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Objective: To assess the performance of a wearable multi-sensor system (SensEcho) in comparison to polysomnography (PSG) in 
measuring sleep stages and searching for obstructive sleep apnea (OSA).
Methods: Participants underwent overnight simultaneous monitoring using SensEcho and PSG in a sleep laboratory. SensEcho 
analyzed the recordings spontaneously, and PSG was assessed as per standard guidelines. The degree of snoring was evaluated 
according to the guidelines for the diagnosis and treatment of OSA hypopnea syndrome (2011 revision). The Epworth Sleepiness Scale 
(ESS) was used to assess general daytime sleepiness.
Results: This study included 103 Han Chinese, 91 of whom (age 39.02 ± 13.84 years, body mass index 27.28 ± 5.12 kg/m2, 61.54% 
male) completed the assessments. The measures of total sleep time (P = 0.198); total wake time (P = 0.182); shallow sleep (P = 0.297), 
deep sleep (P = 0.422), rapid eye movement sleep (P = 0.570), and awake (P = 0.336) proportions were similar between SensEcho and 
PSG. Using an apnea-hypopnea index (AHI) cutoff of ≥ 5 events/h, the SensEcho had 82.69% sensitivity and 89.74% specificity. 
Almost the same results were obtained at an AHI threshold of ≥ 15 events/h. Although the specificity increased to 94.67%, it decreased 
to 43.75% at an AHI cutoff of ≥ 30 events/h.
Conclusion: This study demonstrated that SensEcho can be used to evaluate sleep status and screen for OSA. Nevertheless, 
improving the accuracy of its assessment of severe OSA and further testing its effectiveness in community and home environments 
is necessary.
Keywords: wearable multi-sensor system, polysomnography, sleep stages, obstructive sleep apnea

Introduction
Sleep disorders are an important public health problem with significant adverse consequences to individual health and are 
a significant economic burden for society;1,2 therefore, they have attracted widespread attention. Sleep disorders comprise 
a wide range of diseases, and the diagnosis of many of their subtypes requires the help of objective indicators.3 Currently, 
polysomnography (PSG) is an acknowledged tool for measurement of sleep.4,5 This technique uses collection of many 
electrodes attached to the surface of the body, each of which measures physiological parameters of sleep, including of the 
brain, eye, muscle, heart, respiratory activity, and oxygen saturation, throughout the night.5,6
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However, with the increase in its use and in-depth research, the limitations of PSG have gradually been recognized. First, the 
procedure is complicated and time consuming. Second, professional sleep technicians are required to monitor and interpret the 
data. Third, the body is covered with many electrodes and sensors, which causes obvious discomfort to patients, and finally the 
discomfort in monitoring sleep in a strange environment, given the need to monitor patients in a specific sleep laboratory. These 
interfere with the normal sleep of patients and cannot reflect the sleep situation in real life.6–8 Therefore, a convenient, 
comfortable, and interference-free sleep monitoring method is essential in this field.

In recent years, clinicians and researchers have been trying to measure sleep or waking states using wrist actigraphy.9– 

13 This technique measures wrist movement to evaluate sleep or wakefulness, that is accomplished by the accelerometer 
in the worn device.14 Compared to PSG, this method supports sleep research on a larger scale and promotes cheap and 
uninterrupted sleep measurements without causing disturbance. This technique can also be conveniently used in a wide 
range of environments and locations.15–18 The opportunities for extensive participation rates could enhance the univers-
ality of the results, and makes longitudinal and repeated measurement designs more possible. However, there is limited 
validation with actigraphy compared to the gold standard of PSG; for instance, most actigraphy devices lack respiratory 
parameters.19,20 Compared with PSG, it is well known that actigraphy overestimates sleep and underestimates wake-up 
time,13,21 and the evaluation of sleep stage is often inaccurate.14 As sleep research continues to receive increasing 
attention, researchers require a series of effective technologies beyond PSG.

A new wearable multi-sensor system (SensEcho; SensEcho-5A, Beijing SensEcho Sci & Tech Co., Ltd., Beijing, China) was 
designed to assess sleep stages and respiratory events during sleep. The objective of this research was to assess the correspondence 
between SensEcho and PSG in the discrimination of sleep stages and searching for obstructive sleep apnea (OSA). In our study, 
the accuracy, sensitivity, and specificity were analyzed and compared between SensEcho and PSG.

Materials and Methods
Study Population and Design
This is a prospective study. Subjects with suspicious OSA, who had never been diagnosed or treated for their sleep 
problems, were recruited at the Sleep Medicine Center from Beijing HuiLongGuan Hospital, Beijing, China. One 
hundred and three adults aged 18–65 years participated in this study from August 1, 2021 to February 28, 2022. 
After removing missing data from polysomnography (PSG) or SensEcho measurements, 91 subjects were included 
in the analysis. Individuals were excluded if they met one or more of the following conditions: (1) serious 
arrhythmia, wearing auxiliary electronic products such as cardiac pacemakers, (2) respiratory failure and other 
related diseases, (3) unstable medical condition or psychiatric disorder, (4) incomplete fingers rendering them unable 
to be monitored by percutaneous oxygen saturation (SpO2), (5) inability to independently cooperate with the test 
operation, and (6) other situations that the researcher believes make an individual unsuitable to participate in this 
clinical trial.

Participants slept in a sleep ward with a wearable multi-sensor system (SensEcho; SensEcho-5A, Beijing SensEcho 
Sci & Tech Co., Ltd., Beijing, China) and PSG (SOMNOscreenTM plus, Somnomedics GmbH, Randersacker, Germany) 
for one night. All devices were worn simultaneously during all sleep episodes. During the falling-asleep stage, the light is 
turned off in the room where the subjects are located (the specific time of lights-off is adjusted according to the subjects’ 
sleep habits) and the subjects were required to turn off their mobile phones during the entire sleep period to prevent it 
from affecting sleep and the monitoring quality. During the monitoring period, the sensitivity of devices was confirmed 
using the monitoring software to ensure the normal collection of data. The next day, after the subjects got up, they turned 
on the light, and turned off and removed the collection equipment. There was no outside interference while collecting 
data, and participants were not allowed to use medications for their sleep.

The research has been approved by the Ethics Committee of Beijing HuiLongGuan Hospital, and informed consent 
was signed by each participant. This study was conducted in accordance with the Declaration of Helsinki.
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SensEcho Measures
We used a wearable vest multi-sensor system (SensEcho) to capture single-lead electrocardiogram (ECG) signals and 
thoracoabdominal movement signals. A 3-axis accelerometer and a finger pulse oximeter were integrated into the system 
to capture posture and blood oxygen levels. A bidirectional long short-term memory (BLSTM) network was used to 
classify the four sleep stages. The Sleep Heart Health Study (SHHS) was used for model training.22,23

Two 16 units-BLSTM layers and a well-connected layer, which represent the transition of the four sleep-stage classes, 
constituted the network architecture. A total of 152 features were recorded from the single-lead ECG and respiratory 
signals and were further fed into the BLSTM. SensEcho synchronously recorded the participants’ data on single-lead 
ECG, respiration, posture, and SpO2 during the monitoring period. Subsequently, 30-second epoch sleep stages (wake, 
shallow sleep, deep sleep, and rapid eye movement [REM] sleep), sleep-disordered breathing events, apnea-hypopnea 
index (AHI), etc. were obtained by analyzing the physiological data from the SensEcho software (Figure 1).

PSG Measures
PSG is a method used for detecting and recording physiological changes during sleep. According to the standards of the 
American Academy of Sleep Medicine (AASM), PSG records the following indicators: electroencephalogram (EEG), 
electrooculogram (EOG), chin electromyogram, leg electromyogram, ECG, pressure (flow and snore), flow thermistor, 
effort (thorax/abdomen), SpO2, pulse rate, body position, and movement (sleep/wake determination). The sampling rate 
was 512 Hz with a 16-bit resolution. PSG recordings were evaluated by the same registered polysomnographic 
technologist (RPSGT) using software in accordance with the AASM scoring criteria.24

Snoring Severity
The degree of snoring was evaluated according to the guidelines for the diagnosis and treatment of obstructive sleep 
apnea hypopnea syndrome (2011 revision) formulated by the Sleep Respiratory Disease Group of the Chinese Thoracic 
Society in 2011.25 Never snoring: 0 points; mild snoring: the breathing sound is heavier than that of normal people, 1 
point will be recorded; moderate snoring: the loud degree of snoring is greater than the voice of ordinary people, 2 points; 
severe snoring: snoring is so loud that people in the same room cannot sleep, 3 points will be recorded.

Daytime Sleepiness
General sleepiness during the day was assessed using the Epworth Sleepiness Scale (ESS). The ESS is a self-evaluated scale that 
asks about the likelihood of falling asleep in various situations.26,27 The total ESS score ranges from 0–24. Higher scores indicate 
higher risks of falling asleep. If the ESS score was > 10 points, it was rated as excessive sleepiness.

Figure 1 Example of wearable vest multi-sensor system and schematic diagram of sleep stages and respiratory events detection algorithm. 
Abbreviations: ECG, electrocardiogram; SPO2, percutaneous oxygen saturation; LSTM, long short-term memory; REM, rapid eye movement.
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Statistical Analyses
The Statistical Package for the Social Sciences (SPSS) 26.0 and GraphPad Prism 8.0 were used for statistical analyses. 
Normally distributed continuous variables are expressed as mean ± standard deviation (M ± SD), and categorical 
variables are expressed as counts and percentages. Pearson’s correlation analysis was used to analyze the correlation 
between PSG and SensEcho by monitoring AHI and sleep-related indicators. Paired t-tests and Bland-Altman plots were 
used to analyze the consistency between PSG and SensEcho while monitoring AHI and sleep-related indicators. 
Sensitivity, specificity, positive/negative predictive value of the SensEcho AHI for the diagnostic characteristics of 
OSA were calculated using PSG AHI thresholds of ≥ 5, ≥ 15, and ≥ 30 (events/h) as the cut-off value. Sensitivity and 
specificity were further analyzed using ROC curve analysis. The Youden index was calculated to determine the optimal 
cutoff value of SensEcho for the diagnosis of mild, moderate, and severe OSA. Sensitivity, specificity, positive/negative 
predictive value of SensEcho AHI were also calculated at the optimal cut-off value for mild, moderate, and severe OSA.

Results
Out of the 103 adults recruited for the study, 91 of whom (aged 39.02 ± 13.84 and with a mean body mass index of 27.28 ± 5.12 kg/ 
m2) fulfilled the study inclusion criteria and completed the assessments were considered for analysis. Of these, 56 (61.54%) were 
male and 58 (63.74%) reported at least a moderate level of snoring. Subjects had an average ESS score of 7.30 ± 4.98. 
Demographic data of the subjects are presented in Table 1.

Time in bed, sleeping time, awake time, sleep efficiency, wake, shallow sleep (non-REM stage 1 [N1] + non-REM stage 2 
[N2]), deep sleep (non-REM stage 3 [N3]), REM sleep stage, AHI, and SPO2 measured using SensEcho were compared to those 
from PSG (Table 2 and Table S1). There was no difference between the SensEcho and PSG in the time spent in bed (8.15 ± 1.06 
versus [vs] 8.15 ± 1.07; P = 0.859), total sleep time (6.34 ± 1.40 vs 6.42 ± 1.28; P = 0.198), total wake time (1.73 ± 1.29 vs 1.82 ± 
1.53; P = 0.182), and sleep efficiency (79.38 ± 14.39 vs 78.63 ± 16.56; P = 0.315). Results revealed that the wake (20.62 ± 14.39 vs 
21.34 ± 16.54; P = 0.336), shallow sleep (69.96 ± 11.87 vs 69.09 ± 12.60; P = 0.297), deep sleep (16.12 ± 12.66 vs 16.62 ± 13.10; 
P = 0.422), and REM sleep (14.06 ± 7.33 vs 14.28 ± 7.74; P = 0.570) proportions of the participants have no difference between the 

Table 1 The General Demographic 
Characteristics, Snoring, and Sleepiness 
of Participants

Variables n (%)/ M ± SD

Gender
Male 56 (61.54%)

Female 35 (38.46%)

Age (year) 39.02 ± 13.84
< 40 53 (58.24%)

40–59 29 (31.87%)

≥ 60 9 (9.89%)
Height (cm) 168.22 ± 7.45

Weight (kg) 77.83 ± 18.09

BMI (kg/m2) 27.28 ± 5.12
< 20 12 (13.19%)

20–24.9 14 (15.38%)

25–29.9 37 (40.66%)
≥ 30 28 (30.77%)

Snoring

None/Mild 33 (36.26%)
Moderate 33 (36.26%)

Severe 25 (27.47%)

ESS 7.30 ± 4.98

Abbreviations: BMI, body mass index; ESS, 
Epworth Sleepiness Scale.
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measurements by SensEcho and those by PSG. A significant difference between the SensEcho and PSG in AHI > 30 (33.70 ± 
18.91 vs 47.21 ± 15.59; P = 0.000), but when 5 ≤ AHI ≤ 30, there was no difference between them. Whereas there were no 
significant differences in Mean SpO2, Minimum SpO2, and SpO2 < 90% between SensEcho and PSG.

As shown in Figure 2, a high degree of correlation between the recordings from SensEcho and PSG was found for the 
following measures: sleep efficiency (r = 0.917; P < 0.001); wake (r = 0.917; P < 0.001), shallow sleep (r = 0.792; P < 0.001), deep 
sleep (r = 0.895; P < 0.001), and REM sleep (r = 0.883; P < 0.001) proportions; and AHI (r = 0.887; P < 0.001). Bland-Altman 
analysis showed a mean difference of –0.01 (95% confidence interval, –0.14 to 0.12; Figure 3A) for sleep efficiency, 0.01 (95% 

Table 2 Comparison of Sleep Stages and Respiratory Parameters Observed Using SensEcho and PSG

Variables SensEcho PSG d � Sd t P Cohen’s D

Time in bed (h) 8.15 ± 1.06 8.15 ± 1.07 –0.002 ± 0.08 –0.178 0.859 0.03

Total sleep time (h) 6.34 ± 1.40 6.42 ± 1.28 0.08 ± 0.61 1.298 0.198 0.13

Total wake time (h) 1.73 ± 1.29 1.82 ± 1.53 –0.08 ± 0.60 –1.345 0.182 0.13

Sleep efficiency (%) 79.38 ± 14.39 78.63 ± 16.56 0.75 ± 7.11 1.011 0.315 0.11

Wake (%) 20.62 ±14.39 21.34 ± 16.54 –0.72 ± 7.12 –0.967 0.336 0.10

Shallow sleep (%) 69.96 ± 11.87 69.09 ± 12.60 0.87 ± 7.92 1.048 0.297 0.11

Deep sleep (%) 16.12 ± 12.66 16.62 ± 13.10 –0.50 ± 5.93 –0.806 0.422 0.08

REM sleep (%) 14.06 ± 7.33 14.28 ± 7.74 –0.22 ± 3.66 –0.570 0.570 0.06

AHI (events/h) 12.05 ± 15.11 14.51 ± 17.87 –2.46 ± 8.29 –2.830 0.006 0.30

5–15 8.05 ± 6.12 8.16 ± 2.08 –0.11 ± 6.74 –0.075 0.941 0.02

> 15–30 19.32 ± 11.42 21.09 ± 3.86 –1.77 ± 9.21 –0.746 0.468 0.19

> 30 33.70 ± 18.91 47.21 ± 15.59 –13.51 ± 9.33 –5.789 0.000 1.45

Obstructive respiratory events 57.78 ± 64.00 29.05 ± 65.32 28.73 ± 48.29 5.675 <0.001 0.59

Hypopnea count 14.02 ± 36.05 51.37 ± 58.75 –37.35 ± 54.50 –6.538 <0.001 0.69

Total respiratory events 71.68 ± 87.62 83.90 ± 107.73 –12.22 ± 53.29 –2.188 0.031 0.23

Longest apnea time (s) 75.73 ± 43.44 51.93 ± 29.80 23.81 ± 41.41 5.484 <0.001 0.57

Mean SpO2 (%) 95.53 ± 1.58 95.68± 1.58 –0.53 ± 3.84 –1.310 0.194 0.14

Minimum SpO2 (%) 85.73 ± 6.62 86.25 ± 7.38 –0.09 ± 1.27 –0.660 0.511 0.07

SpO2 < 90% (min) 11.55 ± 26.88 11.43 ± 24.42 0.12 ± 18.19 0.063 0.950 0.01

Abbreviations: REM, rapid eye movement; AHI, apnea-hypopnea index; PSG, polysomnography; SpO2, percutaneous oxygen saturation; 
h, hour; min, minute; s, second; %, percentage.

Figure 2 Compare the relevance between manually edited parameters on SensEcho recording and PSG. ((A) Scatterplot of sleep efficiency on SensEcho compared to PSG; 
(B) Scatterplot of wake on SensEcho compared to PSG; (C) Scatterplot of shallow sleep on SensEcho compared to PSG; (D) Scatterplot of deep sleep on SensEcho 
compared to PSG; (E) Scatterplot of REM sleep on SensEcho compared to PSG; (F) Scatterplot of AHI on SensEcho compared to PSG). 
Abbreviations: PSG, polysomnography; REM, rapid eye movement; AHI, apnea-hypopnea index.
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confidence interval, –0.12 to 0.13; Figure 3B) for wake, –0.01 (95% confidence interval, –0.016 to 0.15; Figure 3C) for shallow 
sleep, 0.01 (95% confidence interval, –0.11 to 0.12; Figure 3D) for deep sleep, 0.002 (95% confidence interval, –0.07 to 0.07; 
Figure 3E) for REM sleep, and 2.46 (95% confidence interval, –13.79 to 18.71; Figure 3F) for AHI, between recordings from 
SensEcho and PSG. Respectively, after the calculations, 95.6%, 95.6%, 95.6%, 96.7%, and 98.9% points were settled in the limits 
of coincidence and its 95% confidence interval, which indicated a high level of coincidence between SensEcho and PSG measures 
for overall sleep efficiency, wake, shallow sleep, deep sleep, and REM sleep, except for AHI (93.4%).

Table 3 shows the comparisons of the diagnostic characteristics of SensEcho AHI based on the cutoff value of PSG 
AHI with variable severity criteria at 5, 15, and 30 events/h. Figure 4 shows the corresponding ROC curves. With an 

Figure 3 Compare the coherence between manually edited parameters on SensEcho recording and PSG. ((A) Bland-Altman plot of sleep efficiency on SensEcho compared to PSG; (B) 
Bland-Altman plot of wake on SensEcho compared to PSG; (C) Bland-Altman plot of shallow sleep on SensEcho compared to PSG; (D) Bland-Altman plot of deep sleep on SensEcho 
compared to PSG; (E) Bland-Altman plot of REM sleep on SensEcho compared to PSG; (F) Bland-Altman plot of AHI on SensEcho compared to PSG). 
Abbreviations: PSG, polysomnography; AHI, apnea-hypopnea index; SD, standard deviation.
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AHI cutoff of ≥ 5 events/h, SensEcho recording had 82.69% sensitivity, 89.74% specificity, and an AUC of 0.922. 
Almost the same results were obtained at an AHI threshold of ≥ 15 events/h. Although the specificity increased to 
94.67% and the AUC increased to 0.936, the specificity decreased to 43.75% at an AHI cut-off of ≥ 30 events/h. 
According to the PSG diagnostic criterion of AHI > 5 events/h, the appropriate diagnostic cutoff value of SensEcho 
was 4.8 events/h, whose sensitivity is 84.62% and specificity is 89.75%. For moderate to severe OSA (AHI > 15 
events/h), the SensEcho cut-off was 11.2 events/h, sensitivity was 87.10%, and specificity was 88.34%, as shown in 
Table 4.

Discussion
This study is a clinical validation study for measuring the sleep stages and presence of obstructive events using 
a wearable vest multi-sensor system, SensEcho, which compared the data to simultaneously obtained PSG information. 
In the present study, specific variations in the accuracy, sensitivity, and specificity values were characterized. Overall, 
SensEcho has good accuracy in distinguishing sleep or wakefulness and for monitoring sleep stages. The total sleeping 
time, total awake time, shallow sleep, deep sleep, REM sleep, and wakefulness were consistent with the manual mapping 
of the PSG. Although SensEcho had a good correlation with PSG in the diagnosis of AHI, the consistency was 
unsatisfactory. SensEcho has high specificity for OSA screening. When AHI was ≥ 5 and ≥ 15, the sensitivity was 
good. When AHI was ≥ 30, the sensitivity was poor. SensEcho has a relatively good negative predictive value (NPV) for 
OSA but a poor positive predictive value (PPV), especially when AHI ≥ 30. This may be due to the fact that the 
proportion of health testers in the training set is more than that of patients with severe OSA, so the accuracy for AHI 
scores greater than 30 decreases. According to this study, the AHI correction thresholds for screening OSA using 
SensEcho were mild OSA, ≥ 4.8; moderate OSA, ≥ 11.2; and severe OSA, ≥ 17.7.

The SensEcho was designed to detect participants’ ECG, respiratory movement, SpO2, body motion, and posture, as 
well as to use a specific algorithm to obtain the sleep status and sleep-related respiratory indicators of the subjects. In 

Table 3 Prevalence, Sensitivity, Specificity, PPV, and NPV for Different Cutoff of the SensEcho Recording vs PSG

AHI  
(Events/h)

Prevalence 
(%)

Sensitivity  
(%)

Exact 95% CI Specificity  
(%)

Exact 95% CI PPV  
(%)

NPV  
(%)

LB UB LB UB

≥ 5 57.14 82.69 69.18 91.31 89.74 74.84 96.66 91.48 79.54

≥ 15 31.87 79.31 59.74 91.29 87.10 75.60 93.87 74.19 90.00
≥ 30 17.58 43.75 20.75 69.45 94.67 86.19 98.28 63.64 88.75

Abbreviations: AHI, apnea-hypopnea index; CI, confidence interval; LB, lower bound; UB, upper bound; PPV, positive predictive value; NPV, negative predictive 
value.

Figure 4 Receiver operating characteristic curves for the SensEcho estimated AHI vs PSG AHI. 
Abbreviations: AHI, apnea-hypopnea index; AUC, area under the curve.
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terms of sleep staging, the SensEcho used in this study had better results than similar devices used in most previous 
studies. For example, the partial-PSG system used in previous studies included Zeo (Newton, MA, USA).28,29 The Zeo 
system can provide convincing sleep scoring for REM sleep and light and deep sleep. However, the system could not 
correctly detect the wake periods. In another study conducted with non-contact radar technology, Somnofy (VitalThings 
AS, Norway) found the sensitivity was 0.97 and specificity was 0.72, respectively. Sleeping stage differentiation for 
Somnofy was 0.75 for N1/N2, 0.74 for N3, and 0.78 for REM.30 Wrist actigraphy cannot distinguish sleep stages but can 
simply distinguish between sleep and wakefulness.4 Therefore, SensEcho has greater advantage over wrist actigraphy due 
to its ability to differentiate sleep stages. However, it should be noted that SensEcho training model has extracted features 
from ECG and respiratory signals, a large part of which was heart rate variability (HRV), and the HRV characteristic 
parameters of patients with severe arrhythmia were relatively different from normal people, and there were many 
statistical deviations. Our model training set is mainly composed of non-arrhythmia testers, so sleep staging is less 
effective for patients with severe arrhythmias. In terms of respiratory monitoring, SensEcho is slightly inferior to other 
portable devices that can monitor respiratory function, such as OrbSense (Megahealth Medical, Inc., Zhejiang, China). 
Central sleep apnea (CSA) mainly manifests as repeated interruptions or weakening of respiratory airflow and ventilation 
during sleep, often related to other medical problems, especially heart failure, stroke, and the use of opioid drugs. 
SensEcho uses chest and abdominal breathing signals to estimate respiratory airflow, but there is little confidence in the 
judgment of CSA. Therefore, SensEcho currently can not detect CSA precisely. This monitoring equipment also has good 
sensitivity and specificity when AHI is ≥ 30.31 SensEcho is superior to wrist actigraphy in terms of respiration; as wrist 
actigraphy has no blood oxygen and respiratory indicators, it is unable to screen for OSA.

One advantage of the SensEcho is its design as a sleeping monitoring vest, without head and leg electrodes and nasal 
airflow tubes connected to the patient. This factor greatly reduces the impact on patients’ sleep and may allow for 
relatively natural sleep than in the traditional setup. In addition, it needs fewer settings, so it is possible to easily test 
sleep-related breathing disorders at home, which helps in outpatient diagnosis and expands the diagnostic capabilities. 
Once again, SensEcho is unobtrusive and can be worn throughout the day for over a week. This makes SensEcho more 
conducive to the long-term monitoring of patterns in sleeping rhythm.32,33

This study has a few limitations. First of all, it was performed in a laboratory rather than in a home environment. 
There are some chances for SensEcho to behave differently in the home environment. Second, the current research 
focuses on ethnically Han patients with a low body mass index; therefore, the current research results are limited with 
regards to other populations. Finally, the overall AHI of the participants was low, and the recognition rate of SensEcho in 
patients with AHI ≥ 30 was poor. Therefore, in the future, it will be helpful to employ machine learning techniques to the 
database to improve the recognition rate of AHI equipment.

Conclusions
This study demonstrated the application of SensEcho as a portable monitoring device in the laboratory to evaluate sleep 
staging and detect sleep apnea in patients with suspicious OSA. The system may help with evaluating sleep status and 
screen for OSA in different settings. However, it is necessary to further improve the accuracy of its assessment of severe 
OSA and test its effectiveness in community and home environments.

Table 4 Best Cutoffs for Different OSA Severity

AHI  
(Events/h)

SensEcho Cutoff  
(Events/h)

AUC Sensitivity  
(%)

Specificity  
(%)

PPV 
(%)

NPV 
(%)

≥ 5 4.8 0.922 84.62 89.75 84.62 89.74

≥ 15 11.2 0.949 87.10 88.34 86.67 86.89

≥ 30 17.7 0.936 87.50 89.34 87.50 87.67

Abbreviations: AHI, apnea-hypopnea index; AUC, area under the curve; PPV, positive predictive value; NPV, negative 
predictive value.
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The data that support the findings of this study are available from the corresponding author upon reasonable request.
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