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Abstract: Breast cancer (BC) poses a severe threat to the health of women worldwide. Currently, different therapeutic regimens are 
used for BC according to the pathological classification of HER2-positive or HER2-negative. Clinical reports of HER2-low expression 
indicate that the condition is HER2-negative, which was ineligible for HER2-targeted therapy. In contrast to HER2-zero tumors, 
however, HER2-low BC is a heterogeneous disease with unique genetic characteristics, prognoses, and different therapeutic responses. 
Clinical efficacy has been demonstrated by numerous potent and innovative anti-HER2 medications, particularly antibody–drug 
conjugates (ADCs). Certain ADCs, including T-DXd, have demonstrated good efficacy in some trials either used alone or in 
conjunction with other medications. To enhance outcomes in individuals with HER2-low BC, immunotherapy and other treatments 
are frequently combined with HER2-targeted therapy. There are also alternative strategies that target both HER2 and HER3 or other 
antigenic sites. We hope more individuals with HER2-low BC will benefit from more precise treatment regimens in the future. This 
article provides a review of existing research and clinical trials. 
Keywords: HER2-low breast cancer, monoclonal antibodies, antibody–drug conjugates, trastuzumab deruxtecan, immunotherapy

Introduction
Breast cancer (BC) has become the most commonly diagnosed tumor in women worldwide.1 Human epidermal growth 
factor receptor 2 (HER2)-positive BC accounted for about 15% of all cases and was considered a poor prognostic 
predictor in the past. However, the survival outcomes of these patients have improved considerably and were similar to 
HER2-negative with the evolution of anti-HER2 agents.2–6 In the past, HER2-low BC could not gain clinical benefit from 
conventional anti-HER2 agents like trastuzumab.7 However, with the introduction of novel anti-HER2 compounds, BC 
with low levels of HER2 expression and no detectable Erb-B2 receptor tyrosine kinase 2 (ERBB2) gene amplification 
might also derive benefit. The efficacy was found when anti-HER2 agents were combined with other therapies such as 
immunotherapy.

According to the updated 2018 American Society of Clinical Oncology/College of American Pathologists (ASCO/ 
CAP) guidelines, the HER2 status is assessed to evaluate HER2 protein expression levels by IHC (immunohistochem-
istry) and HER2 gene status by ISH (in situ hybridization).8 HER2-low is defined as IHC1+ or IHC2+ without gene 
amplification, accounting for about 55%.9,10 The application of the new guidelines leads to an increase in the negativity 
rate on HER2 testing for the reclassification of Group 2 and Group 4 cases.11 The refinement of future diagnostics may be 
needed to assess HER2 status more accurately.

Based on the expression of hormone receptors (HR) and the status of HER2, BC is classified into four intrinsic 
molecular subtypes: luminal A (HR-positive and HER2-negative), luminal B (HR-positive and HER2-positive), HER2 
enriched (HR-negative and HER2-positive), and triple-negative BC (TNBC, HR-negative and HER2-negative).12 The 
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four subtypes of tumors have different prognoses, and TNBC is generally considered to be the worst.13 The possibility of 
improving the treatment of HER2-low BC has great clinical significance. Also, different treatment approaches for the 
four subtypes, respectively. In clinical practice, HER2-low BC was reported as HER2-negative, which was classified as 
TNBC or luminal-like. However, HER2-low BC is a heterogeneous disease, which showed distinctive molecular 
features.9,14 Compared with HER2-zero tumors, HER2-low BC has a higher rate of HR-positive (64–88%),9,15 a higher 
disease-free survival (DFS) and overall survival (OS),16 and a limited immune response.17 This implies that they may 
have differences in response to therapy, and different therapeutic strategies are needed. Even the HR-positive BC, there 
are about 50% of these tumors present either inherent or acquired resistance to hormonal therapy.18 Thus, the HER2-low, 
luminal B BC with endocrine-resistant may also benefit from anti-HER2 therapies.

The NSABP B-47 trial showed that the addition of trastuzumab to adjuvant chemotherapy did not improve the 
outcomes of patients with HER2-low BC.7 Pertuzumab failed to improve the outcomes either.19 It should be noted that 
this study used pertuzumab monotherapy, which was ineffective in HER2-positive tumors. HER2-low BC was thought 
not eligible for anti-HER2 monoclonal antibodies.20 A range of 100,0000–500,000 HER2 receptor molecules is present 
on the membrane of score 1+ and 2+ BC cells.21 So, it still makes sense that anti-HER2 agents could have clinical 
applications on HER2-low BC mechanistically. Novel and more potent anti-HER2 agents may give the tumor tissue a 
sufficient chemotherapeutic agent. Antibody–drug conjugates (ADCs) are effective and show clinical efficacy when 
combined with other treatments such as immunotherapy. We need to reconceptualize the significance of HER2-low and 
explore anti-HER2 treatments that apply to these patients.

HER2-Targeted Therapies
Monoclonal Antibodies
Although the efficacy of trastuzumab and pertuzumab in HER2-low BC was not found,7,19 there are still novel 
monoclonal antibodies being tested for treating HER2-low BC. Margetuximab is a second-generation monoclonal 
antibody which binds to the same epitope on HER2 as trastuzumab but has higher activity against HER2-positive cancer 
cells than trastuzumab. Based on the Phase III SOPHIA trial (NCT02492711) results, margetuximab was approved by the 
FDA in December 2020 to treat HER2+ MBC when combined with chemotherapy.22 In mice, margetuximab showed 
activity against HER2-low expressing tumor cells.23

Although margetuximab demonstrated an acceptable safety profile in Phase I, II, and III studies,24 in a Phase II study, 
it has not shown sufficient clinical efficacy. In 22 showing 2+ by IHC without amplification patients whose efficacy 
results were available, no responses were achieved, and only 6 disease stabilizations were observed. Notably, when 
combined with pembrolizumab (an anti-PD-1 monoclonal antibody), it showed clinical efficacy in HER2-low gastro- 
oesophageal adenocarcinoma.25 This suggests that the therapeutic effects of margetuximab may be displayed when 
combined with other treatments.

Antibody–Drug Conjugates
ADCs combine the targeted specificity of monoclonal antibodies with the antitumor’s ability of cytotoxic drugs to 
improve the therapeutic index. An ADC is composed of three elements, a monoclonal antibody to hit the specific 
molecular target of tumor cells and internalize the entire ADC complex via endocytosis, a cytotoxic agent (also called 
“payload”) to kill tumor cells, and a chemical linker to attach the cytotoxic agent to the antibody.26 A factor influencing 
the therapeutic index is the number of molecules of payload linked to each antibody, which is called the drug-to-antibody 
ratio (DAR). The treatment may be less effective if the DAR is lower, while it may be more difficult to tolerate adverse 
effects if the DAR is higher.27 If the released payload is permeable, it can enter and kill the neighboring cells, not only 
the antigen-positive cells. The phenomenon is called the “bystander effect”, which is also one of the reasons for its 
efficacy to treat HER2-low BC.28 Table 1 summarizes the ADCs which are useful for the treatment of HER2-low BC.

T-DM1 was the first ADC approved by the US Food and Drug Administration (FDA) for the treatment of HER2- 
positive metastatic breast cancer (MBC) in 2013. The payload is DM1, which connect with trastuzumab via a non- 
cleavable linker, and the DAR is 3.5.29 Retrospective analyses found there was no benefit that can be derived from 
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Table 1 The ADCs and Their Trials for the Treatment of HER2-Low BC

Drug Study (NCT Number) Phase Number Population and Setting Experimental Arm Control Arm Efficacy Adverse Events Grade≥3

T-DXd -, NCT0256490036 I 292 (HER2- 
low: 54)

HER2-low ABC; 
Disease is refractory to or 
intolerable with standard treatment, 
or for which no standard treatment 
is available

T-DXd - cORR: 37.0% 
cDCR: 87.0% 
DOR: 10.4 months 
TTR: 2.7 months 
PFS: 11.1 months

63.0%: decreases in neutrophil, 
platelet, WBC counts, anemia, 
hypokalemia, AST increase, 
decreased appetite, diarrhea, 
interstitial lung disease, pneumonitis

DEBBRAH, 
NCT0442059841

II 41 (HER2- 
low: 
Unknown)

HER2-low ABC with progressing 
BM after local treatment

T-DXd - ORR: Unupdated 
CBR: Unupdated 
TTR: Unupdated 
DOR: Unupdated 
OS: Unupdated

Unupdated

DESTINY-Breast 04, 
NCT0373402938

III 557 (373; 
184)

HER2-low MBC; 
Prior 1 to 2 lines of chemotherapy/ 
adjuvant in the metastatic setting

T-DXd TPC (capecitabine, 
eribulin, 
gemcitabine, 
paclitaxel, or nab- 
paclitaxel)

mPFS: HR (+): 10.1 vs 5.4 
months; HR (-): 8.5 vs 2.9 
months 
mOS: HR (+): 23.9 vs 
17.5 months; HR (-): 18.2 
vs 8.3 months

52.6%: interstitial lung disease, 
pneumonitis, others are unknown

DESTINY-Breast06, 
NCT0449442542

III 850 HER2-low MBC; 
Prior ≥2 lines of endocrine 
therapies or an endocrine therapy 
combined with a CDK4/6 inhibitor.

T-DXd TPC (paclitaxel, nab- 
paclitaxel or 
capecitabine)

OS: Ongoing 
PFS: Ongoing 
ORR: Ongoing 
DOR: Ongoing

Ongoing

DESTINY-Breast08, 
NCT0455677343

Ib 182 Module 1 (HR+ or HR-): HR-, only 
1 prior line of chemotherapy for 
mBC; HR+, only 1 prior line of 
endocrine therapy but no prior 
chemotherapy for mBC; 
Module 2 (HR-): no prior 
chemotherapy for mBC; 
Module 3 (HR-): only 1 prior line of 
chemotherapy for mBC; 
Module 4 and 5 (HR+): only 1 prior 
line of endocrine therapy but no 
prior chemotherapy for mBC

Module 1: T-DXd + 
capecitabine 
Module 2: T-DXd + 
durvalumab + paclitaxel 
Module 3: T-DXd + 
capivasertib 
Module 4: T-DXd + 
anastrozole 
Module 5: T-DXd + 
fulvestrant

- ORR: Ongoing 
PFS: Ongoing 
DOR: Ongoing 
OS: Ongoing

Ongoing

TALENT, 
NCT0455377044

II 88 HR+, HER2-low BC; 
Previously untreated operable 
invasive carcinoma of the breast 
greater than 2.0 cm

A: T-DXd 
B: T-DXd + anastrozole

- pCR: Ongoing 
COR: Ongoing

Ongoing

SYD985 -, NCT0227771748 I 99 (HER2+: 
50, HER2- 
low and HR 
+: 32, HER2- 
low and HR-: 
17)

HER2+ or HER2-low, HR± ABC/ 
MBC; 
Rogressed on standard therapy or 
no standard therapy exists

SYD985 - ORR (HER2+): 33% 
ORR (HER2-low and HR 
+): 27% 
ORR (HER2-low and HR- 
): 40%

10%: neutropenia, conjunctivitis

(Continued)
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Table 1 (Continued). 

Drug Study (NCT Number) Phase Number Population and Setting Experimental Arm Control Arm Efficacy Adverse Events Grade≥3

MRG002 -, NCT0474215350 II 66 HER2-low ABC/ MBC; 
Prior at least first-line standard 
treatment for recurrent or 
metastatic breast cancer

MRG002 - ORR: 34.7% 
ORR (HER2 IHC 1+): 
34.1% 
ORR (HER2 IHC 2+): 
37.5% 
ORR (TNBC): 37.5% 
DCR: 75.5% 
DCR (TNBC): 62.5%

-: neutrophil count decreased

A66 -, NCT0360207951 I–II 49 (HER2- 
low BC: 
unknown)

HER2 expression (≥ 1+ determined 
by IHC) MBC;-

A66 - Ongoing Ongoing

PF- 
06804103

-, NCT0328472353 I 95 (HER2- 
low BC: 
unknown)

HER2-low (1+) TNBC;- PF-06804103 PF-06804103 + 
palbociclib 
+letrozole

DOR: Ongoing 
PFS: Ongoing 
TTP: Ongoing

Ongoing

RC48- 
ADC

C001 CANCER, 
NCT02881138; 
C003 CANCER, 
NCT0305263454

I/Ib 118 (HER2+: 
70, HER2- 
low: 48)

HER2+/HER2-low MBC; 
Prior ≥2 lines of chemotherapy for 
MBC

RC48-ADC - ORR (HER2-low): 39.6% 
mPFS (HER2-low): 5.7 
months 
ORR (IHC2+/FISH-): 
42.9% 
mPFS (IHC2+/FISH-): 6.6 
months 
ORR (IHC1+): 30.8% 
mPFS (IHC1+): 5.5 
months

41.5%: neutrophil count decreased, 
GGT increased, fatigue

-, NCT04400695z III 366 HER2-low MBC; 
Prior anthracycline and 1 or 2 
systemic chemotherapy after 
relapse / metastasis

RC48-ADC TPC (paclitaxel 
injection, docetaxel 
injection, vinorelbine 
tartrate injection, 
capecitabine tablets)

PFS: Ongoing 
ORR: Ongoing 
DOR: Ongoing 
DCR: Ongoing 
TTP: Ongoing 
OS: Ongoing

Ongoing

Abbreviations: (A) (M) BC, (advanced) (metastatic) breast cancer; TNBC, triple-negative breast cancer; BM, brain metastases; (c)ORR, (confirmed) overall response rate; DCR, disease control rate; DOR, duration of response; TTR, 
time to response; (m) PFS, (median) progression-free survival; WBC, white blood cells; AST, aspartate transaminase; CBR, clinical benefit rate; (m) OS, (median) overall survival; TPC, the physician’s choice; pCR, pathologic complete 
response; COR, clinical objective response; GTT, gamma-glutamyl transferase.
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T-DM1 in the group of HER2-low BC by reviewing HER2 status. In the phase II trial of TDM4258g, HER2-low BC had 
a poorer clinical efficacy than HER2-positive with an insufficient progression-free survival (PFS) (2.6 vs 8.2 months) and 
a lower objective response rate (ORR) (4.8% vs 33.8%).30 Similar results were also shown in the TDM4374g trial.31 The 
lack of bystander effects limits its utility in tumors with HER2-low.

Trastuzumab deruxtecan (T-DXd) is the second ADC approved by the FDA. It is composed of humanized HER2- 
targeted antibody and DXd (derivative of exatecan), conjugated through enzyme-cleavable linker making it stable in 
plasma.32,33 The payload is cell membrane permeable, so it has bystander effect to kill tumor cells in proximity 
regardless of their HER2 expression status.34 At the same time, DXd is a topoisomerase I inhibitor, which is different 
from the mechanism of chemotherapy drugs commonly used in the treatment of BC, resulting in a reduced risk of cross- 
drug resistance. Besides, T-DXd also has a higher DAR than T-DM1 (8 vs 3.5), allowing it to deliver more payload 
molecules to targeted tumor cells.

Based on the results of DESTINY-Breast01 (NCT03248492), T-DXd has been approved for posterior line therapy in 
patients with HER2-positive BC by the FDA with a confirmed ORR of 61.4% (95% CI 54.0 to 68.5) and a median 
duration of response (mDOR) of 20.8 months (95% CI 15.0 to NE).35 A Phase I trial (NCT02564900) has reported the 
efficacy of T-DXd on HER2-low MBC. Preliminary antitumor activity has been demonstrated with the confirmed ORR 
of 37.0% (20/54; 95% CI, 24.3% to 51.3%) and the DOR was 10.4 months (95% CI, 8.8 months to not evaluable).36 

Another study showed that ORR and DCR of HER2-low BC patients were marginally lower than HER2-positive BC 
ones who prior treated with T-DM1 alone or in combination with pertuzumab.37 DESTINY-Breast04 (NCT03734029) is 
the first phase III trial to test the efficacy of T-DXd in HER2-low MBC patients. Compared with the physician’s choice 
arm, superior PFS and OS were observed in the T-DXd group (mPFS: 10.1 vs 5.4 months; OS: 23.9 vs 17.5 months). 
Fewer grade ≥3 treatment-emergent adverse events occurred (52.6% vs 67.4%).38 Benefit also showed the improvement 
in health-related quality of life.39 T-DXd was well tolerated and had significant activity effective in patients with HER2- 
low BC. T-DXd also demonstrated evidence of central nervous system activity in HER2-positive and HER2-low 
orthotopic patient-derived xenografts models of MBC with brain metastases, which are resistant to T-DM1.40 Unlike 
T-DM1, T-DXd is effective in patients with low-HER2 BC. The DEBBRAH trial assessed the efficacy and safety of 
T-DXd in HER2-positive and HER2-low ABC patients with a history of brain metastases and/or leptomeningeal 
carcinomatosis. The trail has been completed, but the data are not reported.41 Another three trials evaluating the efficacy 
of T-DXd in treating HER2-low BC are ongoing (NCT04494425, NCT04556773, NCT04553770),42–44 and one is 
evaluating the clinical activity of neoadjuvant T-DXd and T-DXd/endocrine therapy in patients with HR+/HER2-low 
early BC.45 The publication of the results of these studies may further expand the therapeutic scope of T-DXd, which is 
effective in both HER2-low and HER2-positive BC.

Trastuzumab duocarmazine (SYD985) is a novel ADC composed of trastuzumab, duocarmycin, and a cleavable 
linker.46 Despite it has a lower DAR of 2.8, SYD985 has been shown significantly more potent than T-DM1 in HER2- 
low BC. Dokter et al predicted that its membrane-permeable nature and the cleavable linker in SYD985 make it has great 
bystander effects.47 It has shown efficacy on HER2-low MBC in a phase I trial (NCT02277717), and the ORR in HR- 
positive and triple-negative BC were 27% (N=9) and 40% (N=7) respectively, compared with 33% (N=16) in HER2- 
positive BC.48 That indicates SYD985 might be another treatment option in future for the treatment of HER2-low BC.

MRG002 refers to a novel ADC conjugating monomethyl auristatin E derivative (MMAE) to humanized monoclonal 
antibody of MAB802 via a protease cleavable valine-citrulline linker with an average DAR of  3.8.49 At the 2022 AACO 
Annual Meeting, the results of a phase II (NCT04742153) clinical trial were released. This trial tested MRG002 in 66 
patients with HER2-low MBC. The trial showed promising efficacy and a favorable safety profile with an ORR of 34.7% 
and a DCR of 75.5%, and the most common treatment related adverse events were grade 1 or 2. ORR was similar in the 
HER2 IHC1+ and IHC2+ subgroups (34.1% VS 37.5%). TNBC patients also benefited from MAB802 with ORR 
(37.5%) and DCR (62.5%).50 MRG002 is a highly promising ADC for the treatment of HER2-low BC.

A66 is also an ADC target HER2, which adopts a stable protease-cleavable valine citrulline linker and monomethyl 
auristatin F derivative. In Phase I–II, the first-in-human study for A166 (NCT03602079), the efficacy of HER2-low BC 
was evaluated in Phase II, cohort 3 experimental group. The relevant results will be published shortly.51 PF-06804103 is 
an ADC with anti-HER2 immunoglobulin G1, which is conjugated with a cleavable linker to the cytotoxic agent 
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auristatin microtubule inhibitor Aur0101.52 A site-specific ADC PF-06804103 was tested in patients with HER2-positive 
and HER2-negative BC in the first-in-human trial (NCT03284723).53 In this study, HER2-negative performed status of 0 
or 1. It also explored the combination of PF-06804103, palbociclib and letrozole. The study has been completed but the 
results are not yet available. RC48-ADC was generated by conjugating MMAE to a humanized anti-HER2 antibody via a 
protease cleavable valine-citrulline linker. A pooled analysis of two studies (C001 CANCER, NCT02881138; C003 
CANCER, NCT03052634) reported the ORR of HER2-low BC was 39.6% and mPFS was 5.7 months. Patients with 
IHC2+/FISH- BC had better outcomes than IHC1+ ones.54 BC with different HER2 status responds differently to RC48- 
ADC. Meanwhile, a phase III trial (NCT04400695) is ongoing to compare RC48-ADC with the physician’s choice in 
HER2-low BC.

HER2-Targeted Bispecific Antibodies (bsAbs)
bsAbs have two different antigen-binding sites to address different antigens or epitopes, promoting immune cell 
recruitment and activation.55 ZW25 (zanidatamab) is a novel HER2-targeted bsAb, targeting HER2 domains ECD2 
and ECD4, for which antitumor activity, synergy and additivity with multiple chemotherapeutic agents have been 
exhibited in HER2-low to -high expressing models.56 A phase I clinical trial (NCT02892123) is investigating ZW25 
in HER2-expressing tumors, of which cohort 4 and 7 in part 1, cohort 1 in part 2 and part 3 involves HER2 IHC2+/FISH- 
BC. The study is still ongoing with no results about HER2-low BC published. Combining a novel auristatin payload with 
ZW25, an ADC ZW49 is designed. ZW49 has demonstrated antitumor activity in HER2-low BC cell lines and patient- 
derived xenograft (PDX) models.57 However, there are no relevant clinical trials evaluating efficacy in the HER2-low BC 
population.

HER2/HER3-Targeted Therapies
ErBb family includes four distinct receptors, HER1 (EGFR or ErbB1), HER2, HER3, and HER4. HER2 overexpression 
is associated with the activation of HER3, and some models show that HER2-driven tumors do not develop or grow if 
HER3 expression is absent.58–60 Treatments show efficacy in HER2-low BC when targeting both HER2 and HER3. The 
HER2/HER3 heterodimer induces phosphorylation of the ER and endocrine resistance.61 Preclinical data showed that the 
triple combination of anti-HER2 (pertuzumab), anti-HER3 (lumretuzumab), and anti-estrogen therapy (fulvestrant) lead 
to long-lasting responses in ER+/HER2-low/HER3+ human BC HBCx-19 xenograft model.62 A study (NCT01918254) 
evaluated the clinical activity and safety of lumretuzumab, pertuzumab and paclitaxel in HER3-positive, HER2-low 
MBC. Chronic diarrhea is the major side effect; thus, the initial antitumor activity could not be confirmed.63 Mitigating 
the toxic effects of combination therapies is a key issue in achieving effectiveness.

The bsAbs targeting HER2/HER3 are undergoing clinical development. MCLA-128 (zenocutuzumab) is a humanized 
bsAb targeting HER2 and HER3. The addition of MCLA-128 to estrogen therapy demonstrated to a better antitumor 
effect than estrogen therapy alone in HER2-low BC xenograft models.64 It also showed clinical activity in patients with 
ER-positive, HER2-low BC after estrogen therapy and CDK4/6i failure according to a phase II trial (NCT03321981). 
The disease control rate (DCR) was 45% with 2 patients having an unconfirmed partial response and 19 patients keeping 
the disease stable. It also showed a favorable safety profile with no grade 5 adverse events or diarrhea requiring treatment 
discontinuation observed.65 Bispecific humanized IgG1 antibody is safer than the combination therapies when targeting 
HER2/HER3.

HER2/Other Antigenic Sites-Targeted Therapies
Some therapeutic approaches block both HER2 and other antigenic sites. Evorpacept (ALX148) is a high-affinity CD47- 
blocking fusion protein that enhances the activity of other antitumor therapies. The safety and antitumor activity of 
HER2-targeted bsAbs ZX25 in combination with ALX148 is being assessed in a phase Ib/II study (NCT05027139).66 

SAR443216 is a trispecific antibody with binding sites for HER2, CD3 and CD28. It is a HER2-targeted T cell engager 
that can activate CD4 and CD8 T-cells and has the activity of T cell-dependent cellular cytotoxicity (TDCC) against 
HER2-expressing tumor.67 Two hundred patients with HER2-expressing (various levels of HER2 expression) solid 
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tumors including BC participate in a trial (NCT05013554). The preliminary clinical activity of SAR443216 after 
intravenous and subcutaneous administration will be assessed.

Immunotherapy
Immune Checkpoint Inhibitor
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of immunogenic cancers by enabling the priming 
and infiltration of T-cells into the tumor microenvironment, promoting cytotoxic signaling pathways and affecting tumor 
cytolysis by specifically recognizing, binding to cancer cells and killing them.68 BC is a moderately immunogenic 
cancer,69 in which TNBC and HER2-positive BC have the highest immunogenic potential.70 However, intrinsic 
resistance is a big problem to the use of ICIs, which occurs in 60–85% of the patients with TNBC.71 Some cytotoxic 
drugs can induce immunogenic cell death in tumor cells, promote tumor antigen release and activate the immune 
system.72 HER2-targeted drugs can kill tumor cells by the immune-mediated mechanism of antibody-dependent cellular 
cytotoxicity (ADCC). Therefore, ICIs are often combined with monoclonal antibodies and ADCs. The combination of 
trastuzumab with ICIs could overcome trastuzumab resistance in a study.73 Six of 40 programmed cell death 1 ligand 1 
(PD-L1) -positive-patients achieved an objective response, but no objective responders among the PD-L1-negative 
patients.74 The payload DXd of T-DXd is a topoisomerase inhibitor, which has gained attention as an immunomodulator.-
75 Mechanically, T-DXd is an ideal partner for ICIs. In preclinical studies, T-DXd increased the efficacy of ICIs by 
increasing immune cell infiltration and upregulating PD-L1 expression when combined with anti-PD-L1 antibody.76

Programmed cell death protein 1 (PD-1) and its ligand PD-L1 have been evaluated as putative markers of response to 
immunotherapy with PD-1/PD-L1 blockade in BC.77 Anti-PD-1 or anti-PD-L1 therapies have been investigated in 
combination with HER2-targeted therapies. T-DXd combined with a PD-1 inhibition was more effective than mono-
therapy with either agent in vitro studies. Nivolumab is the first PD-1 blocking antibody approved for clinical use, and 
there are many ongoing trials to assess the safety and efficacy of nivolumab combined with other therapies for BC. The 
combination of T-DXd and nivolumab was tested in a phase Ib trial (NCT03523572). Cohort 2 involved 16 patients with 
HER2-low MBC who had exhausted any clinically meaningful treatments. After 12.7 months of follow-up, the confirmed 
ORR (cORR) was 50% and the median PFS was 7.0 months comparing the HER2-positive cohort with a cORR of 65.6% 
and median PFS of 11.6 months.78 Combining nivolumab may result in an improved ORR compared to T-DXd alone. 
Pembrolizumab is another PD-1 inhibition showing efficacy in this subgroup when combined with T-DXd. In the dose 
extension of part 2 of a trial (NCT04042701), patients with HER2-low BC were treated with pembrolizumab and 
T-DXd.79 The estimated completion date of the trial is in May 2023 and ORR is the primary outcome measure.

PD-L1 binds to PD-1 and CD80 receptors, resulting in the inhibition of T-cell function, which can be blocked by 
durvalumab.80 Randomized phase Ib/II study BEGONIA reported its initial results, in which cORR was 100% (4/4) and 
median DOR was not reached.81 Additionally, DESTINY-Breast08 is also comparing the combination of T-DXd, 
durvalumab and paclitaxel with others (T-DXd combines with endocrine therapy, chemotherapy, and immunotherapy). 
No deaths or cases of interstitial lung disease/pneumonitis were reported so far.82 T-DM1 in combination with 
atezolizumab (a PD-L1 inhibitor) was effective only in PD-L1-positive BC in the trial KATE2 (NCT02924883), which 
suggested that the benefit of the combination of PD-L1 inhibitors may be limited to PD-L1-positive patients.83 It may 
also be helpful to assess the patient’s PD-L1 status to better evaluate the efficacy of T-DXd in combination with 
immunotherapy. The combination trials with ICIs to treat HER2-low BC are listed in Table 2.

Apart from these, immune-stimulating antibody conjugates (ISACs) are also under development in HER2-positive 
BC and TNBC.84 An ISAC comprises a tumor-targeting monoclonal antibody conjugated to an immune agonist, exerting 
durable antitumor immunity.85 They are well-tolerated in vivo. For instance, BDC-1001 a novel ISAC and it did not 
induce interstitial lung disease, cytokine release syndrome, or thrombocytopenia in non-human primate studies.86

HER2-Derived Vaccines
Unlike trastuzumab and pertuzumab, which are passive immunotherapy, HER2-derived vaccines are active immunother-
apy. Cancer vaccines are designed to elicit or enhance antitumor immune responses by activating immune cells to induce 
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Table 2 Trials of ICIs in Combination with Other Drugs

Study (NCT 
Number)

Phase Target Number Population and Setting Experimental 
Arm

Control 
Arm

Efficacy Adverse Events 
Grade≥3

-, NCT0352357278 Ib PD-1 48 (HER2+: 32, 
HER2-low: 16)

HER2-low MBC; 
Prior received all clinically 

meaningful treatments

T-DXd + 
nivolumab

- cORR (HER2+): 65.6% 
cORR (HER2-low): 50% 

mPFS (HER2+): 11.6 months 

mPFS (HER2-low): 7.0 
months 

mDOR (HER2+): NE 

mDOR (HER2-low): 5.5 
momths

50%: nausea, drug-related 
interstitial lung disease

-, NCT0404270179 Ib PD-1 115 (HER2-low 
BC: unknown)

HER2-low MBC; 
Prior received all clinically 

meaningful treatments

T-DXd + 
pembrolizumab

- ORR: Ongoing 
DOR: Ongoing 

DCR: Ongoing 

PFS: Ongoing 
TTR: Ongoing 

OS: Ongoing

Ongoing

BEGONIA, 

NCT0374210281

Ib/II PD-L1 210 (HER2-low 

BC: unknown)

Advanced/unresectable or 

metastatic TNBC with HER2 low; 

Unknown

T-DXd + 

durvalumab + 

paclitaxel

- cORR: 100% (4/4) Ongoing

DESTINY-Breast08, 

NCT0455677343

Ib PD-L1 182 As listed in Table 1 As listed in Table 1 As listed 

in Table 1

As listed in Table 1 As listed in Table 1

Abbreviations: (c) ORR, (confirmed) overall response rate; (m) PFS, (median) progression-free survival; (m) DOR, (median) duration of response; DCR, disease control rate; PFS, progression-free survival; TTR, time to response; OS, 
overall survival.
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a therapeutic effect.87 HER2 is a tumor-associated antigen identified as an appropriate vaccine source in BC.88 HER2- 
derived vaccines have been studied extensively in HER2-positive BC, and several trials are also conducted in HER-low 
BC recently.

E75 (Nelipepimut-S, NPS, KIFGLSAFL) vaccine is one of the most widely researched BC vaccines against HER2. In 
an early clinical study, patients with HER2-low specifically IHC 1(+) BC benefited more from E75 vaccine than those 
with higher levels of HER2 expression.89 However, the phase III trial PRESENT (NCT01479244) terminated due to 
failure to show a significant difference in DFS in 758 patients with HER2-low, node-positive BC.90 A phase IIb trial 
(NCT01570036) enrolled 275 disease-free patients after standard therapy completion. Treated with the combination of 
E75, granulocyte-macrophage colony-stimulating factor and trastuzumab, the estimated DFS of HER2-low patients did 
not significantly differ from the control group (HR, 0.62; 95% CI, 0.31–1.25; P= 0.18).91 However, the combination 
improved 36-month DFS among patients with TNBC (HR, 0.25; 95% CI, 0.08–0.78, p = 0.01) and HLA-A24 (HR, 0.41; 
95% CI, 0.16–1.04; P= 0.05) positivity according to a subgroup analysis.92 There may be a synergistic effect between 
E75 and HER2-targeted therapy, and further investigation is warranted to be confirmed.

AE37 is another HER2-related peptide vaccine to treat BC which can induce CD8 and CD4 cells.
A trial (NCT00524277) enrolled 298 patients with disease-free node-positive and high-risk node-negative BC 

expressing any degree of HER2. After receiving AE37 and GM-CSF, 5-year DFS was 77.2% versus 65.7% of the 
control group in planned subset analyses of HER2-low patients (P=0.21). Specifically, patients with TNBC are more 
likely to have clinical benefits in DFS (77.7% vs 49.0%, P = 0.12).93

The above two vaccines with a tolerable and favorable safety profile. There are some other vaccines tested in patients 
with HER2-low BC. Cornerstone-001 (NCT05163223) is a phase II trial to assess the efficacy and safety of pNGVL3- 
hICD (AST-301) plasmid-based vaccine in patients with HER2-low and HR-negative BC with residual disease after 
neoadjuvant treatment. The trial started on 28 February 2022 and is expected to be completed in December 2025. ETBX- 
021 is another HER2-targeted vaccine that is being evaluated in phase I clinical trial (NCT02751528) with locally 
advanced or metastatic HER2-low BC.

CDK4/6 Inhibitors
CDK4/6 is downstream of HER2 and driving resistance to HER2-targeted therapies.94 CDK4/6 inhibitors not only induce 
tumor cell cycle arrest but also promote antitumor immunity by enhancing tumor antigen presentation and impacting 
immunosuppressive cells such as CD4 T-cells.95,96 The phase II trial of NA-PHER2 evaluated the effects of Ki67 and 
apoptosis after neoadjuvant pertuzumab, trastuzumab, fulvestrant and palbociclib (a CDK4/6 inhibitor). In cohort C, 23 
women with ER-positive and HER2-low BC participated. More than 90% tumors showed a drop of Ki67 below 10% at 
week 2 and complete cell cycle arrest was achieved in 65%. The ORR before surgery was 78.3%, but no patient achieved 
a pathologic complete response.97 HER2-low status does not affect survival outcomes of patients with MBC,98 and 
CDK4/6 inhibitors may play an important role in the treatment of HER2-low BC when combined with HER2-targeted 
therapies.

Others
EZH1 and EZH2 are two markers of aggressive BC and are associated with invasion and cancer progression.99,100 

Valemetostat (DS-3201) is a novel and potent EZH1/2 dual inhibitor. A study (NCT05633979) is designed to test the 
efficacy and safety of the combination of valemetostat and T-DXd in HER2 low/ultra-low/null (IHC2+/ISH-, IHC1+; 
IHC0 with detectable faint/barely perceptible incomplete staining in ≤10% tumor cells; IHC0 without any observed 
tumor cell staining) MBC patients. The study is estimated to start on 23 May 2023. Some tyrosine kinase inhibitors are 
pan-HER kinase inhibitors already widely used in HER2-positive MBC.101 Lapatinib (a tyrosine kinase inhibitor) 
increased HER2 levels and potentiated ADCC in preclinical models.102 Adding endocrine therapy may improve the 
efficacy of HER2- and HER3-targeted agents according to a study.62 Likewise, HER2-targeted agents play a role in the 
resistance to endocrine therapy,103 and the HER2-negative patients gained greater benefit from aromatase inhibitors 
following the TRANS-AIOG meta-analysis.104
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Discussion
IHC/ISH is the gold standard to define HER2 expression. However, some factors remarkably affect the analytical 
reliability.105 Although HER2-low expression has not been formally defined, HER2-low BC is different from HER2- 
negative cases for which the former can benefit from many anti-HER2 therapies. HER2-low BC with IHC1+ and 2+ may 
respond differently to HER2-targeted therapies.54 So more precise identification is needed by harmonizing testing 
strategy and technique. HER2 gene–protein assay (HER2 GPA) can be used for assessing HER2 status of HER2- 
positive, equivocal, and -negative BC by combining HER2 ISH and HER2 IHC assays.106 Other techniques also facilitate 
the determination of HER2 status such as automated image analysis and digital PCR.107,108

Approximately half of BC was HER2-low109; in some cases, HER2-negative eventually converted to HER2-low 
phenotype.110 A study showed that after neoadjuvant therapy, HER2-low converted from 14.8% of the primary tumors to 
8.9% of residual disease.110 Patients with ER-positive HER2-low residual disease have a high risk of relapse compared to 
ER-positive HER2-negative cases, who may need HER2-targeted therapies.110 A similar evolution of HER2-low 
expression can also be observed from primary to recurrent.111 HR-positive HER2-negative BC faces the problem of 
drug resistance to endocrine therapy and TNBC has limited treatment options. A large population of patients have BC, 
which is a highly unmet medical need.

ADCs play an important role in the treatment of this subtype and T-DXd may be firstly approved because of the 
bystander effect and its cell membrane permeable payload. HER2-targeted therapies often show clinical efficacy when 
combined with other treatments, such as immunotherapy.79 There are also strategies that target both HER2 and HER3 or 
other antigenic sites.64 These treatments are usually well tolerated. In many cases, serious adverse events occur after 
using different drugs, such as the combination of lumretuzumab, pertuzumab and paclitaxel.63 The design of the 
conjugates better limits the adverse effects. More and more studies will be conducted to explore the efficacy of 
HER2-targeted therapies for HER2-low BC in the future, and more patients will benefit from these treatments.
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