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Abstract: Multiple myeloma and non-Hodgkin’s lymphoma remain the most common 

 indications for high-dose chemotherapy and autologous peripheral blood stem cell rescue. While 

a CD34+ cell dose of 1 × 106/kg is considered the minimum required for engraftment, higher 

CD34+ doses correlate with improved outcome. Numerous studies, however, support targeting 

a minimum CD34+ cell dose of 2.0 × 106/kg, and an “optimal” dose of 4 to 6 × 106/kg for a 

single transplant. Unfortunately, up to 40% of patients fail to mobilize an optimal CD34+ cell 

dose using myeloid growth factors alone. Plerixafor is a novel reversible inhibitor of CXCR4 that 

significantly increases the mobilization and collection of higher numbers of hematopoietic pro-

genitor cells. Two randomized multi-center clinical trials in patients with non-Hodgkin’s lymphoma 

and multiple myeloma have demonstrated that the addition of plerixafor to granulocyte-colony 

stimulating factor increases the mobilization and yield of CD34+ cells in fewer apheresis days, 

which results in durable engraftment. This review summarizes the pharmacology and evidence 

for the clinical efficacy of plerixafor in mobilizing hematopoietic stem and progenitor cells, and 

discusses potential ways to utilize plerixafor in a cost-effective manner in patients with these 

diseases.
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Introduction
High-dose chemotherapy with autologous stem cell transplantation (ASCT) remains 

an important treatment modality for patients with non-Hodgkin’s lymphoma (NHL) 

and multiple myeloma (MM). For patients with aggressive NHL, mostly diffuse large 

B cell lymphoma, only 40% can be expected to remain disease-free after completing 

primary chemotherapy.1 However, few patients with relapsed disease can be cured 

with conventional dose chemotherapy. For the majority of patients who relapse, ASCT 

remains the best curative option, particularly for patients with chemotherapy-sensitive 

disease, 40% to 50% of whom remain disease free.2–4 For patients with MM, while 

not curative, ASCT is associated with the highest complete remission rate, and improved 

progression-free and overall survival compared with convention chemotherapy.5–7 

Furthermore, at least a subset of MM patients, who achieve less than a very good 

partial response, may benefit from tandem ASCT.8,9 While the role of ASCT in the 

context of treatment with novel antimyeloma drugs (such as lenalidomide and bort-

ezomib), is debated and requires reinvestigation, it is expected that high-dose therapy 
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with ASCT will remain an important part of front-line and 

relapsed MM for some years. Indeed, the best reported results 

for MM patients are with tandem cycles of high-dose che-

motherapy with ASCT plus novel antimyeloma agents.10,11 

Today, MM and NHL remain the most common indications 

for high-dose chemotherapy with ASCT.12

Autologous hematopoietic stem and progenitor cells 

(HSPC) are infused following high-dose chemotherapy to 

mitigate prolonged or permanent myelosuppression, and 

can be harvested from the bone marrow or collected from 

peripheral blood by apheresis. The number of stem cells 

circulating in the peripheral blood, as defined by the number 

of CD34+ cells, however, accounts for ,0.06% of white 

blood cells.13,14 Therefore, CD34+ cells residing in the bone 

marrow have to be mobilized into the circulation prior to 

apheresis. Over the past 2 decades, mobilized autologous 

peripheral blood stem cells (PBSC) have replaced bone mar-

row as the source of hematopoietic stem cells following 

high-dose chemotherapy, offering a number of advantages 

over bone marrow harvesting. Infusion of PBSC is associated 

with significantly shorter durations of neutropenia and 

thrombocytopenia, reduction in platelet transfusions, faster 

times to engraftment, and fewer days of hospitalization.15–17 

Apheresis of PBSC is less invasive than bone marrow har-

vesting, and results in a significantly higher yield of CD34+ cells. 

The yield of CD34+ cells and the number of aphereses 

required for successful collection, however, is largely deter-

mined by the efficiency of stem cell mobilization. In addition, 

a number of studies have shown a significant correlation 

between CD34+ cell dose and rapidity of engraftment 

 following high-dose chemotherapy.18

The myeloid growth factors granulocyte macrophage-

colony stimulating factor (GM-CSF) and more commonly 

granulocyte-colony stimulating factor (G-CSF) have been 

used either alone or in combination with chemotherapy in 

different mobilization strategies.16 Both are approved for 

mobilizing PBSC. However, because a significant number 

of patients fail to mobilize sufficient PBSC with growth 

 factors, particularly those requiring tandem cycles of high-

dose chemotherapy,8,9 there has been increasing interest in 

methods to improve the yield of mobilized CD34+ cells. The 

CXCR4 antagonist plerixafor is the first noncytokine small 

molecule recently approved for mobilization of PBSC in 

combination with G-CSF in patients with NHL and MM. 

In the following sections, we summarize the current role of 

plerixafor for increasing mobilization of PBSC and discuss 

potential directions for its future use.

Cell dose requirement for 
autologous PBSC transplantation
Defining an optimal CD34+ target stem cell dose is important 

for identifying patients who mobilize poorly with current 

mobilizing strategies. The number of aphereses used to 

achieve the target cell dose also complicates the issue. 

In addition, it is possible that cells other than CD34+ cells 

in mobilized PBSC products may affect outcome beyond 

engraftment. Therefore, the optimal cell dose requirement 

for autologous transplantation remains uncertain.

While the minimum safest cell dose to provide engraft-

ment appears to be 1.0 to 1.5 × 106 CD34+ cells/kg, delayed 

engraftment, particularly of platelets, is common, indicating 

that higher doses should be used.19,20 In 243 patients with 

NHL, MM, breast cancer and other solid tumors undergoing 

ASCT, the number of CD34+ cells infused significantly 

affected the kinetics of neutrophil and platelet engraftment.21 

CD34+ cell doses $2.5 × 106/kg resulted in more rapid 

neutrophil engraftment compared with lower doses, although 

no significant difference in neutrophil recovery was observed 

between doses of 2.5 to 5.0 × 106/kg and .5.0 × 106/kg.21 

The kinetics of platelet recovery, however, appeared more 

affected by higher doses of CD34+ cells. Patients receiv-

ing ,2.5 × 106 CD34+ cells/kg had a significant delay in 

achieving platelet transfusion independence compared with 

patients receiving 2.5 to 5.0 × 106 CD34+ cells/kg, and patients 

in this intermediate dose group had slower recovery compared 

with those receiving .5.0 × 106 CD34+ cells/kg.21 Similar 

results were also reported in a larger analysis of 692 patients.22 

Ninety-five percent of patients who received $2.5 × 106 

CD34+ cells/kg achieved neutrophil recovery by day 18 

post-transplant, although an incremental improvement in 

neutrophil recovery was observed with increased numbers 

of CD34+ cells, with “optimal” CD34+ cell doses likely 

to be greater as evidenced by 95% probabilities of neutro-

phil recovery at 15 and 13 days post-transplant in patients 

receiving $5.0 or 7.5 × 106 CD34+ cells/kg, respectively.22 

 Similarly, for platelet recovery to $20 × 109/L, a CD34+ 

cell dose $5.0 × 106/kg appeared to be “optimal”, although 

doses .12 × 106 CD34+ cells/kg resulted in faster recovery.22 

Of note in the latter study, patients who required 2 apheresis 

procedures to collect .2.5 × 106 CD34+ cells/kg had slower 

platelet engraftment independent of the CD34+ cells dose, 

suggesting that qualitative differences in CD34+ cells col-

lected may be important.22 While other studies have shown 

that very high doses of CD34+ cells (.15 × 106/kg) can 

significantly reduce or eliminate severe thrombocytopenia 
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and platelet transfusion requirements,23,24 it remains uncertain 

whether this additional benefit is outweighed by the increased 

resources required to collect such a large number of progenitors. 

Collectively, these data have been used to support practice pat-

terns targeting a minimal CD34+ cell dose of 2.0 × 106/kg, and 

an “optimal” dose of 4 to 6 × 106/kg for a single transplant.25,26

There is emerging evidence that the immune cell content 

of mobilized PBSC products also affects autologous trans-

plant outcomes. Patients achieving higher absolute lympho-

cyte counts by day 15 or 30 after ASCT have significantly 

longer survival.27 Furthermore, the early recovery of lym-

phocytes after transplantation is related to the lymphocyte 

content of the infused HSPC product, including natural killer 

cell and CD8+ lymphocytes.28,29 Similarly, higher levels of 

CD80+ dendritic cells in the graft may be associated with 

improved survival.30 While these observations require con-

firmation, they have important implications for mobilization 

strategies. For example, G-CSF mobilized PBSC contain 

more lymphocytes compared with G-CSF plus cyclophos-

phamide mobilized products.27 Sargramostin (recombinant 

GM-CSF produced in yeast) plus cyclophosphamide mobi-

lizes significantly more CD80+ dendritic cells compared with 

cyclophosphamide plus G-CSF.30 As discussed below, 

plerixafor also appears to affect the immune cell content 

of the mobilized cell product and, therefore, might have a 

significant impact on long-term outcome of autologous 

transplantation.

Poor mobilization: risk factors  
and definitions
Clinical risk factors associated with 
impaired mobilization of stem cells
Several patient characteristics have been associated with 

reduced PBSC mobilization (Table 1); however these depend 

on the population studied. Also, for some factors it is 

not known whether they independently predict reduced 

mobilization, as not all factors have been included in 

 multivariable analyses. Older age has been associated 

with poor mobilization in lymphoma and MM patients 

in some studies,31–35 but not in others.36,37 Among nearly 

1000 MM patients, ,12 months of prior therapy, a platelet 

count .200 × 109/L, and lower age were predictive of suc-

cessful mobilization.38 In other studies, prior use of 

melphalan,39 interferon,40 and radiation therapy,41 elevated 

serum lactate dehydrogenase,42 renal impairment, and lower 

albumin level43 were associated with reduced mobilization. 

Prolonged use of lenalidomide is consistently associated with 

failure to mobilize, particularly with G-CSF alone.44–47 

Among patients receiving 3 or more cycles of lenalidomide, 

25% failed to mobilize.46 The risk of mobilization failure 

is also related to the duration of prior treatment with 

l enalidomide.44 The failure to mobilize sufficient CD34+ cells 

after lenalidomide, however, may be largely overcome by 

mobilization using chemotherapy plus G-CSF.46 On the other 

hand, bortezomib does not appear to adversely affect PBSC 

mobilization.48

Among NHL patients, the type and extent of prior 

 chemotherapy are important factors affecting CD34+ cell 

mobilization. Fludarabine is commonly used for treatment 

of indolent NHL and has been shown to severely affect PBSC 

mobilization.49,50 In addition, platinum- and etoposide-based 

regimens commonly used for salvage therapy increase the 

risk of mobilization failure.51,52 Age $60 years, platelet 

count ,150 × 109/L, and marrow cellularity ,30% nega-

tively affect PBSC mobilization.35 More recently, elevated 

serum ferritin levels have also been found to impair mobiliza-

tion in both lymphoma and myeloma patients.37

While many of the above risk factors have been associ-

ated with poor mobilization, their utility in making clinical 

decisions is somewhat limited, as their ability to predict 

patients who will need additional strategies remains imprecise. 

Similarly, molecular biomarkers such as lower plasma levels 

of flt-3,53 higher plasma stromal cell derived factor-1α 

(SDF-1α) levels, and higher CXCR4 expression on circu-

lating CD34+ cells54 have been associated with poor mobi-

lization, although prospective studies are needed to better 

define their role in identifying patients who might be difficult 

to mobilize.

Table 1 Factors associated with poor mobilization of stem cells 
in multiple myeloma and non-Hodgkin’s lymphoma patients

Multiple myeloma Non-Hodgkin’s lymphoma

Older age32–34 Older age31–33,35

More than 12 months of prior therapy38 Platelet count ,150 × 109/L35

Platelets count ,200 × 109/L38 Bone marrow cellularity ,30%35

Prior chemotherapy Prior chemotherapy
Melphalan39,41 Fludarabine49,50

interferon-α40 Platinum compounds51,52

Lenalidomide44,46 DHAP52

Prior radiation therapy41 elevated serum ferritin37

elevated LDH42

Renal insufficiency43

Low albumin43

Abbreviations: DHAP, dexamethasone, doxorubicin, cytarabine and cisplatin; 
LDH, lactate dehydrogenase.
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Definition of poor mobilization  
of stem cells
The proportion of patients eligible for ASCT who fail to 

mobilize an adequate number of CD34+ cells using myeloid 

growth factors has been variably reported between 5% 

and 40%,35,55–58 reflecting at least in part a lack of consensus 

on the definition of “poor mobilizers”. Poor mobilization 

has been variably defined based on CD34+ cell yield in 

apheresis products and/or on circulating CD34+ cells follow-

ing cytokine stimulation. Confounding the definition, a graft 

anticipated to provide adequate recovery of marrow function 

at one center may be considered unacceptable in another.59 

For example, failure to reach target CD34+ cell yields 

between 1 and 3 × 106/kg have defined products unsuitable 

at individual centers.60–63 In addition, the number of aphereses 

and the blood volume processed also affect the CD34+ cell yield. 

While some centers perform several apheresis procedures if 

needed to collect the target number of CD34+ cells,62 others 

do not;60 and the blood volume processed for each collection 

has varied from 7 to 35 L.64,65 In one suggested classification 

based on CD34+ cell yield, patients collecting .5 × 106 

CD34+ cells/kg after multiple aphereses were classified as 

easily mobilizable; those collecting 1 to 5 × 106 CD34+ cells/

kg as difficult to mobilize; and those collecting ,1 × 106 

CD34+ cells/kg as nonmobilizable.66

While definitions of poor mobilizers based on CD34+ cell 

yield may be useful for developing endpoints for clinical 

trials, cell yield is estimated retrospectively after leukapheresis 

and does not permit early intervention strategies with the 

advent of new mobilizing agents such as plerixafor (see below). 

More recently, a retrospective analysis of 840 NHL and MM 

patients undergoing PBSC mobilization using cytokines with 

and without chemotherapy has provided a more precise, and 

potentially more useful, definition of poor mobilization based 

on circulating blood CD34+ cell counts after maximal G-CSF 

stimulation,67 which correlate well with total CD34+ cells 

collected after 1 to 3 apheresis procedures.13,14 Patients with 

blood CD34+ cell counts ,20/µL, comprising 15.3% of 

those studied, were considered poor mobilizers. Patients with 

CD34+ cell levels between 11 and 19/µL were defined as 

“borderline” poor mobilizers (4.5%), those with CD34+ cell 

levels between 6 and 10/µL defined as “relative” poor mobi-

lizers (5.8%), and those with CD34+ cell levels #5/µL were 

defined as “absolute” poor mobilizers (5.0%).67 Importantly, 

all good and “borderline” poor mobilizers achieved the 

 collection goal of 2.0 × 106 CD34+ cells/kg after apheresis, 

although a greater number of aphereses were required. 

On the other hand, only 77% of “relative” and 40% of 

“ absolute” poor mobilizers achieved the collection goal, 

albeit with multiple aphereses.67 The definition of poor 

mobilizers in this way enables early identification of patients 

who are likely to mobilize poorly and prediction of those 

who may benefit from intervention using new mobilization 

strategies.

Plerixafor
Pharmacology and pharmacokinetics: 
metabolism, distribution, and excretion
Plerixafor (AMD-3100)(1′-[1,4-phenylenebis (methylene)]-

bis-1,4,8,11-tetra azacyclotetradecane) (C
28

H
54

N
8
; MW 

502.79 g/mol) is a bicyclam (Figure 1) that reversibly blocks 

binding of SDF-1α to its cognate receptor CXCR4,68,69 

an interaction critical to hematopoietic cell trafficking.70,71 

Plerixafor was originally developed for the treatment of 

human immunodeficiency virus (HIV) infection as it was 

found to inhibit HIV-1 and HIV-2 viral replication. Plerixafor 

inhibits virus-cell entry by blocking CXCR4, which interacts 

with envelope glycoprotein gp120 of T lymphotropic HIV 

strains, leading to fusion of viral and cell membranes.72 

In initial phase I trials with plerixafor conducted as a prelude 

to investigation in HIV patients, unexpected significant 

leukocytosis with associated mobilization of hematopoietic 

progenitor cells was observed.73,74 While the poor oral absorp-

tion of plerixafor, related to its high positive charge at physi-

ological pH, has limited its further development as an 

anti-HIV agent, a number of monocyclam derivatives with 

better solubility that block CXCR4 are currently under 

evaluation.75

Stem cells express CXCR4 and bind to stromal cell 

SDF-1α in the bone marrow matrix, which with other adhe-

sion molecules anchor stem cells within the niche.76–78 Mobi-

lization of stem cells from bone marrow to peripheral blood 

is observed following SDF-1α peptide analogs,79,80 

plerixafor,81,82 and the SDF-1 analog Met-SDF-1β,80 clearly 

indicating that altering SDF-1α/CXCR4 signaling, most 

likely by CXCR4 receptor downmodulation, enhances 

NH
H
N

HN

H
N

N

N

N
HN

H

Figure 1 Chemical structure of AMD3100; plerixafor.
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 trafficking out of the marrow to the periphery.79,80 Plerixafor 

induces HSPC mobilization in mice,81 dogs,83 monkeys,84 

and humans,81,85–87 and synergizes with G-CSF.81,82,88–90 

 Relevant to its potential use, however, neoplastic hematopoi-

etic cells also express CXCR4 and interact with stromal cells 

expressing SDF-1α, and may thus be co-mobilized,91 which 

may be particularly important for patients with acute leukemia. 

On December 15, 2008, the Food and Drug Administration 

(FDA) approved plerixafor (Mozobil®; Genzyme Corporation, 

Cambridge, MA) for mobilizing PBSC in combination with 

G-CSF for collection and subsequent ASCT in patients with 

NHL and MM.

Preparation
Mozobil is available in single-use vials containing 1.2 mL 

of a 20 mg/mL solution containing 24 mg of plerixafor and 

5.9 mg of sodium chloride in sterile water for subcutaneous 

(SC) injection. Plerixafor is intended for daily administration 

after patients have received G-CSF once daily for 4 days. 

Plerixafor should be administered approximately 11 hours 

prior to initiation of apheresis for up to 4 consecutive days.

Pharmacokinetics
Plerixafor is rapidly absorbed following SC injection. In both 

normal volunteers and patients with NHL and MM, peak 

plasma concentrations are reached within 30 to 60 minutes 

independent of dose.74 The maximum plasma concentrations 

of plerixafor follow linear dose-dependent kinetics in the 

dose range of 40 to 240 µg/kg, reaching average maximum 

concentrations of 121 to 854 ng/mL.90 Similarly, dose- 

dependent kinetics for the area under the curve (AUC) are 

also observed, with AUC from zero to 10 hours (AUC
0→10

) 

ranging from averages of 397 to 3183 ng/h/mL following 

40 to 240 µg/kg doses. In a population pharmacokinetic 

analysis in volunteers and patients, a two-compartment dis-

position model with first order absorption and elimination 

was found to best describe the plerixafor concentration-time 

profile. The distribution half-life (t
1/2α) was estimated to be 

0.3 hours with a terminal population half-life (t
1/2β) of 

5.3 hours in subjects with normal renal function. The apparent 

volume of distribution of plerixafor in healthy human vol-

unteers is 0.28 to 0.33 L/kg after a single SC dose in the dose 

ranges 40 to 240 µg/kg, and is similar in patients with MM 

and NHL,92 indicating that it is largely confined to the 

extravascular fluid space and not metabolized.

Plerixafor is mainly eliminated through renal excretion 

without hepatic metabolism. Approximately 70% of the dose 

is excreted unchanged in the urine during the first 24 hours. 

A phase I pharmacokinetic study in otherwise healthy sub-

jects with varying degrees of renal impairment showed an 

inverse correlation between plerixafor clearance and renal 

function as determined by the creatinine clearance (CrCl).93 

Compared to controls (CrCl . 90 mL/min) the mean AUC 

from time 0 to 24 hours of plerixafor was 7%, 32%, and 39% 

higher in subjects with mild (CrCl 51–80 mL/min), moderate 

(CrCl 31–50 mL/min), and severe (CrCl , 31 mL/min, not 

requiring dialysis) renal insufficiency, respectively, following 

a single dose of 240 µg/kg.93 Since some MM patients requir-

ing ASCT have renal impairment, these data indicate the 

need for dose reduction in patients with moderate to severe 

renal insufficiency. A plerixafor dose reduction to 160 µg/kg 

in patients with CrCl # 50 mL/min is expected to result in 

exposure similar to a dose of 240 µg/kg in patients with 

normal or mildly impaired renal function.93

Clinical efficacy of plerixafor
The vast majority of studies have investigated the efficacy 

of plerixafor in enhancing PBSC mobilization after 4 days 

of G-CSF. An initial phase II trial randomized 25 patients 

with MM and NHL to receive 10 µg/kg/day G-CSF, starting 

4 days before apheresis, with or without 240 µg/kg plerixafor 

6 hours before each apheresis on subsequent days.89 After a 

13- to 17-day washout, patients underwent a second mobi-

lization attempt using the opposite regimen. Peripheral blood 

CD34+ cells increased a median of 2.9-fold (range, 1.1–13) 

within 6 hours after plerixafor injection, which translated 

into higher CD34+ cells collected and fewer aphereses. Nine 

of 25 patients failed to collect $2 × 106 CD34+ cells/kg after 

G-CSF alone, while no patient receiving plerixafor plus G-CSF 

failed to collect this minimum number regardless of the sequence 

of the mobilization regimen. Only 8/25 patients mobilized 

with G-CSF alone collected $5 × 106 CD34+ cells/kg, com-

pared with 20/25 patients following G-CSF plus plerixafor.89 

Compassionate use protocols were approved in the United States 

and Europe allowing plerixafor to be used in combination 

with G-CSF in NHL, Hodgkin’s disease, and MM patients 

who failed to mobilize sufficient CD34+ cells with G-CSF 

or who were at high risk of failure.94–100 Table 2 summa-

rizes results for plerixafor used in patients who are poor 

mobilizers.

Two randomized, double blind, placebo-controlled, 

phase III clinical trials in patients requiring ASCT for MM 

(n = 302)101 and NHL (n = 298)102 have been reported (sum-

marized in Table 3), leading to FDA approval of plerixafor 
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for mobilization of PBSC in combination with G-CSF in 

patients with these diseases. In both trials, patients were 

randomized to receive G-CSF for 4 days prior to starting 

apheresis on the fifth day, or G-CSF 10 µg/kg/day for 4 days 

with plerixafor 240 µg/kg added the night before each 

apheresis started on the fifth day. A maximum of 4 apheresis 

procedures was allowed, with 3 blood volumes processed 

per procedure, to collect the target number of CD34+ cells. 

In both studies, patients could not have failed previous 

mobilization and were not at high risk for mobilization failure 

by virtue of having previously received 2 or more cycles of 

alkylator-based therapy or radiation to .50% of the pelvis 

for MM patients,101 and lymphomatous involvement of .20% 

of the bone marrow involvement or pelvic radiation for NHL 

patients,102 respectively. Both trials were multicentered, 

providing confidence that the clinical results may be general-

ized to populations similar to those included.

In the phase-III trial involving MM patients,101 the pri-

mary endpoint was the proportion of patients who collected 

6 × 106/kg or more CD34+ cells in 2 apheresis days or less. 

Secondary endpoints included the proportion of patients who 

collected $6 × 106 CD34+ cells/kg within four aphereses, 

the number of apheresis days required to reach $6 × 106 

CD34+ cells/kg, and engraftment kinetics. G-CSF plus 

Table 2 Protocols evaluating plerixafor for mobilization of stem cells in poor mobilizers

N Diagnoses No. (%) collecting $2 × 106 
CD34+ cells/kg

Comment

worel et al95 27 NHL, HD, MM 17 (63%) Patients previously failed mobilization attempt
D’Addio et al96 13 MM 13 (100%) Patients failed previous mobilization with chemotherapy 

plus G-CSF
Duarte et al97 56 NHL, MM 42 (75%) Patients failed previous mobilization with chemotherapy + 

G-CSF, G-CSF alone, or G-CSF + stem cell factor
Calandra et al94 115 NHL, HD, MM NHL (60%) Patients previously failed mobilization with 

chemotherapy + G-CSF or G-CSF aloneHD (77%)
MM (71%)

Tricot et al98 20 MM Group A: 7 (70%) Group A (n = 10): patients previously failed mobilization
Group B: 8 (80%) Group B (n = 10): patients predicted to be poor mobilizers  

based on risk factors
Hubel et al99 47 NHL, MM 36 (77%) Patients previously failed mobilization
Basak et al100 61 NHL, HD, MM 40 (66%) Patients previously failed mobilization (n = 51), or predicted  

to be poor mobilizers based on risk factors (n = 9)

Abbreviations: G-CSF, granulocyte-colony stimulating factor; HD, Hodgkin’s disease; NHL, non-Hodgkin’s lymphoma; MM, multiple myeloma.

Table 3 Summary of phase iii trials evaluating plerixafor in MM and NHL

Multiple myeloma101 Non-Hodgkin’s lymphoma102

Plerixafor + G-CSF 
(n = 148)

Placebo + G-CSF 
(n = 154)

Plerixafor + G-CSF 
(n = 150)

Placebo + G-CSF 
(n = 148)

Patients meeting primary endpoint (%)a 71.6 34.4 59.3 19.6
estimated percent patients collecting target  
CD34 cell dose2

Day 1 apheresis 54.2 17.3 27.9 4.2
Day 2 apheresis 77.9 35.3 49.1 14.2
Day 3 apheresis 86.8 48.0 57.7 21.6
Day 4 apheresis 86.8 55.9 65.6 24.2

Patients collecting $2 × 106 CD34+ cells/kg  
in 4 days (%)

75.7 51.3 86.7 47.3

Median (range) CD34+ cells collected (×106/kg) 10.96 
(0.66–104.57)

6.18 
(0.11–42.66)

5.69 
(0.03–29.22)

1.98 
(0.06–15.00)

Patients undergoing transplantation (%) 95.9 88.3 90.0 55.4
Patients undergoing tandem transplantation (%) 21.6 15.6 NA NA
Median time to neutrophil engraftment (days) 11 11 10 10
Median time to platelet engraftment (days) 18 18 20 20

Notes: 1Primary endpoint for MM trial is collection of $6 × 106 CD34+ cell/kg in 2 apheresis days or less, and for NHL trial is collection of $5 × 106 CD34+ cells/kg in 
4 apheresis days or less, 2Kaplan–Meier estimates of proportion of patients collecting $6 × 106 CD34+ cell/kg for MM patients, and $5 × 106 CD34+ cells/kg for NHL patients. 
Abbreviations: G-CSF, granulocyte-colony stimulating factor; NHL, non-Hodgkin’s lymphoma; MM, multiple myeloma.
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plerixafor resulted in more patients yielding $6 × 106 

CD34+ cells/kg within 2 aphereses compared with G-CSF 

plus placebo (71.6% vs 34.4%; P , 0.001). A median of 

1 apheresis day was required to collect $6 × 106 CD34+ 

cells/kg with G-CSF plus plerixafor compared with 4 days 

with G-CSF and placebo (P , 0.001). For the secondary 

mobilization endpoint, more patients in the plerixafor group 

collected $6 × 106 CD34+ cells/kg in four or fewer apheresis 

days compared to the placebo group (75.7% vs 51.3%; 

P , 0.001). Patients in the plerixafor group also collected a 

significantly higher total number of CD34+ cells. All patients 

receiving plerixafor collected $2 × 106 CD34+ cells/kg, the 

minimum to proceed with transplantation, while 4.6% of 

those mobilized with G-CSF and placebo failed and required 

rescue mobilization with plerixafor. More MM patients in the 

plerixafor group received planned tandem transplantations 

(21.6%) compared with those in the placebo group (15.6%).

In the phase III trial of NHL patients,102 the primary 

endpoint of the study was the proportion of patients who 

collected $5 × 106 CD34+ cells/kg in 4 apheresis days. 

Among patients receiving G-CSF plus plerixafor, 59.3% 

achieved this target compared with 19.6% in the placebo 

group (P , 0.001). A greater proportion of patients in the 

plerixafor group also collected at least 2 × 106 CD34+ cells/kg 

in four apheresis days (86.7% vs 47.3%; P , 0.001). The time 

for collecting the minimum number of CD34+ cells was also 

achieved in significantly fewer apheresis days. Of 10 patients 

in the plerixafor group who failed to mobilize, 4 were suc-

cessfully remobilized with plerixafor and G-CSF in an open 

label rescue phase of the trial, while 33 of 52 (64%) from 

the placebo group failing to mobilize achieved $2 × 106 

CD34+ cells/kg following remobilization with plerixafor 

and G-CSF.

In both randomized trials, engraftment kinetics and dura-

bility were reported to be similar for both the plerixafor and 

placebo groups in patients who underwent transplantation.101,102 

In a post hoc analysis, there was a significant trend between 

CD34+ cell dose and the proportion of patients maintaining 

a platelet count of $150 × 109/L on and beyond day 100 for 

NHL patients, but only at day 100 after transplantation for 

MM patients.103 While the clinical significance of this finding 

remains uncertain, it may reflect better marrow reserves in 

patients who receive a larger dose of CD34+ cells, which, 

in turn, may result in improved tolerance of subsequent treat-

ments in patients who relapse, particularly those with MM 

where relapse is almost universal. As noted above, both NHL 

and MM patients who received plerixafor yielded higher 

CD34+ cell collections,101,102 and this may have  important 

implications for subsequent management.

Side effects and adverse reactions
Plerixafor is generally safe and well tolerated. In the two 

randomized trials in patients with MM and NHL,101,102 the 

most common adverse events that were considered related 

to plerixafor were injection site erythema (20%–29%), 

fatigue (8%), and gastrointestinal symptoms, including 

 nausea (16%–17%), vomiting (5%), diarrhea (18%–38%), 

abdominal pain (6%), and flatulence (5%). Mild to moderate 

systemic reactions including urticaria, periorbital swelling, 

dyspnea, and hypoxia were observed in ,1% of patients 

approximately 30 minutes after plerixafor administration and 

responded to treatments or resolved spontaneously. Symptoms 

were generally mild with good patient compliance and 

 treatment only rarely led to discontinuation of drug. In the 

MM trial, only 1 patient receiving plerixafor discontinued 

treatment after 3 doses because of diarrhea and fatigue, and 

2 patients in the placebo group discontinued treatment 

because of an enlarged spleen in 1 patient and nausea, vomiting, 

and abdominal pain in the other.101 In the NHL study, no 

patient discontinued treatment because of plerixafor-related 

side effects.102 No interactions of plerixafor with other drugs 

are known.

A clinical perspective on the use  
of plerixafor for mobilization  
of autologous stem cells
The safety and efficacy of plerixafor in mobilizing autologous 

PBSC is clinically proven, and from a scientific perspective, 

the results support the routine use of plerixafor in combina-

tion with G-CSF for mobilizing PBSC in all patients with 

NHL and MM undergoing ASCT. A significant limitation 

to routine use of plerixafor, however, remains the cost, 

 particularly as one-third or more of unselected patients will 

collect an adequate number of CD34+ cells within two 

apheresis days using G-CSF alone. A US nationwide inpa-

tient sample study recently reported the average cost of an 

autologous PBSC transplant performed between 2000 and 

2001 for NHL and MM patients, including collection and 

cryopreservation of stem cells, was approximately 

US$51,000, with significantly higher costs if complications 

occurred.104 The wholesale price of a vial (20 mg/1.2 mL) of 

plerixafor is approximately US$7,500.105 Therefore, for an 

average adult, a 2-day course of plerixafor would cost 

US$15,000. Furthermore, plerixafor plus G-CSF mobilization 
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has also been reported to lead to an apheresis product with 

a lower ratio of CD34+ cells to total nucleated cells, resulting 

in an increased requirement for storage bags and, in turn, 

cost of PBSC storage.106 A cost-effectiveness analysis dem-

onstrating that the high cost of plerixafor can be offset by a 

decreased number of aphereses required to collect a target 

CD34+ cell dose is likely required before routine use of 

plerixafor can be recommended for all patients. While one 

study has shown that the cost of plerixafor plus G-CSF 

mobilization is similar to that of cyclophosphamide and 

G-CSF mobilization with less morbidity,107 an analysis com-

paring with G-CSF alone is not currently available.

An alternative, and possibly more cost effective strategy, 

may be to reserve the use of plerixafor to patients who are 

“poor mobilizers”. As reviewed above and summarized in 

Table 2, 63% to 76% of patients who fail to collect a sufficient 

CD34+ cell dose will collect successfully following a remo-

bilization attempt with G-CSF plus plerixafor. However, 

such a second mobilization attempt would be expected to 

significantly add to total cost. While clinical risk factors 

are significantly associated with mobilization failure, their 

predictive value is not sufficiently strong. A more practical 

approach may be to begin mobilization with G-CSF alone 

in the standard manner, assess peripheral blood CD34+ cell 

counts on the fourth day of mobilization, and, if the CD34+ cell 

count is less than 10 to 20/µL, add plerixafor on the evening 

of the fourth day onward, beginning apheresis on the fifth day 

as initially planned. The validity of this patient-targeted, 

decision-making algorithm has recently been shown to be 

potentially cost saving.108,109

Future directions
To date, most research investigating plerixafor for mobiliza-

tion has largely focused on increasing the number of 

CD34+ cells mobilized and collected by apheresis com-

pared to G-CSF alone. However, there is increasing data 

showing that the plerixafor-mobilized PBSC product is also 

qualitatively different. Plerixafor in combination with G-CSF 

appears to mobilize more primitive HSPC with higher 

repopulation potential than G-CSF alone.110 Furthermore, 

HSPC mobilized with plerixafor plus G-CSF have different 

microRNA and gene expression profiles compared to those 

mobilized with G-CSF alone.111 The clinical significance of 

these qualitative differences remains unknown.

In addition to HSPC content, the immunological cell 

composition of apheresis products mobilized with plerixafor 

requires further investigation. As reviewed above, the 

 lymphocyte and dendritic cell content of PBSC products 

may significantly affect relapse after ASCT.28–30 As PBSC 

 products mobilized following plerixafor have been shown 

to contain more lymphocytes112 and dendritic cells,31,113 the 

ability to modify long-term outcome requires further study. 

In particular, to further increase dendritic cell content, inves-

tigation of the combination of plerixafor and GM-CSF might 

also be an additional avenue of investigation.

Although plerixafor is approved for use only in NHL and 

MM patients, a significant proportion of patients with Hodg-

kin’s disease also mobilize poorly and could be candidates 

for plerixafor. Such patients were included in the previous 

series but not in the registration trials of plerixafor. Finally, 

patients with resistant and relapsed germ cell tumors have a 

good outcome with tandem ASCT.114 Since these patients 

are usually exposed to platinum drugs in primary therapy, 

many are difficult to mobilize following G-CSF alone. 

I nvestigation of plerixafor in this population is indicated.

Beyond its use in mobilization of HSPC for transplan-

tation, the appreciation that CXCR4 chemokine receptors 

are expressed by neoplastic cells from patients with acute 

and chronic leukemias, as well as a variety of solid tumors, 

has raised interest in the potential therapeutic role of plerixa-

for in a variety of cancers.91,115,116 Within the tumor microen-

vironment (including outside the bone marrow), the interaction 

of SDF-1α on stromal cells with CXCR4 on tumor cells has 

been shown to promote growth and survival signals to a 

variety of cancer cell types,117,118 facilitate tumor progres-

sion by recruiting endothelial progenitor cells for tumor 

angiogenesis,118 and confer cell adhesion-mediated drug 

resistance to both solid tumor cells and leukemia.119 By block-

ing CXCR4-SDF-1α interactions in the microenvironment, 

a rationale for investigating plerixafor in the treatment of 

acute myeloid leukemia,120–123 BCR-ABL+ leukemia,124 

chronic lymphocytic leukemia,91 mantle cell lymphoma,125 

multiple myeloma,126 breast cancer,118 and lung cancer,127 has 

been reported. Clinical investigation of plerixafor in combi-

nation with chemotherapeutic agents will be important to 

determine the efficacy of the novel approach of CXCR4 

blockade in the treatment of in these diseases.

Conclusions
Plerixafor is a novel small molecule inhibitor of CXCR4 and 

has been shown to significantly increase the mobilization and 

collection of higher numbers of PBSC in 2 randomized trials, 

and is now approved in combination with G-CSF for mobiliza-

tion in NHL and MM patients undergoing ASCT. Although 

well tolerated and efficacious, use of plerixafor in all such 

patients undergoing transplantation is limited by high cost. 
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Pre-emptive strategies that target only patients who mobilize 

poorly with G-CSF may result in more cost-effective utiliza-

tion of plerixafor. Investigation of plerixafor in patient popula-

tions other than those approved for its use, including Hodgkin’s 

disease and patients with germ cell tumors undergoing trans-

plantation, is important, as many of these patients tend to 

mobilize poorly because of prior therapy. In addition, inves-

tigation of qualitative differences in PBSC products mobilized 

with plerixafor compared with G-CSF alone will lead to better 

understanding of the significance of graft composition in the 

autologous setting and may lead to better long-term outcomes 

in patients undergoing ASCT.
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