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Background: The Proteasome (PSM) is a large multi-catalytic protease complex consisting of a 20S core particle and a 19S 
regulatory particle whose main function is to accept and degrade ubiquitinated substrates, are now considered as one of the potential 
regulators of tumor proliferation, and stemness maintenance. However, to date, studies on the relationship between PSM and 
hepatocellular carcinoma (HCC) are limited.
Methods: This study used a bioinformatics approach combining validation experiments to investigate the biological mechanisms that 
may be related with PSM. A series of experiments in vivo and in vitro were performed to explore the function of the 26S proteasome 
non-ATPase regulatory subunit 13 (PSMD13) in HCC.
Results: HCC patients can be divided into two clusters. Cluster 1 (C1) patients having a significantly worse prognosis than Cluster 
(C2). Two subtypes had significant differences in proliferation-related signaling. In particular, the frequency of TP53 mutation was 
significantly higher in C1 than in C2. In addition, PSM-associated genes were highly consistent with the expression of DNA repair- 
related signatures, suggesting a potential link between PSM and genomic instability. We also found that downregulation of PSMD13 
expression significantly inhibited stemness of tumor cells and impaired the Epithelial mesenchymal transition (EMT) process. Finally, 
the correlation between the PSMD13 and Ki67 was found to be strong.
Conclusion: PSM is a valid predictor of prognosis and therapeutic response in patients with HCC disease. Furthermore, PSMD13 
may be a potential therapeutic target.
Keywords: hepatocellular carcinoma, proteasome, PSMD13, cell stemness, proliferation

Introduction
As a common malignant tumor of liver, the incidence of hepatocellular carcinoma (HCC) is sixth highest and the 
mortality rate is second highest worldwide.1,2 The standard of care in HCC treatment is radical surgery, but most patients 
miss out on surgery by the time they are diagnosed and are treated with nonsurgical locoregional interventions instead.3 

As knowledge of tumorigenesis has improved, particularly the composition of the tumor microenvironment (TME), more 
curative treatments have been developed than ever before, including molecule targeted therapy and immunotherapy.4–7 

Although more advanced therapies offer more options for HCC patients, the overall prognosis for HCC remains poor, 
with a 5-year survival rate of less than 20%, due to its dreadfully invasiveness and frequent recurrence.8 A large number 
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of studies have shown that even patients with similar clinical characteristics respond very differently to the same 
treatment strategy, a phenomenon that is now thought to be explained by the heterogeneity of TME.9 With the 
development of molecular biology, clinical classification systems based on clinicopathology have shown great 
limitations,10,11 an important reason being that such classification methods tend to ignore the molecular characteristics 
of the patients.12 Therefore, the development of refined, micro-level molecular classification methods based on existing 
clinical stratification strategies is of great significance for optimising clinical decision-making, which is also in line with 
the trend towards precision medicine.13–15

Proteins in the organism are in a dynamic steady state of synthesis and degradation, they are hydrolysed into a variety 
of essential amino acids and replaced by new proteins through de novo synthesis.16 Importantly, most cytoplasmic 
proteins are not degraded in the lysosome, but are degraded in the cytoplasm dependent on the ubiquitin-proteasome 
system, which is independent of the lysosome. Specifically, the 26S proteasome accepts post-translationally modified 
proteins from the ubiquitin chain and tags them for destruction.17 Thus, in physiological situations, the Ubiquitin 
Proteasome System (UPS) system is an important mechanism responsible for intracellular proteolysis and turn off, 
covering aspects including antigen processing, biological signal transduction and more.18 In certain pathological 
conditions, particularly in diseases such as cancer, the UPS system is hijacked to provide catabolic mechanisms 
compatible with this demand due to the extreme proliferative demands of tumor cells.19 On the one hand, as tumor 
cells divide disorderly, proteins are destroyed and produced at an alarming rate; on the other hand, tumor cells have 
higher levels of PSM compared to their normal counterparts because they are under high levels of oxidative stress at all 
times.20

The development of drugs targeting PSM appears to be a promising strategy for cancer treatment.21 In fact, a number 
of drugs that directly target the 26S proteasome have been approved for clinical practice, the most prestigious of which is 
bortezomib (BTZ), which is routinely used in the treatment of multiple myeloma (MM).22,23 Since the success of 
Bortezomib (BTZ) in treating MM, its use has expanded to treat other forms of cancer including lymphocytoma, 
colorectal cancer, and thyroid cancer, further strengthening the evidence that targeted PSM is an effective strategy in 
the fight against cancer.24,25 However, frustratingly, apart from toxicities that severely affect patients’ quality of life (eg 
cardiotoxicity and neurotoxicity), the greatest hurdle facing all PSM inhibitors, including BTZ, stems from their poor 
efficacy in solid tumors.26,27 Therefore, there is a need to find inhibitors that can target solid tumors, have satisfactory 
bioavailability and can be combined with current first-line treatment options.

As part of this study, we analyzed 45 molecules that make up the PSM for gene expression heterogeneity in 32 cancer 
types. These results indicated that genome changes, including DNA methylation and copy number variation, were 
important factors that affect PSM molecular expression. We focused on the stratification significance of PSM activity in 
HCC patients and correlated PSM with proliferative features of tumors and genomic instability. Our study revealed 
a potential link between PSM activity and TP53 mutations, and that high levels of PSMD13 contributed to the 
maintenance of stemness in tumor cells as well as facilitating their EMT process. We demonstrated that PSM activity 
was a reliable prognostic indicator for HCC and that PSMD13 was a promising therapeutic target.

Materials and Methods
All the experimental methods, inclusion/exclusion criteria for participants and other details are listed in the 
Supplementary Method. The supplementary material enlists all the antibodies and reagents used in this investigation 
(Supplementary Material: Table S1).

Public Data Source and Corresponding Processing
A total of four public datasets were included in this study: TCGA-LIHC (n = 374),28 International Cancer Genome 
Consortium (ICGC)-LIRI-JP (n = 240)(https://dcc.icgc.org/), GSE57871 (n = 30),29 and GSE166635 (n = 2).30 For second- 
generation sequencing data, we applied the log2(transcripts per million (TPM) + 1) transformation to all expression data for 
normalisation and pre-processing purposes. A portion of the TCGA data is done through the Gene Set Cancer Analysis 
(GSCA)-Lite website (http://bioinfo.life.hust.edu.cn/web/GSCALite/). GSE57871 is managed using GPSAdb, a user-friendly 
web tool for the processing of genetic perturbation RNA-seq datasets. Finally, we used the single-cell dataset GSE166635 to 
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characterize the expression heterogeneity of PSM-associated genes based on Tumor immune single-cell hub (TISCH) (http:// 
tisch.comp-genomics.org/), which contains 2,045,746 cells from both tumor and healthy samples. All transcriptome data were 
processed uniformly to facilitate clarification of TME components in terms of both cell type and cell cluster.

Identification and Characterization of PSM Phenotypes
The basic information of 45 PSM molecules, which was downloaded from the Human Genome Organisation (HUGO) 
Gene Nomenclature Committee (HGNC) portal (http://www.genenames.org/), is listed in Table S2. Consensus clustering 
was used to stratify HCC patients based on the transcriptomic expression levels of these molecules. This process was 
done using the “ConsensusClusterPlus” package31 and was repeated 50 times.

Identification of Differentially Expressed Genes (DEGs)
We identified DEGs between two PSM subtypes using the R package “Limma” with a significance criterion of normal 
P < 0.05.32 We ran gene set enrichment analysis (GSEA)33 with “hallmark gene sets” as the background genome and 
performed the R package “clusterprofiler”34 for the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis.35,36

The main workflow of Multiscale Embedded Gene co-expression Network Analysis (MENEGA)37 is to construct 
a fast planar filtered network (PFN) and obtain significant gene pairs for the PFN. To complete the analysis of the PFNs, 
the data was imported into multiscale clustering analysis (MCA).

The Least Absolute Shrinkage and Selection Operator (LASSO) Regression Model and 
the Cox Regression Model Development
LASSO regression analysis was performed by “glmnet” package38 to determine the study objectives. The PSM molecules 
were analyzed via univariate Cox regression to identify independent prognostic factors. Using the “ggplot2” package, 
forest plots representing p-values, hazard ratios and 95% confidence intervals were generated for each variable.

Survival Curve Analysis
We performed Overall Survival (OS), Disease Free Interval (DFI), Disease Specific Survival (DSS), and Progression Free 
Interval (PFI) analyses of HCC cases in the TCGA-LIHC and ICGC cohorts according to the expression levels of PSM 
molecules using the “survival” and “survminer” packages, and plotted the corresponding Kaplan-Meier curves.

Immune Analysis
We estimated the abundance of immune cell infiltration in TCGA-LIHC samples using the TIMER,39 CIBERSORT,40 

CIBERSORT-ABS,41 QUANTISEQ,42 MCPCOUNTER,43 XCELL,44 and EPIC algorithms,45 and compared the differ-
ences in immune composition across PSM subtypes.

Statistical Analysis
In order to determine the correlation between variables, we used Pearson/Spearman correlation coefficients. Statistical 
significance was estimated using the T Test for normally distributed variables and the Mann–Whitney U-test (also known 
as the Wilcoxon rank sum test) for non-normally distributed variables. ANOVA and Kruskal–Wallis tests were used to 
compare two or more groups. Log rank test was used in survival model to determine statistical significance. All statistical 
analyses used R (https://www.r-project.org/), with a P value < 0.05 (two-tailed) indicating significant differences.

Results
The Genetic Characteristics and Transcriptional Variations of 45 PSM Related 
Molecules
We obtained information on 45 PSM-related molecules from the HUGO Gene Nomenclature Committee portal, as shown 
in Table S2. The 45 molecules are PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6, PSMA7, PSMA8, PSMB1, 

Journal of Hepatocellular Carcinoma 2023:10                                                                                    https://doi.org/10.2147/JHC.S404396                                                                                                                                                                                                                       

DovePress                                                                                                                         
499

Dovepress                                                                                                                                                           Huang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
http://www.genenames.org/
https://www.dovepress.com/get_supplementary_file.php?f=404396.docx
https://www.r-project.org/
https://www.dovepress.com/get_supplementary_file.php?f=404396.docx
https://www.dovepress.com
https://www.dovepress.com


PSMB2, PSMB3, PSMB4, PSMB5, PSMB6, PSMB7, PSMB8, PSMB9, PSMB10, PSMC1, PSMC2, PSMC3, PSMC4, 
PSMC5, PSMC6, PSMD1, PSMD2, PSMD3, PSMD4, PSMD5, PSMD6, PSMD7, PSMD8, PSMD9, PSMD10, PSMD11, 
PSMD12, PSMD13, PSMD14, SEM1, ADRM1, PSME1, PSME2, PSME3, PSME4, and PSMF1. Figure 1A shows the 
regulatory mechanism of PSM in the protein degradation system. We selected 1112 samples from the TCGA database 
with at least one PSM-associated molecular mutation to observe the genetic variation in PSM-associated molecules in 
cancer. Waterfall plot shows the somatic mutations of the 10 PSM-associated molecules with the highest mutation 
frequencies in the pan-cancer samples (Figure 1B). Among the 1112 samples, 591 cases had PSM molecular mutations, 
with a frequency of 53.15%. Of these, PSME4 exhibited the highest mutation frequency (18%), followed by PSMD1 
(10%) and PSMD2 (9%). Missense mutation was the most common type of mutation, and uterine corpus endometrial 
carcinoma (UCEC) was the most frequently type of mutating cancer. Considering that only 14 cancer types contained 
a sufficient number of paired tumor and normal samples, we provided differential mRNA expression profiles of 45 PSM 
molecules in these cancer types. The vast majority of PSM molecules are upregulated in tumor tissue compared to normal 
tissue (Figure 1C). We further investigated the impact of PSM molecules on the prognosis and showed that most of them 
are detrimental factors for OS in cancer patients, especially in kidney renal clear cell carcinoma (Figure 1D). Genetic 
variation influenced PSM molecule expression, as demonstrated in our study. Most cancers showed a positive correlation 
between CNV and mRNA expression, particularly in PSMF1 (Figure 1E); the degree of DNA methylation and mRNA 
expression levels were negatively correlated in most cancer types, particularly in PSMB9 (Figure 1F). Of the 363 samples 
from HCC, 51 samples had mutations in the PSM molecule, but the frequency of mutations in all molecules was less than 
1% (Figure S1A). In addition, we observed significant co-mutations between PSMD14 and PSMB6, PSMC1 and PSMD1, 
PSMD11 and PSMC6, and PSMA7 and PSMA4 (Figure S1B, P < 0.05). Finally, the correlation of these PSM molecules 
was analyzed, as shown in Figure 1G (TCGA) and Figure S2 (ICGC). Results suggested that transcriptional variation is 
a potential regulator of PSM molecule expression levels.

The Significance of PSM Molecules in HCC
We first further confirmed the significant upregulation of PSM levels in tumor tissue by the Gene Set Variation 
Analysis (GSVA) algorithm (Figure 2A). We then explored the relationship between PSM and signaling pathway 
characteristics. At the pan-cancer level, most PSM molecules, particularly PSMD14, PSMB2, PSMA7, and PSMA5, 
showed high levels of activation in cell cycle and apoptotic signaling, but showed consistent inhibition of the RAS/ 
MAPK signaling pathway (Figure 2B). In HCC, most PSM molecules activate apoptosis, cell cycle, and EMT 
signaling pathways, but inhibit RTK, RAS/MAPK, Hormone ER, and Hormone AR signaling pathways (Figure 2C). 
Enrichment analysis showed that PSM molecules were closely associated with peptidase activity (Figure 2D). GSVA 
algorithm showed that PSM activity was significantly and positively correlated with cell cycle, EMT signaling 
activation (Figure 2E, *P < 0.05).

We next constructed a LASSO-COX model based on TCGA-LIHC to identify independent prognostic factors in the 
PSM molecules. The results showed that PSMA1, PSMA3, PSMB2, PSMD1, PSMD9, PSMD13, and PSMD14 were 
significant detrimental factors for HCC (Figure 2F-I). Kaplan-Meier survival curves showed that high expression of these 
seven molecules correlated with poor OS, DSS and PFI (Figure S3, TCGA-LIHC). And interestingly, we noted relatively 
high expression levels of PSM molecules in progressive and poorly differentiated HCC samples (Figure S4A and B, 
TCGA-LIHC).

Unsupervised Hierarchical Clustering Identifying Two Different Patterns at the PSM 
Level
To fully understand the regulatory mechanisms of PSM in HCC, the 363 tumor samples from TCGA-LIHC were grouped 
into k clusters (k = 2–6) using the R package “ConsensusClusterPlus”. Figure S5 presented the consensus matrix for K = 
2–6. When k = 2, the HCC samples could be well divided into cluster 1 (C1) and cluster 2 (C2) (Figure 3A and B). 
Principal component analysis (PCA) showed that the two clusters could be effectively distinguished from each other by 
the levels of 45 PSM molecules (Figure 3C). KM survival curves for both clusters indicated that C2 HCC patients had 

https://doi.org/10.2147/JHC.S404396                                                                                                                                                                                                                                   

DovePress                                                                                                                                           

Journal of Hepatocellular Carcinoma 2023:10 500

Huang et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=404396.docx
https://www.dovepress.com/get_supplementary_file.php?f=404396.docx
https://www.dovepress.com/get_supplementary_file.php?f=404396.docx
https://www.dovepress.com/get_supplementary_file.php?f=404396.docx
https://www.dovepress.com/get_supplementary_file.php?f=404396.docx
https://www.dovepress.com/get_supplementary_file.php?f=404396.docx
https://www.dovepress.com/get_supplementary_file.php?f=404396.docx
https://www.dovepress.com
https://www.dovepress.com


Figure 1 Expression variation of proteasome molecules. (A) The pattern diagram shows the potential regulation mechanism of the proteasome in tumors. (B) The waterfall diagram 
shows the somatic mutations of the 10 proteasome molecules with the highest mutation frequency using pan-cancer analysis. 53.15% is the proportion of 591 samples with at least one 
mutation of the top 10 genes among 1112 samples with at least one mutation of 45 proteasome (PSM) molecules. The percentage figure of each line on the right of the picture is the 
number of samples with the corresponding gene mutation divided by 1112 samples with at least one mutation among the 45 PSM molecules. (C) The color of the dots represents the 
degree of variance. Redder dots represent higher expression in cancer tissue. Blue dots represent higher expression in normal tissue. The fold change equals mean (Tumor) / mean 
(Normal), P-value was used, t-test and P-value was adjusted by false discovery rate (FDR). The size of the bubbles indicates the FDR. Larger bubbles represent a lower FDR. The genes 
with fold change (Fold change >2) and significance (FDR > 0.05) were retained to produce the figures. If there is no significant gene in one cancer type, the cancer type is omitted in the 
final figure. (D) The risk scores distribution and gene expression patterns of patients in high and low-risk groups. Hazard ratio (HR) above 1.0 indicates greater risk (red dot); hazard ratio 
below 1.0 indicates less risk (blue dot). (E) The bubble chart shows the correlation between Copy number variant (CNV) and mRNA expression level. Red indicates positive correlation; 
blue indicates negative correlation. The deeper color indicates a larger correlation index (Pearson correlation). The bubble size indicates the FDR. (F) The bubble chart shows the 
correlation between methylation of the 45 PSM and mRNA expression. Red shows a positive correlation and blue shows a negative correlation. The darker color indicates a larger 
correlation index (Pearson correlation). Bubble size indicates the FDR. (G) Correlation between expression levels of 45 PSM molecules, red represents positive correlation, blue 
represents negative correlation. The size of the circle represents the absolute value of the correlation coefficient (Spearman method, TCGA-LIHC, n = 373).
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Figure 2 The significance of PSM molecules in hepatocellular carcinoma (HCC). (A) Overall expression levels (Gene set variation analysis, GSVA scores) of proteasome molecules in 14 
cancers containing paired normal samples. (B) The heatmap shows the correlation between the expression level of the 45 PSM molecules in important cancer signaling pathways. The 
global percentage of cancers in which a gene has an effect on the pathway among the 32 cancer types, is shown as the percentage: (number of activated or inhibited cancer types/32 
*100%). Heatmap shows collagen molecules that have a function (inhibit or activate) in at least 5 cancer types. “Pathway activate” (red) represents the percentage of cancers in which 
a pathway may be activated by given genes, inhibition in a similar way shown as “pathway inhibit” (blue). (C) The correlation between the 45 PSM molecules in TCGA-LIHC and important 
cancer signaling pathways. The solid line represents activation and the dashed line represents inhibition. (D) The “clusterProfiler” R package was used for the Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Different colors represented different background gene sets. (E) The Gene Set Variation Analysis (GSVA) 
heatmap showing PSM molecules that activate and inhibit pathways in TCGA-LIHC. The pathway activity was assessed with the GSCALite web server. (F) Least absolute shrinkage and 
selection operator (LASSO) Cox model fitting. Each curve represents a gene. The profiles of coefficients were plotted versus log(λ). Vertical lines indicate the positions of seven genes 
with coefficients greater than 0 determined by 10-fold cross-validation. λ was determined from 10-fold cross-validation. The x-axis represents log(λ); the y-axis represents binomial 
deviance. Optimal values calculated from minimum criteria and one standard error of the criteria are indicated by the dotted vertical lines. (G–I) Univariate Forest plot showing 
association between 7 candidate PSM molecules expression and Overall survival (OS) (G), Disease Specific Survival (DSS) (H) and Progression Free Interval (PFI) (I) in TCGA-LIHC.
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Figure 3 Unsupervised Machine Learning algorithms was used to identify 2 molecular subtypes in TCGA. (A) Left: The cumulative distribution function (CDF) curves in consensus 
cluster analysis. CDF curves of consensus scores by different subtype numbers (k = 2, 3, 4, 5, and 6) were displayed. Right: Relative change in area under the CDF curve for k = 2–6. (B) 
The consensus score matrix of all samples when k = 2. The higher the consensus score is, the more likely they were assigned to the same group (TCGA-LIHC). (C) The Principal 
Component Analysis (PCA) distribution of TCGA-LIHC samples by expression profile of PSM. Each point represents a single sample; different colors/shapes represent C1 and C2 
respectively. (D) Survival analysis including Overall Survival (OS), Disease Specific Survival (DSS), Disease Free Interval (DFI), and Progression Free Interval (PFI) based on two clusters 
(Log rank test, TCGA-LIHC, n = 373). (E) Expression distribution of 45 PSM molecules between two subtypes in TCGA-LIHC. (F) Distribution of clinical characteristics of two subtypes, 
including Gender, T/N/M stages, Clinical stage, and Tumor grade. (G) Oncoplot shows mutations in the top 20 genes with the highest mutation frequency in both subtypes (TCGA-LIHC) 
. Each column represents an individual patient. (H and I) Graphs show the mutually exclusive and co-occurrence of mutational events in both subtypes (TCGA-LIHC; (H) C1, (I) C2). 
Green indicates co-mutation, red indicates mutex-mutation, the asterisk indicates P-value (Wilcoxon test,·P <0.05, *P <0.01).
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better survival rates compared to C1 patients (Figure 3D; Log rank test; OS, P = 0.0014; DFI, P = 0.0016; DSS, P = 
0.0044; PFI, P = 0.00033). To ensure the stability of the clustering, we repeated the above process in a separate ICGC 
cohort (Figure S6A-D). Our results showed that C1 had higher PSM-related gene expression, while C2 showed the 
opposite trend (Figure 3E), which is highly consistent with both low- and high-risk subgroups.

We further explored the relationship among subtypes, clinical features and driver gene mutations. It is 
interesting to note that C1 contained a higher proportion of HCC patients with advanced stages compared to 
C2, particularly in terms of pathological stage and T stage (Figure 3F, P < 0.05). The oncoplots showed the 
mutation profiles of genes that are frequently mutated in both clusters (Figure 3G). In both clusters, TP53 and 
CTNNB1 were observed to have frequent missense mutations. More importantly, C1 had more frequent TP53 
missense mutations compared to C2, and other genes were also mutated more frequently, including CTNNB1, 
ABCA13, and RYR2. Finally, we found that, C1 showed more mutational co-occurrences, such as DNAH7 and 
CSMD3 mutations (Figure 3H), whereas C2 had relatively independent mutational events that did not interact 
with one another (Figure 3I).

Biological Signal Variation in the PSM Phenotype
To explore the differences in gene expression between PSM subtypes and the characteristics of the associated signaling 
pathways, we obtained DEGs in the TCGA cohort based on | log2 (fold change) | > 2 and adj. p < 0.05 (Figure 4A). 
Functional analysis showed that cell cycle, DNA replication, P53 signaling pathway, organelle fission, nuclear division 
were enriched in C1, while Retinol metabolism, Drug metabolism - cytochrome P450, carboxylic acid catabolic process, 
organic acid catabolic process were enriched in C2 (Figure 4B). In addition, we compared the differences in Tumor 
Immune Dysfunction and Exclusion (TIDE) scores and 12 immune cell infiltrations. Compared to C2, C1 had an 
increased TIDE score, exclusion score, CD8+ T cells, M0 macrophages, and CD4+ T cell infiltration (Figure S7). We 
then constructed a MEGENA network based on DEGs. As shown in Figure 4C, we identified six modules, the largest of 
which, C1_2, consisted of 137 genes (Figure 4C). Enrichment analysis showed that C1_2 was closely associated with cell 
division-related signal (Figure 4D) and that levels of the 10 most heavily weighted genes were all upregulated in tumor 
tissues (Figure 4E).

Identification of Ten Hub Genes Upregulation in Malignant Cells and Tprolif Cells
The full application of single-cell sequencing technology will contribute to a better understanding of the microenviron-
mental features of the HCC development process. We utilized a single cell RNA sequence of HCC here to characterize 
the expression pattern of ten hub genes in the tumor microenvironment (TME). Figure 5A and B showed the distribution 
of cell types and cell clusters in GSE166635, respectively. Uniform Manifold Approximation and Projection (UMAP) 
plots and violin plots show that ten hub genes are upregulated in malignant (cluster 8) and Tprolif (cluster 12 and 18) 
cells through unique genetic markers for each cell type (Figure 5C-E). Cells rich in PSM-related genes are mainly in the 
G2M phase (Figure S8A). To determine the mechanism by which PSM affects HCC, we analyzed ligand-receptor 
interactions through TISCH. In HCC samples, epithelial C1 and C9 were the main cell populations interacting with 
epithelial C8 (Figure S8B and C), and there were interactions between Tprolif C18 as well as C12 and other cell types 
(Figure S8D and E). The results further suggested that differences in C1 and C2 may be derived from proliferation- 
related signal.

PSM Correlated with Cancer DNA Repair and Stemness
The stability of the cancer genome is largely dependent on the repair of DNA through different mechanisms, including 
DNA Mismatch Repair (MMR) and Homologous Recombination Repair (HRR), which also contribute to the main-
tenance of stemness in cancer cells. Here we analyzed the relationship between PSM-related genes and MMR signatures, 
HRR signatures, and cancer stemness.

At the single-cell level, we found that PSM-related genes and HHR, MMR-related genes were consistently highly 
expressed on malignant cells (Figure 6A-F). In addition, we also observed a high positive correlation among them 
(Figure 6G and H; PSM-HRR, R = 0.67; PSM-MMR, R = 0.44). For cancer stemness, we noted that C1 has a much 
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Figure 4 Analysis of PSM-related signaling pathways. (A) Volcano map of differentially expressed genes (DEGs) between C1 and C2 based on TCGA-LIHC dataset. Data on 
the abscissa are differences in gene expression (log2 fold change); data on the ordinate represent the significance of these differences (−log10 padj). Red indicates 
upregulation, and blue indicates downregulation. (B) Significant Gene Ontology (GO) enrichment terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses of the DEGs. (C) The co-expression network of DEGs is based on Multiscale Embedded Gene Co-Expression Network Analysis (MEGENA). Each node 
represents a module, with the larger nodes indicating a higher number of genes. Right MEGENA network showing the largest gene module C1_2. The degree value of the 
node was calculated by Cytoscape. The higher the degree value, the darker the color and the larger the size. (D) Enrichment analysis of the largest gene module (node 
indicates gene expression level; color indicates P value). (E) Graphs for comparison of ten hub genes expression in paired normal and tumor tissues using TCGA-LIHC 
(Paired t test, *** P < 0.001, n = 50).
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Figure 5 Single-cell analysis. (A) Uniform Manifold Approximation and Projection (UMAP) plot dimensionality reduction algorithm, each color represents a unique cell type. 
(B) Cells were clustered into 21 types via UMAP plot dimensionality reduction algorithm, each color represents a unique cluster. (C) Dot plots demonstrate the expression 
distribution of the top 10 degree value genes. (D and E) Violin plots of the top 10 degree value genes across different cell types (D) and cell cluster (E).
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Figure 6 PSM correlated with cancer DNA repair and stemness. (A–C) Dot plots demonstrate the expression distribution of homologous recombination repair (HRR) signature (A), 
mismatch repair (MMR) (B) signature and PSM molecules (C) in GSE166635. (D–F) Violin plots demonstrate the expression distribution of HRR signature (D), MMR (E) signature and 
PSM molecules (F) in GSE166635. (G) The correlation scatter plots in TCGA-LIHC present the correlations between the HRR signature and PSM molecules expression. (H) The 
correlation scatter plots in TCGA-LIHC present the correlations between the MMR signature and PSM molecules expression. (I) Analysis of the mRNAsi score difference between the 
two subtypes (Wilcoxon test, TCGA-LIHC, n = 373). (J) Correlation analysis of the 7 candidate genes mRNA expression and mRNAsi score based in TCGA-LIHC (Spearman method, 
n = 373). (K and L) PSMD13 expression in different Human hepatocarcinoma cell lines based on (K) the Cancer Cell Line Encyclopedia (CCLE) and (L) Western blot. One-way ANOVA 
was conducted. (***P < 0.001, ****P < 0.0001). (M and N) Hep 3B2.1–7 and HepG2 cells transfected with the NC, sh-PSMD13 constructs. The representative images from the sphere- 
forming assay (M). The scale bar represents 50 μm. The number of tumor spheres was counted and plotted, and percentage of tumor spheres with diameters of 50–100 μm, 100–150 
μm, or >150 μm was calculated and plotted (N). (ANOVA, **P < 0.01, ***P < 0.001, ****P < 0.0001). (O) Clone formation capacity of the Hep 3B2.1–7 and HepG2 transfected with the 
NC, sh-PSMD13 constructs assessed using the clone formation assay. Data are means ± SEM. All experiments were repeated at least three times, independently.
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higher stemness index than C2 (Figure 6I, P < 0.0001). Based on previous analysis of survival rates, we focused on 
PSMD14, PSMD13, PSMD9, PSMD1, PSMB2, PSMA3, and PSMA1. Except for PSMD1, the levels of the remaining six 
genes were positively correlated with the stemness index (Figure 6J, P < 0.001). The results of the Cancer Cell Line 
Encyclopedia (CCLE) are shown in Figure 6K and the transcriptome expression levels of PSMD13 at cell level were, in 
descending order (Hep 3B2.1–7, HepG2, HuH-7, HuH-6 and Li-7). The Western blotting, shown in Figure 6L, yielded 
consistent results. Since Hep3B2.1–7 and HepG2 cells showed relatively higher PSMD13 expression, we selected these 
two cell lines for further analysis. Considering that PSMD13 exhibited the strongest stemness correlation (R = 0.324, P < 
0.001), we next demonstrated in vitro that interference with PSMD13 expression significantly reduced the sphere- 
forming and proliferative capacity of Hep3B2.1–7 and HepG2 cells (Figure 6M-O).

PSMD13 Regulates Cancer EMT Through MMP2 and MMP9
The EMT program and tumor cell stemness are always closely linked and, in particular, EMT confers a strong stemness 
on epithelial tumor cells. We first analyzed the transcriptomic differences generated by PSMD13 knockdown using 
GSE57871 (Figure 7A). We found that PSMD13 was positively correlated with EMT activation (Figure 7B and C). To 
clarify the potential regulatory mechanisms of PSMD13 on EMT, we calculated the correlation between PSMD13 and 
four EMT marker genes. It was found that PSMD13 was positively correlated with MMP2 and MMP9 based on TCGA 
(Figure 7D; PSMD13-MMP2, R = 0.170, P < 0.001; PSMD13-MMP9, R = 0.398, P < 0.001) and ICGC (Figure 7E; 
PSMD13-MMP2, R = 0.293, P < 0.001; PSMD13-MMP9, R = 0.430, P < 0.001), respectively. In pan-cancer, PSMD13 
was found to be positively correlated with MMP2 and MMP9 in most cancer types (Figure 7F). We then demonstrated 
in vitro that down-regulation of PSMD13 levels could significantly affect the expression of MMP2 and MMP9 
(Figure 7G and H), and attenuate the migration and invasive ability of tumor cells (Figure 7I-L). Finally, in vivo assays 
showed that intervention with PSMD13 impeded tumor growth (Figure 7M-P).

Characterization of the Clinical Significance of PSM
The ssGSEA algorithm was applied to build a risk score model using the expression profiles of the seven genes 
mentioned above. As shown in Figure 8A (TCGA) and B (ICGC), patients with high risk have a higher probability of 
early death than those with low risk. Kaplan-Meier curves stratified by median cut-off values showed that patients in the 
high-risk group had a significantly worse OS than those in the low-risk group (Figure 8C and D; TCGA, P = 0.0026; 
ICGC, P = 0.01). The predictive capability of the risk score was assessed by time-dependent ROC curves, with the area 
under the curve (AUC) reaching 0.64 at 1 year, 0.64 at 3 years and 0.65 at 5 years for TCGA (Figure 8E), and 0.67 at 
1 year and 0.76 at 3 years for ICGC (Figure 8F).

We next examined the expression of PSMD13 in clinical samples. In terms of subcellular localization, PSMD13 was 
mainly found in nuclear speckles and cytosol (Figure 8G, data derived from Human Protein Atlas (HPA) database). 
Figure 8H showed representative pictures of PSMD13 Immunohistochemistry (IHC) in the HPA database, and the results 
suggested that PSMD13 was overexpressed in HCC tissues. To validate this result, we retrospectively collected 40 HCC 
specimens and quantified the expression of PSMD13 using the H-score (Figure 8I, P < 0.001). Considering previous 
results suggesting that PSMD13 can promote tumor cell proliferation, we conducted serial sections to examine the 
correlation between PSMD13 and Ki67 expression. In addition to the transcriptional level findings (Figure 8J, TCGA, 
R = 0.365, P < 0.001; Figure 8K, ICGC, R = 0.256, P < 0.001), IHC staining confirmed an increase in protein levels of 
Ki67 (representing the proliferative capacity of tumor cells) with increased PSMD13 protein expression (Figure 8L and 
M, R = 0.597, P < 0.001).

Discussion
The PSM is a large multi-catalytic protease complex consisting of a 20S core particle and a 19S regulatory particle whose 
main function is to accept and degrade ubiquitinated substrates.46 The entire regulatory system is highly complex and is 
responsible for the degradation of over 80% of the body’s intracellular proteins, ultimately maintaining cellular 
homeostasis.47 The PSM is critical for cell fate, regulating many processes including cell cycle progression, apoptosis, 
DNA repair and the degradation of misfolded proteins derived from the endoplasmic reticulum (ER).48
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Figure 7 PSMD13 overexpression promotes a malignant phenotype in HCC. (A) A volcano plot of differentially expressed mRNAs in PSMD13 knockdown cells. (B) Enrichment 
analysis of DEGs upon PSMD13 knockdown. The larger the circle area is, the higher the number of genes; the smaller the p-values and the more significant the enrichment (the darker the 
color). (C) Gene set enrichment analysis (GSEA) plots of HALLMARK terms were analyzed in GSE57871. (D and E) Correlation of the PSMD13 expression levels with EMT-related 
makers based on TCGA-LIHC (D) and ICGC (E). Spearman method is applied. (F) Association of PSMD13 expression with MMP2 and MMP9 in TCGA pan-cancer. Red: positively 
correlated; Blue: negatively correlated, Grey: not statistically significant. Spearman method is applied. (G and H) The Expression of the MMP2 and MMP9 proteins was examined using 
Western blots after the transfection of the Hep 3B2.1–7 and HepG2 cells with NC, sh-PSMD13 constructs. (ANOVA, **P < 0.01, ***P < 0.001, ****P < 0.0001). (I and J) The migratory 
ability of the different groups of Hep 3B2.1–7 and HepG2 was examined using the wound-healing assays (Scale bars = 50 μm). (**P < 0.01, ***P < 0.001). (K and L) Cell invasion (Transwell 
assay) (Scale bars = 20 μm). (ANOVA, ***P < 0.001). (M) Schematic diagram of subcutaneous tumor models. Green triangles represent the time point when the tumor volume was 
measured. (N) Xenograft mouse tumors (n= 6 mice per group). (O) Weights of xenograft tumors at completion of the study. (ANOVA, ***P < 0.001). (P) Volumes of xenograft tumors 
measured twice a week. Data are means ± SEM. All experiments were repeated at least three times, independently.
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Figure 8 Clinical significance of PSM. (A and B) The composite plots of the distribution of risk scores, vital status and expression patterns of the seven PSM prognostic molecules in 
HCC patients from TCGA (A) and ICGC (B). Risk scores are listed in ascending order from left to right. (C and D) The predictive value of the PSM score was evaluated using time- 
dependent Receiver operating characteristic (ROC) curve analysis within 1, 3 and 5 years (C: TCGA-LIHC; (D) ICGC). (E and F) Kaplan-Meier curves of association between the PSM 
prognostic molecule expression levels (ssGSEA algorithm) and overall survival of HCC patients in TCGA (E) and ICGC (F) datasets (Log rank test, n = 373). (G) Main subcellular 
localization of PSMD13 based on Human Protein Atlas (HPA) database. (H) Representative Immunohistochemistry (IHC) images of PSMD13 expression in normal liver tissue and HCC 
tissue according to HPA databases. (I) IHC analysis of PSMD13 of our own samples. The statistical comparison of PSMD13 expression levels (H-SCORE) in paracancerous and HCC 
tissue (Wilcoxon test, ***p< 0.001, n = 40, Scale bars = 50 μm). All the IHC scores were repeated three times using a double-blind method. Statistical analysis All experiments were 
repeated at least three times, independently. (J and K) Scatter plot showing the correlation of PSMD13 and MKI67 mRNA levels based on TCGA (J) and ICGC (K) datasets. (L and M) 
Matched HCC tissue sections of adjacent slides were displayed to prove the correlation of PSMD13 and Ki-67 expression (L). The correlation analysis was based on immunohisto-
chemical H-score (M). (Wilcoxon test, ***P < 0.001, n = 40, Scale bars = 50 μm).
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It is a fundamental fact that the expression of PSM-related genes is frequently elevated in tumor cells.49 A previous 
study has shown that enhanced degradation of misfolded proteins can provide antioxidant defence for tumor cells to 
maintain their malignant phenotype.50 Thus, there is a long history of antitumor therapeutic strategies targeting PSM, 
such as lenalidomide, which can bind to Cereblon to gain the ability to target Aiolos and Ikaros and ultimately inhibit 
PSM activity.51 Unfortunately, the success of this therapy has only been for haematological malignancies and there has 
still been no breakthrough in solid tumors. In the present study, we describe the transcriptional heterogeneity of PSM- 
associated molecules in tumor tissues and find that imbalances in PSM activity may be associated with genomic 
alterations. We defined two distinct clusters in HCC based on the transcriptome level of PSM-related genes. We found 
substantial differences in clinical features and mutational profiles between the two clusters. Of particular importance, 
TP53 showed an extremely high mutation rate (46%) in C1. Numerous studies have demonstrated that TP53 is a DNA- 
binding transcription factor capable of binding to a variety of different promoter elements in the genome to regulate the 
expression of hundreds of genes.52,53 These studies have highlighted its key role in processes such as the regulation of 
proliferation and the maintenance of genomic stability. In response to DNA damage and excessive proliferation signals, 
TP53 proteins are significantly activated, in other words, inactivation of TP53 by mutation will result in potent oncogenic 
effects. We found that variation in the mRNA transcriptome in PSM subtypes was significantly associated with specific 
proliferation-related biological pathways, and in particular was positively correlated with cell division and cell cycle 
signalling. Interestingly, key genes representing differences between the two clusters were found to be restrictively 
expressed on malignant cells (high proliferation rate cells). This evidence seems to support the possibility that the 
essential feature of the PSM subtype is the sustained proliferation of tumor cells. The above results show that the 
frequency of mutations involved in regulating cell growth is significantly higher in C1 (high PSM activity cluster) than in 
C2 (low PSM activity cluster). These mutations have been shown to underlie the hallmark of sustained proliferation in 
a large number of cancer models. A corollary of excessive proliferation is increased DNA replication pressure, which 
induces genomic instability and forces tumor cells to choose to escape apoptosis and eventually establish a hallmark of 
replicative immortality.

The DNA damage response induces a network of cellular pathways called the DNA damage response (DDR) to 
trigger DNA repair, which usually consists of mismatch repair (MMR) protein, homologous recombinational repair 
(HRR) and non-homologous end joining (NHEJ) and is coordinated with cell cycle progression and proliferation.54 In 
the present study, we found that PSM is highly correlated with HRR and MMR at the transcriptome level and that both 
repair systems have been reported to maintain the stem cell characteristics of tumor cells. Importantly, C1 patients with 
poor prognosis exhibited a higher stem cell index, a measure based on the stem cell index of mRNA expression 
(mRNAsi).55 The stem cell profile of tumors has been shown to be highly resistant to cytotoxic therapies and to 
underlie proliferation and dissemination in several tumors.56 Elevated PSM levels are critical for stem cell identity in 
both physiological and pathological situations.57 It has been found that upregulation of levels of the PSM subunit 
PSMD11/RPN-6 contributes to the induction of increased PSM activity in human pluripotent stem cells and that the 
UPS pathway is able to respond to various upstream factors to regulate cancer cell stemness.58,59 Our further 
calculations showed the strongest correlation between PSMD13 and mRNAsi, and subsequent experiments confirmed 
that interfering with PSMD13 levels significantly attenuated the sphere-forming and proliferative capacity of tumor 
cells. Interestingly, we found that PSMD13 was able to promote the activation of EMT signalling, which was identified 
as a regulator of tumor heterogeneity, and that cells undergoing EMT acquired stem cell characteristics.60 In vivo 
experiments also demonstrated that down-regulation of PSMD13 expression significantly inhibited the growth of 
xenotransplanted tumor. In addition, it is noteworthy that the expression of PSM-related genes increases with tumor 
stage and grade, and that progressive tumors often exhibit strong stemness. Based on the few studies on the association 
of PSMD13 with tumors, selective splicing events mediated by single nucleotide polymorphism (SNP) rs7128029 in 
PSMD13 have been identified to be associated with endometrial cancer risk.61 Based on a holistic bioinformatics 
approach, PSMD family members are now hypothesized to be possible prognostic biomarkers for breast and bladder 
cancer progression and to be promising therapeutic targets.62,63

Past attention to cancer research has focused on cancer cells, and over time, cancer has been recognized as an 
evolutionary and ecological process involving continuous, dynamic and interactive interactions between cancerous and 
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mesenchymal components.64 Mesenchymal components are non-cancerous host cells, including macrophages, CD4 
+/CD8+ T cells, fibroblasts, endothelial cells, myeloid-derived suppressor cells and natural killer cells, as well as non- 
cellular components, including extracellular matrix (ECM) and soluble cytokines.65,66 They construct communication 
loops with tumor cells in various ways to help them acquire and maintain cancer hallmarks such as EMT, angiogenesis, 
apoptosis resistance, hyperproliferation, and immune evasion.67,68 This TME-dependent progression pattern of tumors 
provides a therapeutic modality to target mesenchymal components.69 This therapeutic approach has obvious advantages 
over direct targeting of cancer cells, which are prone to drug-resistant mutations due to their genomic instability, while 
the non-tumor component of TME is still genetically stable.70,71 In this study, high levels of CD4+ T cells, regulatory 
T cells and M0 macrophages were found in C1 (high PSM activity cluster), indicating the presence of immune tolerance 
in C1 patients. The results of the TIDE score also suggest that C1 patients are less likely to benefit from immunotherapy 
compared to C2. Thus, the biological signatures associated with PSM may define a unique group of patients who are 
prone to develop cytotoxic treatment resistance while also responding poorly to immunotherapy. This implies that the 
altered activity of PSM may have an effect on the complex signaling cascade in TME.

There are some limitations of our study. The results of this study relied heavily on bioinformatics analysis. Although 
we included a small cohort, further expansion of the sample size could well strengthen our conclusions. Our results 
suggested that PSMD13 plays an important role in HCC, but full exploration of its biological mechanisms is still lacking. 
Our team is attempting to further investigate this target.

Conclusion
In conclusion, our study reveals the potential significance of PSM in genomic instability and maintenance of tumor 
stemness. The activity of PSM is a valid predictor of prognosis and therapeutic response in patients with HCC disease. 
Furthermore, PSMD13 may be a potential therapeutic target and might thus facilitate individualized treatment and 
medical decision making.
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