a Open Access Full Text Article

ORIGINAL RESEARCH

RETRACTED ARTICLE: Upregulated miR-27a-3p Indicates a Poor Prognosis in Pancreatic Carcinoma Patients and Promotes the Angiogenesis and Migration by Epigenetic Silencing of GATA6 and Activating VEGFA/VEGFR2 Signaling Pathway

> This article was published in the following Dove Press journal: OncoTargets and Therapy

Xuefeng Rao¹ Lihui Wan² Zhigang lie³ Xiaoliang Zhu¹ Junxiang Yin¹ Hong Cao¹

¹Department of General Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, People's Republic of China; ²Department of Gastroenterology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, People's Republic of China; ³Department of General Surgery, The First Affiliat Hospital of Nanchang University, Nanchang 330006, People's public of China

Correspondence: Lihui Wan Department of Gastroenterology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No. 92, Aiguo Road, Donghu District, Nanchang 330006, People's Republic of China Tel +86-791-86896220 Email wanli95hui@aliyun.com

Background: Abnormal miR-27a-3, express has been frequently reported in several types of human cancer and contributes to progress. However, the role and potential molecular mechanism of miR-27a-3p in the progression of particular carcinoma have not been clarified. Materials and methods. The expression of miR-27a-3p and GATA binding protein 6 (GATA6) in pancreatic carcoma tissues nd cell lines was evaluated by quantitative real-Vestern blow, analys. The relationship between clinical pathologic time PCR and 27a expression was analyzed with Chi-square test. The regulatory features and mil mechanism of mi 272 ATA6 was confirmed by luciferase reporter assay and . The effects of miR-27a-3p by targeting GATA6 on cell angiogenesis bioinf analy nigratic ssed by capillary tube formation and wound healing assays. were a

ults: expression was significantly upregulated in pancreatic carcinoma ad cell lines. Highly expressed miR-27a-3p was closely related to more lymph tissu tasis, present peritoneal metastasis, and poor prognosis in patients with pancreatic node me carcinoma. MiR-27a-3p promoted migration and angiogenesis of pancreatic carcinoma cells

ctivating vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor receptor 2 (VEGFR2) expression. A significantly negative correlation between GATA6 mRNA and miR-27a-3 expression was found in pancreatic carcinoma samples. Modulation of miR-27a-3p could alter GATA6 expression in pancreatic carcinoma cells. GATA6 was identified as a functional target gene of miR-27a-3p, and GATA6 knockdown partially reversed the effects of miR-27a-3p siliencing on the migration and angiogenesis of pancreatic carcinoma cells by regulation of VEGFA/VEGFR2 pathway.

Conclusion: Upregulated miR-27a-3p indicates a poor prognosis in pancreatic carcinoma patients and promotes the angiogenesis and migration by epigenetic silencing of GATA6 and activating VEGFA/VEGFR2 signaling pathway, and indicating miR-27a-3p may be a promising therapeutic target for pancreatic carcinoma treatment.

Keywords: miR-27a-3p, pancreatic carcinoma, GATA6, migration, VEGFA/VEGFR2

Introduction

an

Pancreatic cancer is a highly lethal malignancy with a 5-year survival rate of less than 5% and is characterized by early metastasis, rapid invasion, and resistance to standard treatments.^{1,2} Pancreatic ductal adenocarcinoma is the most common form, which

OncoTargets and Therapy 2019:12 11241-11254

CO 000 Coll9 Rao et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

accounts for more than 90% of all the pancreatic cancer cases.³ Curative resection is the core of successful pancreatic carcinoma therapy, but only 15-20% of the patients are diagnosed during the early stages of cancer when surgical resection can be offered. A large proportion of patients are diagnosed with locally advanced or metastatic cancer at the time of presentation. Although an increasing number of therapies, including chemotherapy, radiotherapy, and molecular therapy, have been progressed in recent years, the overall 5-year survival rate of pancreatic carcinoma patients is still less than 7%.⁴ During past decades, though several risk factors have been illustrated to associate with the tumorigenesis of pancreatic carcinoma, little progress has made on the molecular mechanisms underlying the progression of pancreatic carcinoma.5-7 Therefore, identifying novel biomarkers involved in pancreatic carcinoma progression is necessary to provide early diagnosis and develop effective therapeutic options.

MicroRNAs (miRNAs, miRs) are a family of small noncoding RNA that inhibit gene expression by directly binding with the 3'-untranslated regions (UTRs) of messenger RNA (mRNA).⁸ The dysregulation of miRNAs in carcinogenesis has been extensively examined in the past decade, which are closely associated with tumor initiation, metastasis, a relapse.^{9,10} Changes in miRNA expression pattern have bee linked to profound effects on tumor cell phenotypenin pancreatic carcinoma. For instance, miR-10a-5p gulate ranscription factor AP-2 gamma (TFAP2 to gemcitabine resistance in pancreatic car noma /iR-148a suppresses epithelial-mesenchymal, sition and asion of pancreatic carcinoma cells by tageting that family member 10B (WNT10B).¹² MiR-337 rgets homeou B7 (HOXB7) to suppress pancreatic arcinopp cell promeration and invasion.¹³ In addition, R-18-5p, ETS proto-oncogene 1 (ETS1), and MET roto-on ene (c-V x) signaling pathway exacerbate a por progrosis of preatic carcinoma patients after radiation therapy

MiR-27a-3, etcs an isoform of mature miR-27a, is located at human promosome 19p13 and has been found to be frequently aberrant expressed and contribute to tumor progression in various types of cancer.¹⁵ Using HiSeq 2000 sequencing from three independent cohorts (healthy control, benign pancreatic diseases, and pancreatic cancer), Wang et al identified that combination of serum CA19-9 and peripheral blood mononuclear cell's miR-27a-3p level can differentiate pancreatic cancer from benign pancreatic diseases.¹⁶ Recently, Silvestris et al speculated that miR-27a-3p has an important angiogenic activity in pancreatic carcinoma.¹⁷ However, the biological role and potential mechanism of miR-27a-3p in pancreatic carcinoma remain to be elucidated. In this study, we detected the expression patterns of miR-27-3p in pancreatic carcinoma tissues and cell lines, and determined the biological roles of miR-27a-3p on pancreatic carcinoma cell migration and angiogenesis in vitro. We further identified the underlying mechanism of miR-27a-3p on its target gene, GATA6, in the migration and angiogenesis of pancreatic carcinoma, which may shed light on their targeted applications in these cancer there is

Materials and Method Clinical Samples

Twenty-eight pairs of esh par reatic carinoma tissues and their corresponding amor tisches were collected between Januar 2006 to the 214 following radical surgical rest ion biopsy from Department of General Surgery, Jiangxi Provincial People's Hospital Affiliated to Nang ang University (Ninchang, China). None of the eatic carcine ma patients received any preoperative pan stoperative chemotherapy and/or radiotherapy. All and had een confirmed diagnosis based on hemaspecim in-eosin and immunohistochemical staining by nologists. The study was approved by the ethics committee of Jiangxi Provincial People's Hospital Affiliated to anchang University. For the use of these clinical materials for research purposes, consent forms were signed from all patients and conducted in accordance with the regulations of Declaration of Helsinki in 1964. The clinical data were collected from each patient, including age, gender, tumor size, tumor differentiation, clinical stage, location, lymph node metastasis, vascular invasion, and peritoneal metastasis. After excision, tissue specimens were immediately frozen in liquid nitrogen for subsequent analysis.

Cell Lines and Cell Culture

The normal human pancreatic ductal epithelial line (HPDE6-C7) and pancreatic carcinoma cell lines (AsPC-1 and Panc-1) were obtained from the Cell Bank of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (Shanghai, China). These cells were cultured in Dulbecco's modified Eagle's medium (DMEM; Gibco, NY, USA), supplemented with 15% fetal bovine serum (FBS; Gibco, NY, USA), 100 U/mL penicillin, and 100 μ g/mL streptomycin (Sigma-Aldrich, MO, USA). All cells were maintained in a 5% CO₂-humidified atmosphere at 37°C.

RNA Oligonucleotides and Cell Transfection

The miR-27a-3p inhibitor and the inhibitor scrambled control, miR-27a-3p mimic and the mimic scrambled control, and GATA6 small interfering RNA (siRNA) and the siRNA control were purchased from GeneCopoeia Company (Guangzhou, China). Cell transfection was performed by using Lipofectamine 2000 (Invitrogen, CA, USA) according to the manufacturer's protocols. AsPC-1 and Panc-1 cells were cultured in 12-well plates and transiently transfected with equal amounts (100 pmol) miR-27a-3p inhibitor and the inhibitor scrambled control, or miR-27a-3p mimic and the mimic scrambled control, and in some cases together with 2 μ g of GATA6 siRNA and the siRNA control. At 48-hr posttransfection, the transfected cells were collected for quantitative real-time PCR analysis.

RNA Isolation and Quantitative Real-Time PCR Analysis

Total RNA was isolated by using TRIzol reagent (Invitrogen) according to the manufacturer's instructions. The RNA samples (1 µg each) were then reverse-transcribed into cDNA using the Omniscript reverse transcription kit (Germany). Quantitative real-time PCR reaction was performed by using the Quantitect SyBr green PCR sys p (Qiagen). RNAU6B snRNA (U6) and glycer idehy -3-ph phate dehydrogenase (GAPDH) were d as p XNA and mRNA internal control, respective . The sr affic forward primer of miR-27a-3p was 5'-A oGTTCG' GGTTCACA GTGGCTAAGTTCCG-3'. T spec ic forward puner of U6 was 5'-ACGCAAATTCC GAAGCG. 3'. Reverse primers for miR-27a-3p and U were provided by Regen. The primers for GATA6 and C PDH y re as follows: GATA6: 5'-TTC CTACGCTTCGCATC (sense) -TGGTCGAGGTCAG TGAACA (2-3') utisens G , DH: 5'-GAGTCAACGGA TTTGC (CGT-3/ sense), 5-4TGATTTTGGAGGGGATCTC and miR-27a was calculated by using $2^{-\Delta\Delta Ct}$ method.

Wound Healing Assay

The impact of miR-27a-3p on the migration of pancreatic carcinoma cells was determined by wound healing assay. Briefly, AsPC-1 and Panc-1 cells were seeded to 6-well plates at a confluence of 60% and incubated overnight. At 24 hrs after transfection, an artificial wound was created onto the monolayer using a sterile 100 μ L tip. After scratching, the floating cells were washed with phosphate buffer saline

(PBS) for three times and the medium was replaced with fresh serum-free medium. Images of cell migration were captured at 0- and 12-hr time-points under a Zeiss inverted light microscope (LSM710, Zeiss, Germany) at \times 100 or 200 magnification.

Capillary Tube Formation Assay

In vitro capillary tube formation assay was performed to evaluate the effect of miR-27a-3p on angiogenesis. In brief, 200 µL of Matrigel (BD Biosciences Pharmingen, CA, USA) was added to each well of 24-well plates and blowed to polymerize at 37°C for 30 mins. Before the collary tus formation assay, to serum-starve human um ical vein e othelial cells (HUVECs; Cyagen Bic Liences, Suangzher, China), the cells were incubated in MCDB 131, per um (Gibco, NY, K mi ovascular growth supplement USA) containing Scients MA, U⁽ x) for 8 h at 37°C. Then, (Thermo Fish HUVECs . 10⁴ cells/www.rere grown in tumor cellderived media (NM) in a coated plate at 37°C. After 6 hrs, vere photos, phed under a Zeiss inverted light microthe ope to assess the formation of capillary-like structures. The anches represented the degree of in vitro umber of iogenesis

riferase Reporter Assay

The GATA6 3'-UTR-wild type (WT) vector was constructed by inserting the amplified 3'-UTR of human GATA6 into pmirGLO luciferase reporter plasmid. Subsequently, the binding sequences interacting with the miR-27a-3p "seed" (UGACACU) were mutated from ACUGUGA to A-A, and the mutant (MUT) GATA6 3'-UTR was also inserted into pmirGLO luciferase reporter plasmid to construct the GATA6 3'-UTR-mutant (MUT) vector. Then, GATA6 3'-UTR-WT or MUT vector (1 µg) and equal amounts (50 pmol) of the miR-27a-3p inhibitor, inhibitor scrambled control, miR-27a-3p mimic and mimic scrambled control were cotransfected into AsPC-1 and Panc-1 cells using Lipofectamine 2000. At 48-hr posttransfection, the cells were collected and analyzed for luciferase activity by using a Dual-Luciferase Reporter Assay system (Promega, WI, USA) under a Modulus Luminometer (Turner Biosystems, Sunnyvale, USA).

Western Blotting Analysis

Protein was quantified using the BCATM protein assay kit (Pierce, IL, USA). Protein (25 μ g each) was separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then blotted onto PVDF membranes (Millipore, CA,

USA). The membranes were blocked with 5% non-fat milk for 2 hrs at 37°C and incubated with anti-GATA6 antibody (1:1000; #5851; Cell Signaling Technology, Inc., Danvers, MA, USA), anti-VEGFA antibody (1:500; #sc-7269; Cruz Biotechnology, Inc., Santa Cruz, CA, USA), anti-VEGFR2 antibody (1:500; #9698; Cell Signaling Technology), and anti-GAPDH antibody (1:2000; #sc-47724; Santa Cruz Biotechnology, Inc.) for overnight at 4°C. After washing with Tris-Buffered Saline and Tween 20 (TBST) 3 times, the membranes were incubated with an anti-rabbit or mouse secondary antibody (1:2500; #sc-2357 and #sc-2005; Santa Cruz Biotechnology, Inc.) for 1 hr at 37°C. Finally, a 40:1 peroxide:luminol solution (Pierce) was added to the membranes and incubated for 5 mins at 37°C. The signals were captured and the band intensity was quantified using Bio-Rad Chemidoc XRS Gel Imaging System (Bio-Rad, CA, USA).

Statistical Analysis

The SPSS 17.0 statistical software package (SPSS, Chicago, IL, USA) was applied for statistical analysis. The association between miR-27a-3p expression and clinicopathological features was evaluated using χ^2 test. Survival data were analyzed using Kaplan–Meier methor and the log-rank test. One-way ANOVA with a Bonferron correction or Student's *t*-test was used to another the differences between groups. All data were expresentive of an average of three independent experiments of the inferences were indicated as P < 0.0.

Results

MiR-27a-3p Expression Is Upregulated in Pancreatic Carcolomatorissues and Cell Lines

To examine the miR-27a-3p in pancreaxpres. on patte quantitative real-time PCR analysis tic carcinot sampl 8 paired pancreatic carcinoma tissues and was performed their corresponding on-tumor tissues. Our results showed that miR-27a-3p had significantly increased expression in pancreatic carcinoma tissues as compared to the corresponding nontumor tissues (Figure 1A, P<0.05). In most cases, miR-27a-3p expression in tumor tissues was obviously higher than that in non-tumor tissues (Figure 1B, P<0.05). In addition, consistent with the results from pancreatic carcinoma samples, the expression levels of miR-27a-3p were also found to be markedly upregulated in the two pancreatic carcinoma cell lines (AsPC-1 and Panc-1) compared with that of the normal human pancreatic ductal epithelial line (HPDE6-C7) (Figure 1C, P < 0.05). Collectively, these data indicated that miR-27-3p is frequently overexpressed in pancreatic carcinoma tissues and cell lines.

Upregulated miR-27a-3p Is Correlated with Tumor Metastasis and Poor Prognosis in Patients with Pancreatic Carcinoma

We further examined the association between miR-27a-3p expression and clinicopathological features in pcreatic carcinoma patients using chi-square t xpression level of miR-27a-3p in pancrecic carcoma tissue was used as a cut-off value (0.49); I the 28 samples I pancreatic carcinoma, 12 sample 20.49 2.86%) and 16 samples (<0.49, 57.14%) we class into high and low miR-27a-3p expression groups, respectively. A shown in Table 1, high miR-27a-3p press was signing antly associated with more lymph node metastasis (0.05) and present peritoneal metas-<0.05). There was to statistically significant associatasis R-27a-3p expression and the other tion between 1 clinit pathological parameters, including age, gender, tumor size, tu. rentiation, location, vascular invasion, and stage. In addition, the prognostic value of miR-27aexpression was evaluated by Kaplan–Meier method and og-rank test, we found that highly expressed miR-27a-3p was osely related to poor prognosis in patients with pancreatic carcinoma (Figure 1D, P < 0.05). To conclude, these results provided some hint of potential metastatic role and poor prognosis for miR-27a-3p in pancreatic carcinoma.

MiR-27a-3p Promotes the Migration of Pancreatic Carcinoma Cells in vitro

In order to evaluate the potential role of miR-27a-3p on the metastasis of pancreatic carcinoma, we introduced miR-27a-3p inhibitor or inhibitor scrambled control into AsPC-1 and Panc-1 cells, meanwhile transfecting cells with miR-27a-3p mimic or mimic scrambled control. The data of quantitative real-time PCR assay confirmed that transfected miR-27a-3p inhibitor significantly decreased the expression levels of miR-27a-3p in AsPC-1 and Panc-1 cells (Figure 2A, P<0.05), whereas pancreatic carcinoma cells treated with miR-27a-3p mimic had significant higher miR-27a-3p levels than that cells transduced with mimic scrambled control (Figure 2B, P<0.05). Subsequently, wound-healing assay was conducted in pancreatic carcinoma cells, and data showed that overexpression of miR-27a-3p significantly increased AsPC-1 and

Figure 1 Expression levels of miR-27a-3p in pacreatic carcino a samples and cell lines. (**A**) The average expression level of miR-27a-3p in pancreatic carcinoma tissues was over 3.48-fold higher than non-tumor tissues. (**M**) MiR-27a-3p expression was calculated by the $2^{-\Delta\Delta Ct}$ method in 28 pancreatic carcinoma samples; in most cases, miR-27a-3p levels in pancreatic carcinoma tissue, were our usly higher than those in non-tumor tissues. (**C**) The expression levels of miR-27a-3p were remarkably higher in the AsPC-1 and Panc-1 cell lines than the HPDE6-C. It line. (**D**) Pancreatic carcinoma patients with high miR-27a-3p expression (n = 12) exhibited significantly poorer overall survival rate than those functions with low miR-2. (**B**) expression (n = 16) as defined by log-rank test. *P<0.05.

Panc-1 cells migra prom vitro (Figure 2C, P < 0.05). Nevertheless meanigraph ability of pancreatic carcinoma cells we significantly blocked by miR-27a-3p inhibitor (Figure 20, P = 0.05). In ort, these results demonstrated that miR-27a-3p bomotes the migratory capability of pancreatic carcinoma cells.

MiR-27a-3p Induces HUVECs Angiogenesis in vitro

Angiogenesis is a hallmark of cancer, and numerous studies have demonstrated the important role of angiogenesis in facilitating tumor metastasis.¹⁸ Therefore, we attempted to explore whether miR-27a-3p had a promotive effect on angiogenesis. HUVECs were used as the source of endothelial cells to perform in vitro capillary tube formation assay. Firstly, we transfected miR-27a-3p mimic or mimic scrambled control and miR-27a-3p inhibitor or inhibitor scrambled control into HUVECs to examine changes in tube formation. As shown in Figure 3A, miR-27a-3p overexpression significantly increased tube formation capability compared with the mimic scrambled control group (P<0.05), while miR-27a-3p inhibitor reduced tube formation (Figure 3B, P<0.05). Since the VEGFA/VEGFR2 pathway plays a key role in angiogenesis both physiologically and pathologically, we next detected the expression levels of VEGFA and VEGFR2 in AsPC-1 and Panc-1 cells after transfection of miR-27a-3p mimic and inhibitor. The data showed that overexpression of miR-27a-3p upregulated the protein expression levels of VEGFA and

Characteristics	Case (No.)	Expression of miR-27a-3p		χ ²	P-Value
		High	Low		
Age (years)					
<50	7	3	4	<0.001	1.000
≥50	21	9	12		
Gender					
Male	15	7	8	0.191	0.662
Female	13	5	8		
Location					
Head	10	6	4	1.867	0.243
Body/tail	18	6	12		
Tumor size (cm)					
<4	19	10	9	2.306	0.223
≥4	9	2	7		
Tumor differentiation					
High/medium	ш	7	4	3.194	0.121
Low	17	5	12		
Vascular invasion					
Absent	23	9	14	0.730	0.624
Present	5	3	2		
Peritoneal metastasis					
No	21	6	15	7.000	0.023*
Yes	7	6	T		
Lymph node metastasis					
Absent	10	I	9	£ 1	0.
Present	18	11	7		
Clinical stage					
1/11	12	3		2.734	9,136
III/IV	16	9	7		

Table	I.	miR-27a-3p	Expression	and	lts	Association	with
Clinicop	batl	hological Feat	ures of Panc	reatic	Ca	rcinoma Patie	nts

Note: *P<0.05.

VEGFR2 (Figure 3C, P = 05), and miR-27a-3p knockdown downregulated VEGFA and EGFR2 expression (Figure 3D, P<0.05). Together, there results the onstrated that miR-27a-3p facilitates be angle. The efpance atic carcinoma cells by activating VEGFR2 signaling pathway.

GATA6 Is the Target Gene of miR-27a-3p

To elucidate the potential mechanism of miR-27a-3p in pancreatic carcinoma metastasis, we predicted that the "seed" sequence (UGACACU) of miR-27a-3p could completely bind the ACUGUGA of GATA6 3'-UTR sequences using TargetScan and PicTar computer-aided algorithms (Figure 4A). Then, we analyzed the correlation between GATA6 mRNA levels and miR-27a-3p **Dovepress** expression in 28 pancreatic carcinoma samples. As shown in Figure 4B, a significantly negative correlation between GATA6 mRNA levels and miR-27a-3 expression was found in pancreatic carcinoma samples (P<0.01). Further study showed that transfection of AsPC-1 and Panc-1 cells with miR-27a-3p mimic significantly decreased the mRNA and protein expression levels of GATA6 compared with the mimic scrambled control treated cells (Figure 4C and E, P<0.05), while transfection with miR-27a-3p inhibitor prominently increased the levels of GATA6 expression in AsPC 1 and Panc-1 cells

To identify whether miR-27a p could dire tly target GATA6 expression, a lucif use reporter assay was conducted. Luciferase reporter plasmid, or taining the GATA6 3'-UTR-WT Toure A) or MUT (Figure 5B) sequence was structe to verify the binding site . When AsPC-1 and between GAT, and miR-2 transfected with GATA6 3'-UTR-Panc-1 cells were WT vector, miR-27a-3p mimic or mimic bled control, and miR-27a-3p inhibitor or inhibitor scra scra abled contr the data showed that miR-27a-3p mim significally downregulated relative luciferase A6 3'-UTR-WT vector in pancreatic caractivity U CIP sells compared with the mimic scrambled control Igure 5C, P<0.05), but not GATA6 3'-UTR-MUT vecor. In contrast, transfected with miR-27a-3p inhibitor in ancreatic carcinoma cells obviously increased relative luciferase activity of GATA6 3'-UTR-WT vector compared with the inhibitor scrambled control (Figure 5D, P<0.05), but not GATA6 3'-UTR-MUT vector. These observations indicated that GATA6 is the target gene of miR-27a-3p, and miR-27a-3p directly targets GATA6 to downregulate endogenous GATA6 expression in pancreatic carcinoma cells.

(Figure 4D and F, P<0.05).

MiR-27a-3p/GATA6/VEGFA/VEGFR2 Signaling Pathway Is Responsible for the Migration and Angiogenesis of Pancreatic Carcinoma Cells

To test the hypothesis that miR-27a-3p/GATA6/VEGFA/ VEGFR2 signaling pathway was involved in the metastasis and angiogenesis of pancreatic carcinoma cells, GATA6 siRNA or the siRNA control was transfected into pancreatic carcinoma cells to knockdown GATA6 expression. The results revealed that AsPC-1 and Panc-1 cells transfected with GATA6 siRNA exhibited lower

Figure 2 MiR-27a-3p promotes the metastasis of pancreatic carcinoma cells in vitro. (A) Expression changes of miR-27a-3p in AsPC-1 and Panc-1 cells after transfection of miR-27a-3p inhibitor or inhibitor scrambled control. (B) Pancreatic carcinoma cells treated with miR-27a-3p mimic had significant higher miR-27a-3p expression than that cells transfected with mimic scrambled control. (C) MiR-27a-3p mimic significantly increased AsPC-1 and Panc-1 cells migration compared with the mimic scrambled control group. (D) MiR-27a-3p inhibitor significantly suppressed AsPC-1 and Panc-1 cells migration. *P<0.05.

GATA6 protein expression than cells treated with the siRNA control (Figure 6A, P<0.05). Interestingly, GATA6 siRNA could decrease the protein expression of GATA6 in AsPC-1 and Panc-1 cells treated with miR-27a-

3p inhibitor (Figure 6B, P < 0.05). Of note, miR-27a-3p inhibitor-treated AsPC-1 and Panc-1 cells transfected with the GATA6 siRNA exhibited significantly higher cell migration (Figure 6C, P < 0.05) and tube formation

Figure 3 MiR-27a-3p encreases the angiogenesis of pancreatic carcinoma cells in vitro. (A) The tube formation capacities of HEVECs were observed after transfected miR-27a-3p mimic or mimic scraptic control. (B) MiR-27a-3p knockdown significantly decreased tube formation capability compared with inhibitor scrambled control group. (C) The protein expression of VEGFA and VEGFR2 in AsPC-1 and Panc-1 cells was detected by Western blotting analysis after overexpression of miR-27a-3p. GAPDH was used as an internal control. (D) MiR-27a-3p knockdown downregulated the VEGFA and VEGFR2 protein expression in pancreatic carcinoma cells. *P<0.05.

capability (Figure 6D, P<0.05) than cells co-transfected with the miR-27a-3p inhibitor and siRNA control. Moreover, the protein expression levels of VEGFA and VEGFR2 in miR-27a-3p inhibitor-treated AsPC-1 and Panc-1 cells were partially reversed upon knockdown of GATA6 (Figure 6E, P<0.05). This model of miR-27a-3p/ GATA6/VEGFA/VEGFR2 signaling pathway in pancreatic carcinoma is thus summarized in Figure 7. Thus, our study suggested that upregulated miR-27a-3p promotes cell angiogenesis and migration of pancreatic carcinoma via epigenetic silencing of GATA6 and activating VEGFA/VEGFR2 signaling pathway.

Discussion

Increasing number of studies has demonstrated that aberrant expression of miRNAs contributes to tumor initiation and progression in pancreatic carcinoma.¹⁹ Some of miRNAs are associated with the metastatic abilities of pancreatic carcinoma cells. For example, Fu et al reported that downregulated miR-98-5p promotes pancreatic carcinoma cell proliferation and metastasis by downregulation of MAP4K4 and inhibition of the downstream MAPK/ERK signaling.²⁰ Xiong et al showed that deregulated expression of miR-107 inhibits metastasis of pancreatic carcinoma cells through inhibition PI3K/Akt signaling pathway.²¹ Yu et al demonstrated that miR-448 suppresses metastasis of pancreatic carcinoma cells through targeting JAK1/STAT3 signaling pathway.²² Fan et al suggested that miR-454 acts as a suppressor

Figure 5 GATA6 was the direct to t gene of miR-27a-3p. FGLO luciferase reporter plasmid containing the GATA6 3'-UTR-WT (A) or MUT (B) sequence was ATA6 and miR-27a-3p. (C) In pancreatic carcinoma cells, miR-27a-3p overexpression suppressed the relative luciferase constructed to verify the binding e betweer a-3p mimic-treated pancreatic carcinoma cells have no influence on the relative luciferase activity of GATA6 3'-UTR-MUT activity of GATA6 3'-UTR-WT tor. miP niR-27a-3p bibition augmented the relative luciferase activity of GATA6 3'-UTR-WT vector. miR-27a-3p inhibitor-transfected vector. (D) In pancreatic carcinor native luciferase activity of GATA6 3'-UTR-MUT vector. *P<0.05. pancreatic carcinoma c nce on the no i

in tumor puliferation projection in the provided and the protection of the protectio

MiR-27a-3p is a member of the miR-23a~27-24a cluster. Recent studies have demonstrated that miR-27a-3p is frequently upregulated in several metastatic tumors, including osteosarcoma, colorectal cancer, nasopharyngeal carcinoma, and gastric cancer, and contributes to tumor progression and metastasis.^{15,24–26} To confirm the feature

of miR-27a-3p expression with pancreatic carcinoma, we examined miR-27a-3p expression in 28 paired pancreatic carcinoma samples with real-time PCR analysis. The results showed that miR-27a-3p levels were significantly upregulated in pancreatic carcinoma tissues and cell lines compared with non-tumor tissues and normal human pancreatic ductal epithelial lines, respectively, and high miR-27a-3p expression was associated with more lymph node metastasis, present peritoneal metastasis, and poor prognosis. The data were in line with previous works of literature showing an upregulation of miR-27a-3p in several metastatic

Figure 6 GATA6 knockdown partially reversed the effects of -3p on t etastasis and angiogenesis of pancreatic carcinoma cells by regulation of VEGFA/VEGFR2 pathway. (A) Transfection of GATA6 siRNA could decrease e GAT ression in AsPC-1 and Panc-1 cells. (B) Western blotting analysis of GATA6 expression in protein GATA6 siRNA or the siRNA control. (C) GATA6 inhibition reversed the migrationmiR-27a-3p inhibitor-treated pancreatic carcinoma cell cer transf ed with ei suppressive effects of miR-27a-3p inhibitor on pancre carcing -27a-3p inhibitor-treated AsPC-1 and Panc-1 cells transfected with the GATA6 siRNA n blotting was performed to determine the protein expression levels of VEGFA in miR-27a-3p inhibitorexhibited significantly higher tube formation capa ty. (L ed with GA treated pancreatic carcinoma cells after transf siRNA. The protein expression levels of VEGFR2 in miR-27a-3p inhibitor-treated AsPC-1 and Panc-1 cells TA6. *P<0.05. were partially reversed upon knockdown

tumors,^{24–26} not only confirming the overexpression pattern of miR-27a-3p but lso surgesting an important metastatic function and mor progressis of prox-27a-3p in the progression of procreatily arcino p

As a the role of miR-27a-3p in metastatic tumor, overexpression a miR-27a-3p promoted gastric cancer cell migration in thro and in vivo.¹⁵ MiR-27a-3p inhibition suppresses malignant phenotypes of osteosarcoma cells.²⁴ Consistent with these reports,^{15,24} our results showed that overexpression of miR-27a-3p significantly promoted the migration of pancreatic carcinoma cells and induced HUVECs angiogenesis in vitro. Consistently, miR-27a-3p knockdown was found to reduce the migration and angiogenesis in vitro. Angiogenesis is a fundamental process for tumor progression, and tumor cells can produce a number of growth factors to modulate angiogenesis. Evidence has shown that VEGFA/VEGFR2 pathway plays a critical role in regulating angiogenesis.²⁷ VEGFA induces biological effects in a paracrine/autocrine manner by binding to its receptors, especially VEGFR2.²⁸ In the current study, we also found that miR-27a-3p promoted the angiogenesis of pancreatic carcinoma cells by activating VEGFA/VEGFR2 signaling pathway, and blockade of miR-27a-3p reduced angiogenesis via suppressing VEGFA/VEGFR2 expression. The data provided substantial pieces of evidence that miR-27a-3p promotes the migration and angiogenesis of pancreatic carcinoma cells.

As miRNAs execute their biological functions by regulating the expression of their target genes, identifying the target genes of miR-27a-3p is important to illustrate the potential mechanism of miR-27a-3p in the metastasis of pancreatic carcinoma cells. Several genes have been

MiR-27a-3p/GATA6/VEGFA/VEGFR2 signaling pathway in pancreatic carcinoma

Figure 7 Schematic of 27a-3, ATA6/VF A/VEGFR2 signaling pathway in pancreatic carcinoma.

reported as opter an analysis of miR-27a-3p including MAX interactor 1 dimerization protein (MXI1), F-box and WD repeat domain-containing 7 (FBXW7), cadherin 5 (CDH5), and B-cell translocation gene 2 (BTG2).^{15,29–31} GATA6 is a member of an evolutionarily conserved family of zinc finger transcription factors that bind to the (A/T) GATA(A/G) consensus sequence to activate or repress gene expression, which is found to be aberrantly expressed in several types of cancers and functions as an oncogene or tumor suppressor according to the tumor origin.³² An oncogenic role was proposed for GATA6 in pancreatic

carcinoma based on the occurrence of GATA6 gains/ amplifications in a small proportion of tumors, whereas a tumor-suppressive role of GATA6 has been postulated in pancreatic carcinoma mouse model.^{33,34} Recently, Martinelli et al provided mechanistic insight into the tumor-suppressive function of GATA6 in pancreatic carcinoma.³⁵ GATA6 is a regulator of canonical epithelial differentiation, and loss of GATA6 expression is both prognostic and predictive of response to adjuvant therapy. Importantly, our current analysis in pancreatic carcinoma samples also found that GATA6 mRNA levels inversely correlated with miR-27a-3p expression. These results were consistent with Martinelli's report.³⁵

Furthermore, bioinformatics analysis revealed that GATA6 would be theoretically a potential target of miR-27a-3p and GATA6 mRNA 3'-UTR has a putative miR-27a-3p binding site. As miRNAs usually negatively regulate gene expression by binding to 3'-UTR of target mRNAs, we speculated that miR-27a-3p could be capable of inhibiting GATA6 expression via the binding site in the mRNA 3'-UTR. Based on a luciferase reporter assay, we confirmed that miR-27a-3p directly binds to the 3'-UTR region of GATA6 mRNA in pancreatic carcinoma cells. In addition, we detected the endogenous expression of GATA6 after alteration of miR-27a-3p levels in AsPC-1 and Panc-1 cells. As expected, following knockdown of miR-27a-3p, the mRNA and protein expression levels of GATA6 expression were significantly increased, whereas transfection with miR-27a-3p mimic obviously decreased the levels of GATA6 expression.

The above data indicated that miR-27a-3p directly targeted GATA6 to downregulate endogenous GATA6 expression in pancreatic carcinoma cells. These studies encouraged us to hypothesize that miR-27a-3p might-exert its metastatic role by downregulation of GATA6. In st of this hypothesis, reduced GATA6 expression by GA siRNA was noted in miR-27a-3p inhibitor odh pancr tic carcinoma cells. Rescue experiment provide pieces evidence that miR-27a-3p inhibitor-tic ted SPU Panc-1 cells transfected with the GATA6 s. NA exhibited significantly higher cell migration and tube for ation capability. Moreover, GATA knockdow reversed the protein expression levels of ZGFA and VEG in AsPC-1 and Panc-1 cells by net-27a-2 inhibitor. Herein, our results JATA6/ZGFA/VEGFR2 signalimplied that miR-27a onsib. for the migration and angiogening pathw is reancreati carcinoma cells. However, it should be esis of mentione, the miR-27a-3p can also downregulate target genes other the GATA6. Therefore, whether there are other signaling pathwars of miR-27a-3p-mediated metastatic role in pancreatic carcinoma needs further study.

In conclusion, our findings demonstrated that miR-27a-3p is upregulated in pancreatic carcinoma, and miR-27a-3p promoted the migration and angiogenesis of pancreatic carcinoma cells. GATA6 as miR-27a-3p targeting gene played a critical role in the activation of VEGFA/ VEGFR2 signaling pathway during metastatic progression of pancreatic carcinoma. These observations highlight a rationale to investigate the therapeutic benefits of miR-27a-3p in the treatment of pancreatic carcinoma.

Acknowledgment

The authors thank Taiyuan Li from Department of General Surgery, The First Affiliated Hospital of Nanchang University for experimental assistance.

Disclosure

The authors declare that they have no competing interests.

References

- 1. Siegel RL, Miller KD, Jerch A. C. er statistics 016. *CA Cancer J Clin*. 2016;66(1):7–30:10.3322/c. 2133
- Vincent A, Hermann, Schull R, 1910 RH, Goggins M. Pancreatic cancer. *Suncet.* 11;378(9791):607–620. doi:10.1016/ S0140-6736(14)2230.
- Zhang Y, Yug C, Chengy et al. Multi lagents for pancreatic ductal adenocation pai: emerging the peutics and future directions. *J Hen. tol Onc* 2018;11(1):14. doi:10.1186/s13045-017-0551-7
- 4. Zins M, Matos C, Passinotto C. Pancreatic adenocarcinoma staging era of preor ative chemotherapy and radiation therapy. *Radiology*. 2018;287(2):374–390. doi:10.1148/radiol.2018171670
- Maitra A, Kun SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. *Int Pract Res Clin Gastroenterol*. 2006;20(2):211–226. doi:10.1016/j.bpg.2005.10.002
- Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. *Nat Rev Clin Oncol.* 2010;7(3):163–172.
 10.1038/nrclinonc.2009.236
- Rossi ML, Rehman AA, Gondi CS. Therapeutic options for the management of pancreatic cancer. *World J Gastroenterol.* 2014;20 (32):11142–11159. doi:10.3748/wjg.v20.i32.11142
- Bartel DP. MicroRNAs: target recognition and regulatory functions. *Cell*. 2009;136(2):215–233. doi:10.1016/j.cell.2009.01.002
- Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–866. doi:10.1038/nrc1997
- Wang Z. Editorial (Thematic Issue: advances with microRNAs in tumorigenesis and cancer therapy). *Curr Pharm Des.* 2014;20 (33):5245. doi:10.2174/1381612820666140128223856
- Xiong G, Huang H, Feng M, et al. MiR-10a-5p targets TFAP2C to promote gemcitabine resistance in pancreatic ductal adenocarcinoma. *J Exp Clin Cancer Res.* 2018;37(1):76. doi:10.1186/s13046-018-0739-x
- Peng L, Liu Z, Xiao J, et al. MicroRNA-148a suppresses epithelial-mesenchymal transition and invasion of pancreatic cancer cells by targeting Wnt10b and inhibiting the Wnt/beta-catenin signaling pathway. *Oncol Rep.* 2017;38(1):301–308. doi:10.3892/or.2017. 5705
- Zhang R, Leng H, Huang J, et al. miR-337 regulates the proliferation and invasion in pancreatic ductal adenocarcinoma by targeting HOXB7. *Diagn Pathol*. 2014;9:171. doi:10.1186/s13000-014-0171-2
- Tomihara H, Yamada D, Eguchi H, et al. MicroRNA-181b-5p, ETS1, and the c-Met pathway exacerbate the prognosis of pancreatic ductal adenocarcinoma after radiation therapy. *Cancer Sci.* 2017;108 (3):398–407. doi:10.1111/cas.13159
- Zhou L, Liang X, Zhang L, et al. MiR-27a-3p functions as an oncogene in gastric cancer by targeting BTG2. *Oncotarget*. 2016;7 (32):51943–51954. doi:10.18632/oncotarget.10460
- Wang WS, Liu LX, Li GP, et al. Combined serum CA19-9 and miR-27a-3p in peripheral blood mononuclear cells to diagnose pancreatic cancer. *Cancer Prev Res (Phila)*. 2013;6(4):331–338. doi:10.1158/1940-6207.CAPR-12-0307

- Silvestris N, Danza K, Longo V, et al. Angiogenesis in adenosquamous cancer of pancreas. *Oncotarget*. 2017;8(56):95773–95779. doi:10.18632/oncotarget.v8i56
- Bielenberg DR, Zetter BR. The contribution of angiogenesis to the process of metastasis. *Cancer J.* 2015;21(4):267–273. doi:10.1097/ PPO.000000000000138
- Yonemori K, Kurahara H, Maemura K, Natsugoe S. MicroRNA in pancreatic cancer. J Hum Genet. 2017;62(1):33–40. doi:10.1038/ jhg.2016.59
- 20. Fu Y, Liu X, Chen Q, et al. Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4. *J Exp Clin Cancer Res.* 2018;37(1):130. doi:10.1186/s13046-018-0807-2
- 21. Xiong J, Wang D, Wei A, et al. Deregulated expression of miR-107 inhibits metastasis of PDAC through inhibition PI3K/Akt signaling via caveolin-1 and PTEN. *Exp Cell Res.* 2017;361(2):316–323. doi:10.1016/j.yexcr.2017.10.033
- 22. Yu DL, Zhang T, Wu K, et al. MicroRNA-448 suppresses metastasis of pancreatic ductal adenocarcinoma through targeting JAK1/STAT3 pathway. *Oncol Rep.* 2017;38(2):1075–1082. doi:10.3892/or.2017. 5781
- 23. Fan Y, Shi C, Li T, Kuang T. microRNA-454 shows anti-angiogenic and anti-metastatic activity in pancreatic ductal adenocarcinoma by targeting LRP6. Am J Cancer Res. 2017;7(1):139–147.
- 24. Liu J, Li M, Liu X, Liu F, Zhu J. miR-27a-3p promotes the malignant phenotypes of osteosarcoma by targeting ten-eleven translocation 1. *Int J Oncol.* 2018;52(4):1295–1304. doi:10.3892/ijo.2018.4275
- 25. Liang J, Tang J, Shi H, et al. miR-27a-3p targeting RXRalpha promotes colorectal cancer progression by activating Wnt/beta-catenin pathway. *Oncotarget*. 2017;8(47):82991–83008. doi:10.18632/ oncotarget.19635
- 26. Li L, Luo Z. Dysregulated miR-27a-3p promotes nasopharyngeal carcinoma cell proliferation and migration by targeting Mapk Oncol Rep. 2017;37(5):2679–2687. doi:10.3892/or.2017.5544

- Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. *J Cell Commun Signal*. 2016;10(4):347–354. doi:10.10 07/s12079-016-0352-8
- Shi L, Zhang S, Wu H, et al. MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway. *PLoS One.* 2013;8(10):e78344. doi:10.1371/journal.pone.00 78344
- 29. Xu W, Liu M, Peng X, et al. miR-24-3p and miR-27a-3p promote cell proliferation in glioma cells via cooperative regulation of MXI1. *Int J Oncol.* 2013;42(2):757–766. doi:10.3892/ijo.2012.1742
- 30. Wu XZ, Wang KP, Song HJ, Xia JH, Jiang Y, Wang YL. MiR-27a-3p promotes esophageal cancer cell proliferation via F-box and WD repeat domain-containing 7 (FBXW7) suppression. *Int J Clin Exp Med.* 2015;8(9):15556–15562.
- 31. Zhao N, Sun H, Sun B, et al. miR-2777 p suppress a tumor metastasis and VM by down-regulating V4 tadherin expression and inhibiting EMT: an essential role for vist-1 in HC Sci Rep. 2016;6:23091. doi:10.1038/srr...5091
- 32. Tian F, Chen J, Zheng S, et al. miR-124 targ a G to A6 to suppress cholangiocarcinoma cell invasion and metasta s. *BMC Cancer*. 2017;17(1):175. doi:10.110/js124.0-017-3166-z
- 33. Kwei KA, Bashyu CMD, Kang et al. Commic profiling identifies GATA6 as a complate oncogene oplificatin pancreatobiliary cancer. *PLoS Gener* 2008, N:e1000081. doi:10.1371/journal.pgen.1000081
- 34. Hermann PC, Sancho K, Kanamero M, et al. Nicotine promotes initiation and protocological operation of KRAS-subject pancreatic cancer via Gata6-dependent de afferentiation of acinar cuts in mice. *Gastroenterology*. 2014;147 :1119–1133 e1:14. doi:10.1053/j.gastro.2014.08.002
- 35. Leartinelli P, Carriso-de Santa Pau E, Cox T, et al. GATA6 regulates Excland tumour essemination, and is a marker of response to adjuvant chemic rapped a pancreatic cancer. *Gut.* 2017;66(9):1665–1676. doi:10.1136/gutjnl-2015-311256

OncoTargets and Therapy

Dovepress

Publish your work in this journal

OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of management programs and new therapeutic

Submit your manuscript here: https://www.dovepress.com/oncotargets-and-therapy-journal

agents and protocols on patient perspectives such as quality of life, adherence and satisfaction. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Rao et al