseases. Cry-

opyrinopathies (also referred to as hereditary periodic fever 

syndromes or cyropyrin-associated periodic syndromes) form 

a clinical continuum of autoinflammatory disorders charac-

terized by recurrent fevers and  inflammation. Most cases of 

these three disorders (FCAS, MWS, and NOMID in order 

of increasing severity) are now understood to be caused by 

autosomal dominant or de novo gain-of-function mutations in 

NLRP3. Over 40  mutations have been  identified in NLRP352–56 

LRRNACHTPYD

PYDSPRY CC bZIP

PYD

CARD

CARD
CARD

CARD

Caspase-1

Caspase-1

FIIND

Pyrin

CardinalASC

NLRP3

IL-1βpro-IL-1β

Figure 1 The NLRP3 inflammasome complex. The NLRP3 inflammasome complex 
is formed through homotypic interactions between the CARD and PYD domains of 
NLRP3, Pyrin, and ASC. An additional adaptor protein Cardinal is also required to 
facilitate activation of procaspase-1, which in turn cleaves proIL-1β to IL-1β.
Abbreviations: ASC, apoptosis-associated speck-like protein; bZIP, basic leucine 
zipper domain; CARD, caspase activation and recruitment; CC, coiled-coil domain; 
FIIND, domain with a function to find; IL, interleukin; LRR, leucine-rich repeat; 
NACHT, domain present in neuronal apoptosis inhibitor protein (NAIP) major 
histocompatibility complex class II transactivator; NLRP3, NACHT domain, LRR 
domain, and Pyrin domain-containing protein; PYD, Pyrin domain; SPRY, SPRY 
domain.
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each producing a constitutively active form of NLRP3, most 

likely due to spontaneous NLRP3 oligomerization, and hence 

elevated levels of secreted IL-1β, which drive the inflam-

mation. In keeping with this, gene-targeted mice harboring 

mutations equivalent to those found in MWS exhibit hyper-

active NLRP3  inflammasomes leading to elevated IL-1β.57 

This discovery has revolutionized the clinical management 

of these diseases, with patients responding well to IL-1β 

antagonism, for example by anakinra,58–60 next-generation 

IL-1β antagonists,61–65 or caspase-1 inhibitors.66

Two additional autoinflammatory diseases, familial 

Mediterranean fever (FMF) and pyogenic arthritis, pyoder-

magangrenosum, and acne (PAPA) are also caused by muta-

tions in the inflammasome pathway; FMF by mutations in 

the Pyrin-encoding MEFV gene67 and the syndrome of PAPA 

by mutations in the gene encoding proline-serine-threonine-

phosphatase-interacting protein (PSTPIP1), which binds 

Pyrin through its Src-homology-3 domain.68,69 Genetic vari-

ants in NLRP3 and other inflammasome-related genes have 

also been related to susceptibility and disease severity in a 

number of other chronic inflammatory disorders, including 

rheumatoid arthritis,70,71 Crohn’s disease,72 gout,73 and the 

recently identified deficiency of the interleukin-1-receptor 

antagonist (DIRA).74

In addition to causal mutations in the NLRP3 inflam-

masome pathway, the pathology of a number of inflammatory 

diseases has been linked to the activation of this inflam-

masome by disease-specific inflammasome agonists. For 

example, the fibrillar peptide amyloid-β, which accumulates 

to form the senile plaques responsible for the pathogenesis 

of Alzheimer’s disease,37 is now known to be an inflam-

masome activator. Studies suggest that NLRP3, caspase-1, 

and IL-1β are essential for the recruitment of microglia 

to exogenous amyloid-β in the brain and for microglial 

synthesis of proinflammatory and neurotoxic factors, indi-

cating a critical role for the inflammasome pathway in the 

innate immune response to amyloid-β and the subsequent 

tissue damage that is the hallmark of Alzheimer’s disease. 

In type 2 diabetes, islet amyloid polypeptide, which forms 

amyloid deposits in the pancreas, activates NLRP3, result-

ing in IL-1β release and inducing apoptosis of pancreatic 

beta cells75 whilst cholesterol crystals have been shown 

to trigger inflammasome activation in atherosclerosis.76,77 

Late-stage human melanoma cells exhibit autoinflammatory 

characteristics, spontaneously secreting active IL-1β due 

to constitutive assembly and activation of NLRP3.78 IL-1 

mediated autoinflammation drives macrophage chemotaxis 

and angiogenesis, thereby directly contributing to disease 

development and progression.78 The inflammasome has also 

been linked to the progression of chronic kidney disease79 

and to a number of viral infections.80–82 As the latter have 

been reviewed in depth recently,83 they will not be discussed 

further here. Although the above examples point clearly to 

a role for NLRP3 inflammasome activation in an array of 

human diseases, the involvement of this pathway in vari-

ous disease processes is far from straightforward, as most 

notably highlighted by a recent paper demonstrating that in 

colitis-associated cancer the NLRP3 inflammasome plays a 

protective role, with ASC-/- and caspase-1-/- mice showing 

increased disease severity and morbidity.84

The role of the NLRP3 
inflammasome in acute  
and chronic gout
Although the causal agent of gout has been understood 

for more than a century, the mechanisms underlying MSU 

crystal-induced inflammation have only recently begun to 

be unraveled. The pathological hallmark of a gout attack is 

considerable neutrophil influx into the synovium and joint 

fluid,3 however since neutrophils are absent in the normal 

joint the primary event following precipitation of MSU 

within the joint is believed to be the interaction of MSU 

crystals with resident joint cells, principally the synovial lin-

ing cells, which in turn trigger neutrophil ingress. Recent in 

vitro studies implicate mononuclear phagocytes as playing a 

central role in the initial response to MSU precipitation. The 

exposure of monocyte cell lines to MSU crystals leads to 

the production of proinflammatory cytokines, in particular 

IL-1β,85,86 and it is now understood that phagocytosis of MSU 

crystals is central to this process12 (Figure 2).  Following the 

recognition that MSU crystals may act as a ‘danger’ signal 

to cells in a similar way to microbial pathogens,87 Martinon 

et al demonstrated the NLRP3 inflammasome to be critical 

in sensing MSU deposition and subsequent activation of the 

downstream innate immune response.15 Macrophages from 

mice deficient in various components of the inflammasome, 

including caspase-1, ASC, and NLRP3, were unable to 

activate IL-1β in response to MSU stimulation. Notably, 

these mice also showed impaired neutrophil influx following 

intraperitoneal MSU injection, demonstrating the NLRP3 

 inflammasome as a critical link between the  well-established 

causal stimulus of gout and the subsequent pathological 

hallmark of an acute gout attack. Similar results were 

also demonstrated with CPPD crystals, the causal agent 

of pseudogout,  suggesting that similar mechanisms are 

involved in  regulating the inflammatory response in both 
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p50
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IL-1R

MyD88
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Figure 2 Inflammation in the gouty joint. Multiple steps in the inflammatory pathway are initiated by MSU deposition in the joint. MSU crystals are recognized by the 
pattern recognition receptors of the innate immune system, such as the TLRs and are phagocytosed by macrophages. Intracellular MSU crystals are recognized by the 
NLRP3 inflammasome (a multiprotein complex composed of a C-terminal LRR ‘sensor’ domain, a central nucleotide-binding domain (NACHT domain), which regulates self-
oligomerization and an N-terminal PYD) resulting in oligomerization of NLRP3 and cleavage of procaspase-1 to caspase-1. Cathepsin B, ROS, and K+ efflux (stimulated by 
ATP accumulation) are also understood to have some involvement in the activation and oligomerization of NLRP3 following MSU internalization. Caspase-1 in turn cleaves 
inactive proIL-1β, transcribed in a NF-κβ-dependent manner following TLR stimulation, to produce active IL-1β, which is released into the extracellular joint fluid. IL-1β 
activates IL1 receptors on endothelial cells and resident macrophages within the joint, resulting in signal transduction and gene activation and leading to the secretion of an 
array of proinflammatory cytokines and chemokines. These in turn recruit and activate leukocytes into the joint thereby amplifying the inflammatory cascade.
Abbreviations: ASC, apoptosis-associated speck-like protein containing a CARD; CARD, caspase recruitment domain; PYD, Pyrin domain; IL, interleukin; LRR, leucine-
rich repeat; MSU, monosodium urate; MyD88, myeloid differentiation primary response gene (88); NACHT, domain present in neuronal apoptosis inhibitor protein (NAIP) 
major histocompatibility complex class II transactivator; NF-κβ, nuclear factor κβ; NLRP, NACHT domain, LRR domain, and Pyrin domain-containing protein; ROS, reactive 
oxygen species; TLR, Toll-like receptor.

of these diseases. Despite much progress in elucidating the 

biological pathways coordinating a gout attack, the precise 

mechanisms by which endocytosed MSU crystals activate 

the NLRP3  inflammasome remain unclear and it is possible 

that sensing may occur through intermediary protein(s). 

Interestingly, the reduced severity of the inflammatory 

response triggered by CPPD deposition in pseudogout and 

the inflammasome neutrality of the chemically and struc-

turally similar allopurinol, suggests that subtle differences 

in the physical properties of different crystals, including 

surface charge and size, may be important in determining 

the intensity of the inflammatory response.

A recent study has shed light on the biologi-

cal mechanisms underlying the association between 

excessive consumption of food and onset of gout with the 

demonstration of a synergistic relationship between free 

fatty acids (FFA) and MSU for the activation of IL-1β.88 

In this study Joosten and colleagues demonstrated that 

MSU crystals alone were unable to induce IL-1β release 

from peripheral blood mononuclear cell (PBMC) isolated 

from healthy subjects; however in the presence of FFA, 

large amounts of active IL-1β were detected. Notably, 

IL-1β release in response to MSU and FFA injection was 

significantly reduced in caspase-1 and ASC deficient mice, 

but not in NLRP3 gene deficient mice.88 How these data fit 

with earlier studies indicating dependency on NLRP3 for 

MSU-induced IL-1β production is unclear and may point 

to the involvement of alternative inflammasome complexes 
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in the response to MSU or relate to differences in cell 

lineage, cell priming, and/or crystal structure between 

the studies.

In addition to the intracellular NLRP3 receptor, the 

extracellular TLR2 and TLR4 receptors may also play a 

role in the innate immune response to MSU deposition.89 

Macrophages isolated from TLR2-/- and TLR4-/- mice show 

impaired uptake of MSU crystals and reduced proinflam-

matory cytokine production, suggesting these TLRs to be 

essential for MSU crystal-induced inflammation.89 However 

conflicting results from a peritoneal model of acute gout 

suggest TLR2 and TLR4 to be dispensable in the immune 

response to MSU crystals.90 Nevertheless, as mentioned 

briefly above, it is conceivable that the contradictory results 

of these two studies may be attributable to cells in different 

tissues responding to MSU stimulation through different 

mechanisms. More recent studies now suggest that rather 

than having a role in the recognition of MSU crystals, the 

TLRs may play a more indirect part in responding to MSU 

deposition through regulation of the synthesis of pro-IL-1β 

(Figure 2).90,91

Together these studies allow a picture to be painted of 

our current understanding of the inflammatory process of an 

acute gout attack (Figure 2). During the initiation phase, MSU 

crystals precipitated within the joint stimulate extracellular 

TLR receptors expressed by resident monocytes, leading to 

transcription of pro-IL-1β. MSU crystals are also phagocy-

tosed by resident monocytes, an activity which is thought 

to be positively regulated by TLR activation,89 resulting in 

oligomerization of the NLRP3 inflammasome, activation of 

caspase-1, and subsequent cleavage of pro-IL-1β to produce 

active IL-1β. As discussed above, K+ efflux, ROS, and/

or cathepsin B may also be involved in mediating NLRP3 

activation. Following cleavage, active IL-1β is released by 

the resident monocytes and binds to IL-1 receptors expressed 

by endothelial cells and resident macrophages. During the 

‘amplification phase’ these cells respond to IL-1β by produc-

ing an array of proinflammatory cytokines and chemokines, 

which act together to coordinate the recruitment and activa-

tion of leukocytes into the joint.

One of the characteristic features of gout is that regard-

less of treatment, gout attacks are self-limiting. However, 

although great strides have been made in unraveling the 

molecular mechanisms of gout onset, our understanding of 

the mechanisms leading to resolution of a gout attack remain 

far less advanced. A range of possible mechanisms have 

been suggested, including the binding of crystals to inhibi-

tory proteins,92–94 maturation of monocytes to  macrophages, 

which express the anti-inflammatory TGF-β1 in response 

to MSU,95,96 and clearance of apoptotic leukocytes by 

macrophages.97,98 The balance between the multiple regula-

tory mechanisms that appear to be involved in mediating 

activation of the inflammasome pathway by MSU crystals, 

including ROS and K+ efflux, and inhibitors of the inflam-

masome pathway, including caspase-12 and CD4+ memory 

T-cells, may also be important in the down regulation of the 

inflammatory response that occurs during the resolution of 

an inflammatory gout attack.

Gout therapy has remained very much unchanged for 

the last 50 years. The British Society for Rheumatology 

recommends nonsteroidal anti-inflammatories (NSAIDs) 

as the first drug of choice for an acute gout attack, fol-

lowed by systemic or intra-articular glucocorticosteroids 

where NSAIDs are  contraindicated.99 The third line of 

treatment is oral colchicine, which is highly effective when 

given early in an acute gouty attack, but is poorly toler-

ated because of predictable gastrointestinal side effects. 

Notably, colchicine has been shown to suppress MSU 

crystal-induced NLRP3  inflammasome protein complex 

assembly, most likely through microtubule inhibition and 

subsequent impaired delivery of MSU crystals to the NLRP3 

 inflammatory protein complex in the cytosol, although this 

effect requires relatively high (micromolar) concentrations 

of colchicine.15 Recent animal model studies, using anakinra 

(an IL-1R antagonist) and mIL-1 Trap (an IL-1 inhibitor), 

clearly demonstrate the potential of targeting IL-1β for the 

management of MSU-induced inflammation.4,5 Moreover, 

early clinical studies of the IL-1 inhibitors, rilonacept (IL-1 

Trap),6 canakinumab (monoclonal anti-IL-1β antibody),9 

and anakinra,7,8,100 have demonstrated efficacy in the treat-

ment of patients with acute and chronic gout and have been 

generally well tolerated, although there are always concerns 

about increased incidence of infections when proinflam-

matory cytokines are inhibited and it should be noted that 

this has been observed in a subset of patients in a number 

of IL-1 inhibitor trials. These studies, coupled to in vitro 

evidence of the key role of the inflammasome pathway in 

activating IL-1β in gout, point to IL-1β and the upstream 

inflammasome regulatory pathways as key targets for the 

future treatment of gout.

Conclusions and implications  
for future research
Gout is the most common form of inflammatory arthritis in 

older men, affecting 1%–2% of adults in developed coun-

tries. Despite its prevalence, treatment options for gout have 
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remained static for almost half a century, with the approval 

of allopurinol in 1965 representing the last drug approved 

by the US Food and Drug Administration for treating gout. 

However, the last year has seen the approval of a new gout 

therapy, the xanthine oxidase inhibitor, febuxostat, and 

with several new drugs now in the late stages of clinical 

testing6,9,101 coupled with our enhanced level of understanding 

of the pathophysiology of the inflammatory process involved, 

we are entering a new era for the treatment of gout.

Although the precise molecular details of the NLRP3 inflam 

masome pathway and its response to MSU crystal deposition 

remain to be determined, the importance of inflammasomes 

and IL-1β activation to the pathology of gout is now firmly 

established. Notably, current strategies for targeting IL-1β 

have proved successful for alleviating the symptoms of gout 

in small clinical studies suggesting that targeting this and 

other components of the pathway may have an important 

place in gout and pseudogout treatment.6–9 Moreover, the 

impressive results of IL-1 inhibitors for the treatment of 

autoinflammatory syndromes confirm the potential of these 

agents for diseases such as gout, which involve excessive 

IL-1β production.

Despite significant advances in our understanding 

of the inflammatory processes involved in an acute gout 

attack, many questions remain to be addressed. The precise 

mechanism by which crystal recognition is achieved remains 

elusive, whilst the role of additional cytokines, which may 

be activated by the NLRP3 inflammasome, such as IL-18, 

must also be evaluated. Moreover, MSU may trigger other 

pathways aside from the NLRP3 inflammasome and it will 

be important to identify such pathways and understand their 

interaction with the NLRP3 inflammasome and IL-1β pro-

duction in the acute and resolution phases of gout. Answers 

to these questions will no doubt provide important insights 

into the mechanisms underlying MSU-induced inflamma-

tion and resolution, but may also reveal novel biologically 

relevant targets for the development of new, more effective 

therapeutic options for the treatment of gout.
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