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Abstract: Aptamers are widely applied to diagnosis and therapy because of their targeting. However, the current progress of research 
into aptamers for the treatment of eye disorders has not been well-documented. The current literature on aptamers was reviewed in this 
study. Aptamer-related drugs and biochemical sensors have been evaluated for several eye disorders within the past decade; S58 
targeting TGF-β receptor II and pegaptanib targeting vascular endothelial growth factor (VEGF) are used to prevent fibrosis after 
glaucoma filtration surgery. Anti-brain-derived neurotrophic factor aptamer has been used to diagnose glaucoma. The first approved 
aptamer drug (pegaptanib) has been used to inhibit angiogenesis in age-related macular degeneration (AMD) and diabetic retinopathy 
(DR), and its efficacy and safety have been demonstrated in clinical trials. Aptamers, including E10030, RBM-007, AS1411, and 
avacincaptad pegol, targeting other angiogenesis-related biomarkers have also been discovered and subjected to clinical trials. 
Aptamers, such as C promoter binding factor 1, CD44, and advanced end products in AMD and DR, targeting other signal pathway 
proteins have also been discovered for therapy, and biochemical sensors for early diagnosis have been developed based on aptamers 
targeting VEGF, connective tissue growth factor, and lipocalin 1. Aptamers used for early detection and treatment of ocular tumors 
were derived from other disease biomarkers, such as CD71, nucleolin, and high mobility group A. In this review, the development and 
application of aptamers in eye disorders in recent years are systematically discussed, which may inspire a new link between aptamers 
and eye disorders. The aptamer development trajectory also facilitates the discovery of the pathogenesis and therapeutic strategies for 
various eye disorders. 
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Introduction
Ophthalmology is an important clinical specialty that focuses on the physiological and pathological processes of the eye, 
which may become diseased as a result of internal and external factors. Several approaches have been used to increase 
the understanding of eye disease and provide effective therapeutic strategies. In recent years, as the development of 
targeting research in ophthalmology, several proteins have been discovered to participate and play key roles in the disease 
processes. By enhancing the function of proteins such as vascular endothelial growth factor (VEGF), the course of eye 
disorders may be modified; for example1 Using targeting to discover the pathogenesis of eye disorders is another research 
hotspot; it facilitates a better understanding of the mechanism of disease and contributes to the development of new 
treatment strategies.2 Therefore, aptamers were developed to be used for targeting research and edited for various 
deformations and combinations with other elements.

Aptamers have been widely used for their ability to bind to different targets and their functions as chemical 
antibodies.2 Since their discovery in 1990, aptamers have also been used in ophthalmology to investigate disease 
mechanisms and for diagnosis and therapy.3 The binding of aptamers to various targets has been demonstrated and 
applied in disease research. In the field of ophthalmology, aptamers are mainly used for targeting therapy. Various 

International Journal of Nanomedicine 2023:18 4421–4430                                               4421
© 2023 Cao et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of Nanomedicine                                                 Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 21 April 2023
Accepted: 19 June 2023
Published: 2 August 2023

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0003-2498-3454
http://orcid.org/0000-0002-3017-9895
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


aptamers have been discovered and applied to nanomedicine. Therefore, a review of the current research status of 
aptamers in ophthalmology has become necessary.

In the present review, the current research developments of aptamers and their characteristics for targeting in eye 
disease are introduced. The application of aptamers, encompassing their development, targeting, and mechanism of 
action in ophthalmology, over the past 10 years has been discussed.

Characteristics of Aptamers
Aptamers are short single-stranded ribonucleotides or deoxyribonucleotides.4 The first aptamer was composed of 
ribonucleotides, and deoxyribonucleotides were subsequently added.5 According to McKeague, approximately 68.8% 
of aptamers comprised ribonucleotides from 1990 to 2007, after which the proportion dropped to 29.5%.6 Aptamers have 
a high affinity toward their target and their equilibrium dissociation constants may reach nanomolar levels with the Kd 
value of aptamers mainly ranging from 1–100nM; several factors such as the template length and selection condition 
affect this constant.6 Aptamers recognize various types of targets and undergo various modifications that facilitate 
connections between aptamers and other carriers, giving aptamers broader biosensor applications than antibodies.2 These 
characteristics make aptamers popular for diagnostic innovation and drug development; for example, aptamer-based 
biosensors have been used in the diagnosis of diabetes, and aptamer-siRNA has been used for cancer therapy.7,8 Other 
characteristics such as cellular uptake, stability, and low cost are advantages for therapeutic application. However, some 
characteristics limit the application of aptamers, such as their size determining the high rapid clearance rate for the 
weights of aptamers lower than the renal filtration threshold, and their single-strand nucleic acid structure being easily 
degenerated by nuclease.9 To overcome these limitations, aptamers have been modified by the chemical group or coupled 
drug carrier.10 For example, Judith found that aptamers conjugating with polyethylene glycol have an extended 
circulatory half-life and a reduced rate of urinary elimination.11 When methyl was added to KH1C12.O2, its stability 
was extended to 24h while its affinity was not affected.12 Similarly, hydrophobic F bases improved nuclease resistance 
ability, and aptamers coupled with F and paclitaxel (Sgc8-F-PTX) had significantly higher stability than Sgc8, perhaps 
because F bases could bind with albumin to form a stable complex.13,14

Systematic Evolution of Ligands by Exponential Enrichment (SELEX)
Aptamer development was supported by SELEX. The initial single-stranded random oligonucleotides were used to 
incubate positive and negative targets, resulting in the amplification of a pool of single-stranded random oligonucleotides 
with high affinity. After several rounds of selection, aptamers with high binding ability were obtained and identified 
(Figure 1). In this process, the positive targets included proteins, cells, or tissues,15–17 and several variations of the 
SELEX approach were developed to suit different targets and improve processes.18 In addition, aptamers collected 
through SELEX always need to be further optimized and modified, and characteristics of aptamers such as affinity, 
specificity, stability, and internalization have been evaluated for later application.19

Characteristics of Target-Based Research in Ophthalmology
As the primary research structures, the eyeball, ocular adnexa, and orbital cavity include epithelial, bone, vascular, 
muscle, nervous, and other tissues.20 These may undergo biological processes common to a range of tissues in other parts 
of the body, and some pathological changes of ocular tissue are part of systemic disease.21–23 Therefore, the results of 
target-based research and therapy may have similarities for ophthalmology and other disciplines. For example, aptamer 
AS1411 target nucleolin is located in nucleoli and expressed by various tissue types, including vascular and cancer tissue 
and could be used for therapy for ophthalmopathy despite its intended use as an anticancer drug.24,25 In contrast, the 
application of target-based research varies for ocular tissues, since the anterior and posterior segments of the eye differ in 
their anatomic structures and functions.26 Target-based research may, therefore, be applied to each segment, such as 
corneal and fundal staining techniques for diagnosis and administration techniques for therapy.27,28 When aptamers are 
designed for examination or treatment applications, the target anatomical structure and location, as well as the 
characteristics of tissues should be considered. For example, anti-VEGF transmission across the cornea is desirable to 
avoid the discomfort of retrobulbar injections, and carbon dot modification of anti-VEGF aptamer facilitates corneal 
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administration.29 The blood-aqueous and blood-retinal barriers30,31 tightly restrict the passage of proteins between extra- 
and intraocular regions, presenting a challenge for the development of intraocular target-based drugs.

Aptamers Applied in Ophthalmology Research
Aptamer application in ophthalmology is based on the pathogenic mechanisms of eye disorders. The key molecules or 
cells in the pathogenesis of eye disorders may provide a target for aptamers, and a change in the expression or signal 
pathway in that target may have a diagnostic and therapeutic effect. To date, several types of aptamers have been 
developed to cure eye disorders, such as NX1838 for age-related macular degeneration (AMD), S58 for glaucoma, and 
AS1411 for corneal neovascularization.32–34 In addition to the development of aptamers for ophthalmology, those 
intended for non-ocular diseases have also been used in research on eye disease, as summarized in Table 1.

Figure 1 Process of Systematic Evolution of Ligands by Exponential Enrichment.

Table 1 Aptamers Applied in Ophthalmology

Aptamer Target Disease Application Reference

ky2 Kanamycin B Bacterial keratitis Bind with kanamycin B and construct 
a drug carrier system

[35]

neo5 Neomycin B Bacterial keratitis Bind with neomycin B and construct a drug 

carrier system

[36]

S58 TGF-β receptor II Glaucoma Anti-fibrosis after filtration surgery [37]

NX1838 VEGF Glaucoma Anti-fibrosis after filtration surgery [38]

Neovascular glaucoma Anti-angiogenesis [39]
AMD Anti-angiogenesis [40]

F1 Brain-derived neurotrophic 
factor

Glaucoma Constructed biolayer Interferometry-based 
3D aptasensor for early diagnosis

[41]

ARC126/E10030 Platelet-derived growth factor AMD Anti-angiogenesis [42]

APT-F2P/RBM-007 Fibroblast growth factors 2 AMD Anti-angiogenesis and anti-fibrosis [43]
Avacincaptad pegol Complement component 5 AMD Reduce geographic atrophy growth [44]

(Continued)

International Journal of Nanomedicine 2023:18                                                                                   https://doi.org/10.2147/IJN.S418115                                                                                                                                                                                                                       

DovePress                                                                                                                       
4423

Dovepress                                                                                                                                                              Cao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Aptamers Applied in Bacterial Keratitis
In addition to their use for targeting therapeutic binding sites in eye disease, aptamers have been used in the development 
of therapeutic drugs. Given the rapid clearance of eye drops from the ocular surface and the challenge of bioactive 
compounds reaching target tissues from the ocular surface, Jan Willem de Vries et al developed a DNA amphiphiles 
nanoparticle drug carrier system.55 This novel system was used to treat bacterial keratitis, and aptamers, in this case, 
targeted kanamycin or neomycin and were used as linkers between nanoparticles and antibiotics.

Aptamers Applied in Glaucoma
Glaucoma is a global optic neuropathy characterized by the degeneration of retinal ganglion cells.56 Aptamers are rarely used 
clinically for glaucoma therapy, and this application is still under development, but research in this field shows promise. As 
the most effective therapy for drug-refractory glaucoma, glaucoma filtration surgery, may not always be successful due to 
conjunctival fibrosis at the incision site promoted by TGF-β binding with TGF-β receptor II.57 Xie et al developed an aptamer 
S58 that targets TGF-β receptor II and inhibits the differentiation of tenon’s fibroblasts into myofibroblasts, effectively 
improving the outcome of glaucoma filtration surgery.37 In further research, S58 was combined with a chitosan thermo- 
sensitive gel or exosome, and the results showed that S58 reduced fibrosis in human fibroblasts as well as in a rat glaucoma 
filtration surgery model.58,59 In addition, recovery after glaucoma infiltration glaucoma is complicated, with several 
bioprocesses such as angiogenesis, which may affect the outcome of surgery. The anti-VEGF aptamer pegaptanib was the 
first to be approved by the FDA for use as an inhibitor of angiogenesis, inflammation, or collagen deposition and has been 
shown to reduce angiogenesis after glaucoma filtration surgery to improve its outcomes.38 An anti-VEGF aptamer was also 
used to treat neovascular glaucoma, characterized by massive neovascularization on the iris surface and atrial angle.39,60 

Brain-derived neurotrophic factors are nerve growth factors with neuroprotective effects through Tropomyosin receptor 
kinase B and are significantly lower in aqueous humor, lacrimal fluid, and serum in glaucoma than in the normal eye and may 
be a biomarker for early glaucoma diagnosis.61 An aptamer targeting brain-derived neurotrophic factors has been developed 
to construct a biolayer interferometry-based 3D aptasensor41 in which aptamers have a detecting function and produce 
a signal for highly sensitive 3D matrix sensors, achieving low-abundance brain-derived neurotrophic factor detection for 
early diagnosis of glaucoma.41 Lipid DNA nanoparticles have been developed for drug delivery to overcome the disadvan-
tages of low drug uptake on the ocular surface. In this system, the aptamer targets drugs and is a linker between drugs and 
DNA nanoparticles rather than disease-related targets. Schnichels et al used this system to enhance glaucoma drugs based on 
travoprost-target and brimonidine-target aptamers.62,63

Table 1 (Continued). 

Aptamer Target Disease Application Reference

AS1411 Nucleolin AMD Reduced choroidal neovascularization and 

attenuated infiltration of macrophages

[45]

Retinoblastoma Inhibit tumor growth [46]

Apt-3 C promoter binding factor 1 AMD Anti-angiogenesis [47]

CD44 aptamer CD44 AMD Delivery of drugs for retinal pigment 
epithelial

[48]

V7t1 VEGF AMD Constructed target-induced dissociation 

assay for detecting VEGF

[49]

#4s aptamer Advanced glycation end 

products

DR Inhibit early development of disease [50]

APT1 Connective tissue growth 
factor

DR Constructed BLI-based enzyme-linked 
aptamer sandwich assay for early diagnosis

[51]

APT12TM Lipocalin 1 DR Early diagnosis [52]

XQ-2d CD71 Uveal melanoma Inhibit tumor growth [53]
HMGAap High mobility group A Retinoblastoma Inhibit tumor growth [54]
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Aptamer Application in AMD
The mechanism of AMD is complicated and could be classified into early and late stages, the latter characterized by 
neovascularization.64 During angiogenesis, cell factors such as VEGF, a mitogen for endothelial cells, enhance blood 
vessel formation.65 While there are several genes in the VEGF family, including VEGF-B, VEGF-C, and placental 
growth factor, VEGF-A is thought to play a major role in angiogenesis.66 Aptamers target VEGF develop rapidly since 
the first aptamer drug pegaptanib was proven to be effective in a clinical trial in 2004.40

Within the past decade, the applications of pegaptanib have been investigated through large-scale research and meta- 
analysis, and its therapeutic effects and those of other anti-VEGF drugs, such as monoclonal antibodies, have been tested. 
The results have shown that monoclonal antibodies such as bevacizumab and ranibizumab performed similarly based on 
best-corrected visual acuity, while indirect evidence showed that pegaptanib provided less improvement in visual 
acuity.67,68 Dalvin et al found that anti-VEGF therapy has no association with stroke or death,69 and a retrospective 
cohort study revealed that an injection of an anti-VEGF such as pegaptanib did not increase the risk of developing 
glaucoma.70

Platelet-derived growth factor (PDGF) regulates angiogenesis and interacts with VEGF,71,72 while PDGF inhibitors 
serve as a potential therapy for ocular neovascularization.73 Since aptamers ARC126 and ARC127 have been found to 
affect several retinal diseases through preclinical trials, anti-PDGF aptamers were developed for clinical usage.74 E10030 
is an anti-platelet-derived growth factor aptamer that has been used in combination with ranibizumab for the treatment of 
AMD. Phase I and IIb clinical trials have been conducted, and the results have confirmed the efficacy of E10030 and 
permitted a phase III clinical trial.42,75

Fibroblast growth factor 2 (FGF2) participates in angiogenesis and fibrosis by promoting the proliferation of vascular 
endothelial cells and stimulating the secretion of VEGF.76 The aptamer target FGF2 was first developed and used for 
therapy for the bone disease known as APT-F2P.77 Since the bioprocess of angiogenesis is similar for eye and bone 
disease, Yusaku et al used APT-F2P (RBM-007) for retinal disease therapy.43 Through an angiogenesis mouse model, 
APT-F2P was found to reduce new vessel formation and subretinal fibrosis,43 based on which a phase I/IIa clinical study 
was conducted to further investigate the effect of APT-F2P in AMD.78

Complement component 5 (C5) mediates inflammation and was thought to participate in the local chronic inflam-
matory process in AMD.79 While research on single nucleotide polymorphisms of C5 did not support an association 
between C5 and AMD, immunolocalization has provided evidence of the C5 complement activation in AMD.80,81 The 
aptamer targeting C5 (avacincaptad pegol) has been used for AMD therapy,44 and the results have shown that 
avacincaptad pegol significantly reduces geographic atrophy in AMD.44

AS1411 is an aptamer targeting nucleolin with an anti-proliferation effect and acts as an anti-cancer drug, and a phase 
II clinical trial has shown that it has a therapeutic effect in metastatic renal cell carcinoma.82 AS1411 was introduced for 
AMD to suppress the function of endothelial cells and have a therapeutic effect on AMD.45 This aptamer has been found 
in animal models to reduce choroidal neovascularization and attenuate the infiltration of macrophages.45

In addition to fully developed aptamer therapeutics, some newly developed aptamers have a potential therapeutic 
effect on AMD. C promoter binding factor 1 is involved in Notch signaling and acts as an inhibitor of angiogenesis. 
VEGF promotes C promoter binding factor 1 proteasomal degradation and suppresses the activation of Notch signaling. 
An aptamer Apt-3 developed by Tezuka-Kagajo et al targeted C promoter binding factor 1 and active Notch signaling, 
thus inhibiting angiogenesis.47 Chandola et al developed an aptamer targeting CD44 (which is overexpressed in retinal 
pigment epithelium after oxidative stress) that could be transferred to lysosomes under oxidative stress.48 Since oxidative 
stress also occurs in AMD, CD44-aptamer could be used for lysosomal delivery of drugs to the retinal pigment 
epithelium and may have a therapeutic effect on AMD.48

In addition to therapy, aptamers have also been used to detect biomarkers in AMD, and various detection methods 
have been established to suit a range of clinical application scenarios. For example, an aptamer-based proteomic 
technology has been used to detect the biomarkers in the disease and show differential expression of vinculin and 
CD177 compared with controls.83 Lynch et al also found different protein expression assays in AMD using aptamer- 
based technology.84 An anti-VEGF aptamer has also been used to establish a target-induced dissociation assay using 
thermophoresis and microarrays, which can detect 0.1 nM of VEGF,49,85 and another has been used to develop an 

International Journal of Nanomedicine 2023:18                                                                                   https://doi.org/10.2147/IJN.S418115                                                                                                                                                                                                                       

DovePress                                                                                                                       
4425

Dovepress                                                                                                                                                              Cao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


electrochemical aptasensor based on metallo nanoenzyme particles to amplify the VEGF signal to facilitate its 
detection.86 Gao et al constructed a biolayer interferometry-based enzyme-linked aptamer sorbent assay based on anti- 
PDGF-BB, allowing rapid, high-throughput processing and real-time monitoring.87 The generation of these detection 
methods indicates the new direction of aptamer application in AMD and the importance of biomarker detection for early 
diagnosis and therapy of the disease. In addition, current studies have conjugated aptamers with nanoparticles or other 
elements, further demonstrating the developing trends of application in AMD.

Aptamer Application in Diabetic Retinopathy (DR)
The development of anti-VEGF aptamer drugs in angiogenesis has led to their use in DR and assessment of their 
therapeutic effect and safety in this disease. A Phase 3 study of pegaptanib assessed its safety in diabetic macular edema 
(a complication in DR) and showed that side effects of the drug were mainly mild or moderate and were related to the 
injection.88 A network meta-analysis comparing the effects of various anti-VEGF drugs such as aflibercept, ranibizumab, 
bevacizumab, and pegaptanib showed that anti-VEGF drugs improved vision, but long-term effects remained unclear.89 

Approximately 40% of the patients with diabetic macular edema who underwent anti-VEGF therapy switched to laser 
surgery.90

With the development of anti-VEGF drugs, other kinds of aptamer drugs were neglected. Advanced glycation end 
products were associated with the early phase of DR through VEGF.91 An aptamer targeting advanced glycation end 
products was developed and used in DR and was found to prevent abnormalities in electroretinograms and have an 
inhibitory effect on the early development of DR.50,92 Connective tissue growth factor serves as a biomarker for DR and 
may be used in early diagnosis.93 Shunxiang et al developed a BLI-based enzyme-linked aptamer sandwich assay based 
on connective tissue growth factor-targeting aptamer, which detected connective tissue growth factor at a level of 0.02 M, 
facilitating the early diagnosis of DR.51 Lipocalin 1 is another biomarker of DR that is related to its severity, and its 
detection in tears facilitates the early diagnosis of DR.94 Gao et al developed an aptamer targeting lipocalin 1 which folds 
into the B-DNA structure.52 After being assembled with G-rich DNA fragments and the Thioflavin T mediator, 
a lipocalin 1-targeting aptamer-based fluorescent aptasensor was developed, with potential application as a convenient 
detector of lipocalin 1 with high sensitivity and specificity.52

Aptamer Application in Ocular Tumors
As the most common intraocular malignant tumor in adults, uveal melanoma has been well studied, and several 
biomarkers, such as TRPM4, BAP1, and RBM15B, have been associated with its mechanism and therapy.95–97 These 
biomarkers provide a therapeutic binding target and a potential target for aptamers. CD71 is overexpressed in malig-
nancy, and antibodies such as A24 may compete for receptor binding sites with CD71, inducing CD71 degeneration in 
adult T-cell leukemia cells.98 An aptamer XQ-2d has been developed to target CD71 and is used in uveal melanoma 
therapy.53 XQ-2d was designed to conjugate with Monomethyl Auristatin E, and it inhibits the progression of uveal 
melanoma in mouse models.53

Retinoblastoma is a childhood eye cancer with an incidence of 1:15,000–1:20,000 globally.99 Aptamers targeting 
retinoblastoma have been developed over the past 10 years, but their application is still in the experimental stages. 
Epithelial cell adhesion molecules are cancer stem cell biomarkers since they are overexpressed in most solid cancers.100 

An aptamer targeting epithelial cell adhesion molecules was developed and used in retinoblastoma therapy due to the 
high quantity of epithelial cell adhesion molecules in retinoblastoma cells.100,101 The aptamer was developed with 
doxorubicin, which enhanced the targeting of drugs.101 Aptamers developed with siRNA silence the expression of 
epithelial cell adhesion molecules102 and have been used therapeutically. Since high mobility group A is elevated in both 
pancreatic cancer and retinoblastoma, the aptamer targeting high mobility group A developed via research on the former 
has been used in retinoblastoma.103 A nucleolin-targeting aptamer (AS1411) has also been used in retinoblastoma and 
found to reduce its proliferation.46 Based on the inhibitory effects of anti-nucleolin and high mobility group A on cancer, 
Kannan et al constructed two aptamer drugs: NCLap-HMGA2si and NCLAb-HMGAap. The nucleolin-targeting aptamer 
was developed with high-mobility group A siRNA, and the high-mobility group A targeting aptamer was developed with 
a nucleolin antibody, respectively, and both had therapeutic effects on retinoblastoma.54
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Challenges and Opportunities
There are several reports of cases of aptamer use in research related to eye disorders. However, there are several 
challenges. On the one hand, only a few types of aptamers are used in ophthalmology. Aptamers for several targets 
important for the pathogeneses of eye diseases have not been reported. Several original aptamers are not developed for 
eye disorders, and the specific characteristics of eye disease make it difficult for adopting aptamers in clinical practice. 
On the other hand, the current aptamer-related drugs used in clinical practice have challenges, including the long period 
of drug development and their characteristics such as degeneration and affinity. To overcome these challenges, more 
types of aptamer need to be developed while existing aptamers may be improved to facilitate their application to eye 
disorders.

Conclusion
In this study, the development of aptamers in ophthalmology was systematically reviewed. Several types of aptamers 
were used for targeting in drug development or improvement of drug performance for conditions such as glaucoma, 
AMD, DR, uveal melanoma, and retinoblastoma. Besides, aptamer was also used for the detection of the pathogenesis of 
eye disorders. The development of aptamers in ophthalmology may lead to further clinical applications in the future.

Abbreviations
AMD, age-related macular degeneration; DR, diabetic retinopathy; SELEX, systematic evolution of ligands by expo-
nential enrichment; VEGF, vascular endothelial growth factor; PDGF, platelet-derived growth factor; FGF2, fibroblast 
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