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Abstract: High temperature requirement serine peptidase A1 (HTRA1) related cerebral small vessel disease (CSVD) includes both 
symptomatic heterozygous HTRA1 variant carrier and cerebral autosomal recessive arteriopathy with subcortical infarcts and 
leukoencephalopathy (CARASIL) patients. Presently, most reported symptomatic heterozygous HTRA1 variant carrier cases are 
sporadic family reports with a lack of specific characteristics. Additionally, the molecular mechanism of heterozygous HTRA1 gene 
variants is unclear. We conducted this review to collect symptomatic carriers of heterozygous HTRA1 gene variants reported as of 
2022, analyzed all pathogenicity according to American College of Medical Genetics and Genomics (ACMG) variant classification, 
and summarized the cases with pathogenic and likely pathogenic HTRA1 variants gender characteristics, age of onset, geographical 
distribution, initial symptoms, clinical manifestations, imaging signs, HTRA1 gene variant information and to speculate its underlying 
pathogenic mechanisms. In this review, we summarized the following characteristics of pathogenic and likely pathogenic symptomatic 
HTRA1 variant carriers: to date, the majority of reported symptomatic HTRA1 carriers are in European and Asian countries, 
particularly in China which was found to have the highest number of reported cases. The age of first onset is mostly concentrated 
in the fourth and fifth decades. The heterozygous HTRA1 gene variants were mostly missense variants. The two variant sites, 166–182 
aa and 274–302 aa, were the most concentrated. Clinicians need to pay attention to de novo data and functional data, which may affect 
the pathogenicity analysis. The decrease in HtrA1 protease activity is currently the most important explanation for the genetic 
pathogenesis. 
Keywords: stroke, HTRA1 gene, ACMG criteria, heterozygous variant, symptomatic carrier

Introduction
Cerebral small vessel disease (CSVD) is an age-related cerebrovascular disease. A variety of factors may affect the small 
arteries, arterioles, capillaries, and venules in the brain, leading to clinical, imaging, and pathological syndromes of 
CSVD.1 The clinical symptoms associated with CSVD are complex and include cognitive impairment, stroke, spine 
disorders, gait disorders, alopecia, psychiatric disorders, migraine, epilepsy, and more.2,3 The consequences of CSVD on 
the brain lesions were easily captured in magnetic resonance imaging (MRI). White matter hyperintensities (WMHs), 
lacunar infarctions (LIs), and cerebral microbleeds (CMBs) were the most common imaging manifestations.2 With 
improvements in the understanding of genetic precision medicine, a number of disease-causing genes, including 
NOTCH3 (OMIM 600276),4 HTRA1 (OMIM 602194),5,6 TREX1 (OMIM 606609),7 COL4A1 (OMIM 120130),8 

COL4A2 (OMIM 120090),9 CTSA (OMIM 613111),10 and GLA (OMIM 300644),11 have been discovered; among 
these, heterozygous HTRA1 gene variant is related to autosomal dominant cerebral arteriopathy with subcortical infarcts 
and leukoencephalopathy type 2 (CADASIL2).6 CADASIL caused by NOTCH3 gene mutation, the most common 
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dominantly inherited monogenic cerebrovascular disease, has typical abnormal temporal pole signals.12 Additionally, 
cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), also known as 
the Maeda syndrome, which pathogenic gene is the same as CADASIL2, and has more specific manifestations, such as 
alopecia and spine disorders.13

Presently, most reported symptomatic carriers of heterozygous HTRA1 gene variants are sporadic family reports with 
a lack of specific characteristics. Moreover, the molecular mechanism of heterozygous HTRA1 gene variants is unclear. 
Thus, in this review, we used PubMed, Scopus, Web of Science, and Google Scholar to collect symptomatic carriers of 
heterozygous HTRA1 gene variants with complete index cases information reported as of 2022, analyzed all pathogeni
city according to American College of Medical Genetics and Genomics (ACMG) variant classification,14 excluded all 
variants of uncertain significance, and summarized the cases with pathogenic and likely pathogenic HTRA1 variants 
gender characteristics, age of onset, geographical distribution, initial symptoms, clinical manifestations, imaging signs, 
HTRA1 gene variant information and to speculate its underlying pathogenic mechanisms.

HTRA1 Gene
The HTRA1 gene (OMIM 602194) is located on the autosome 10q26.13, and its most commonly used transcript code is 
NM_002775.5. The HTRA1 gene includes nine exons and a 1443 bp coding domain sequence, and it encodes the HtrA1 
protease comprising 480 amino acids (aa).15 HtrA1 protease can be widely expressed in normal human tissues, including 
four domains such as the insulin-like growth factor binding protein (33–98 aa), Kazal-type serine protease inhibitor (99– 
157 aa), trypsin-like serine protease (204–364 aa), and PDZ domains (365–467 aa).16 Its linker region (158–203 aa), 
Loop D (283–291 aa), and Loop 3 (301–314 aa) are the key structures for activation of enzyme activity.17

In CSVDs, homozygous and heterozygous variants in the HTRA1 gene cause different disease phenotypes.17,18 

Homozygous or compound heterozygous HTRA1 gene mutations are related to CARASIL19 while heterozygous HTRA1 
gene variants are related to CADASIL2;6 however, the pathogenic mechanisms of both diseases are unclear till date.20

Clinical Manifestations of Symptomatic HTRA1 Variant Carriers
In 2015, Verdura6 used next generation sequencing to screen all candidate pathogenic genes carried by probands with 
familial cerebrovascular disease of unknown etiology. After verification by Standard PCR amplification and Sanger 
sequencing, it was first proposed that heterozygous HTRA1 gene variants were associated with autosomal dominant 
cerebrovascular disease. In 2016, the Online Mendelian Inheritance in Man (OMIM) database officially named the CSVD 
caused due to heterozygous HTRA1 gene variants as CADASIL2 (https://www.omim.org/). However, the correlation 
between the genotype of the heterozygous HTRA1 variant and the clinical phenotype has not been confirmed,21 and not 
all carriers of the heterozygous HTRA1 gene variant will have the corresponding clinical manifestations. The penetrance 
appears to be low.17 Therefore, the naming of CADASIL2 is still controversial. Some scholars17 believe that it is more 
suitable to use “symptomatic HTRA1 variant carriers” to describe this type of disease.

This study reviews a total of 76 symptomatic HTRA1 variant carriers’ family probands with relatively complete data 
from PubMed, Scopus, Web of Science, and Google Scholar databases as of 2022. We analyzed all pathogenicity 
according to ACMG variant classification,14 and included 55 pathogenic and likely pathogenic variants (Table 1). The 
gender, age of first onset, nationality, initial symptoms, clinical manifestations, imaging signs, accompanying diseases, 
HTRA1 gene variant information were analyzed by 55 pathogenic and likely pathogenic symptomatic carriers to 
summarize the characteristics of this type of disease.

Among 55 probands, no consanguinity of the proband’s parents were found, and males accounted for about 56.36%. 
These indicate that a male sex advantage may exist, and similar to CARASIL.22 Most probands are from Asian and 
European countries, especially from China (50.91%), followed by Japan, France, and Italy. In recent years, related cases 
have also been reported in African and American countries (Figure 1).

The age of onset of pathogenic and likely pathogenic symptomatic HTRA1 variant carriers was later than that of 
CARASIL. The former onsets mostly during the fourth to fifth decade while the latter onsets mostly during the second to 
third decade.13 The initial symptoms of stroke (45%) the most common, followed by the cognitive impairment (Figure 2). 
The clinical manifestations of symptomatic HTRA1 variant carriers were mainly progressive cognitive impairment. 
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Table 1 Worldwide Distribution of P and LP Symptomatic HTRA1 Variant Carriers

Cases Gender/ 
Onset 
Age

Nationality Clinical Manifestations Imaging Accompanying 
Diseases

Variants 
(NM_002775.5)

Exon HtrA1 
Protease 
Activity

ACMG Criteria

Muthusamy27 F/54 America Stroke, cognitive impairment, migraine, urinary 

incontinence

WMHs Hypertension c.184_185delTG 

p.C62Arffs*106

Exon 1 NA LP (PVS1 

+PM2_Supporting)

Lee30 F/52 Taiwan, 
China

Stroke, cognitive impairment WMHs, LIs, 
ICH

Hypertension c.359G>A, p. 
G120D

Exon 1 ↓ 30 LP (PS3 
+PM2_Supporting 

+PP3)

Thaler31 F/25 Germany Stroke, gait disorders, migraine, spine disorders WMHs, CMBs Hypertension, ex- 
nicotine abuse

c.451C>T, p. 
Q151X

Exon 1 NA LP (PVS1 
+PM2_Supporting)

Chen36 F/31 China Alopecia, spine disorders WMHs, LIs Hypertension c.472+1G>A Intron1 NA LP (PVS1 

+PM2_Supporting)
Bougea53 M/29 Hellenic 

Republic

Cognitive impairment, alopecia, migraine WMHs No c.496C>T, p. 

R166C

Exon 2 ↓ 41 LP (PS3 

+PM2_Supporting 

+PM5)
Liu18 F/35 China Stroke, cognitive impairment, gait disorders, 

psychiatric disorders, alopecia, spine disorders, 

urinary incontinence, diplopia

WMHs, LIs, 

CMBs

No c.496C>T, P. 

R166C

Exon 2 ↓ 41 LP (PS3 

+PM2_Supporting 

+PM5)
Favaretto24 M/41 Italy Stroke, cognitive impairment, psychiatric 

disorders

WMHs, LIs, 

CMBs

Vitiligo, 

autoimmune 
hyperthyroidism

c.496C>T, p. 

R166C

Exon 2 ↓ 41 LP (PS3 

+PM2_Supporting 
+PM5)

Verdura6 M/66 France Stroke, cognitive impairment, spine disorders WMHs, LIs Dyslipidemia c.497G>T, p. 

R166L

Exon 2 ↓ # 6,41 LP (PS3 

+PM2_Supporting 
+PM5)

Cao54 M/57 China Stroke, cognitive impairment WMHs, LIs, 

CMBs

No c.497G>T, p. 

R166L

Exon 2 ↓ # 6,41 LP (PS3 

+PM2_Supporting 
+PM5)

Verdura6 F/65 France Cognitive impairment, gait disorders WMHs, LIs Hypertension c.517G>C, p. 

A173P

Exon 2 ↓ # 6,41 LP (PS3 

+PM2_Supporting 
+PM5_Supporting)

Donato55 M/59 Italy Stroke, cognitive impairment, gait disorders WMHs, LIs Hypertension, 

dyslipidemia

c.523G>A, p. 

V175M

Exon 2 ↓ # 37 LP (PS3 

+PM2_Supporting 
+PM5_Supporting)

Liu18 M/49 China Stroke, cognitive impairment, psychiatric 

disorders, alopecia, spine disorders

WMHs, LIs, 

CMBs, dilated 
perivascular 

spaces

Hypertension, 

diabetes

c.523G>A, p. 

V175M

Exon 2 ↓ # 37 LP (PS3 

+PM2_Supporting 
+PM5_Supporting)

(Continued)
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Table 1 (Continued). 

Cases Gender/ 
Onset 
Age

Nationality Clinical Manifestations Imaging Accompanying 
Diseases

Variants 
(NM_002775.5)

Exon HtrA1 
Protease 
Activity

ACMG Criteria

Muthusamy27 F/46 America Stroke, cognitive impairment, gait disorders WMHs, LIs, 

CMBs

Hypertension c.523G>A, p. 

V175M

Exon 2 ↓ # 37 LP (PS3 

+PM2_Supporting 
+PM5_Supporting)

Shang56 F/40 Eritrea Stroke, cognitive impairment WMHs, CMBs Hypertension p.V175M Exon 2 ↓ # 37 LP (PS3 

+PM2_Supporting 
+PM5_Supporting)

Zhang26 F/39 China Stroke WMHs, LIs, 

CMBs

Hypertension c.523G>A, p. 

V175M

Exon 2 ↓ # 37 LP (PS3 

+PM2_Supporting 
+PM5_Supporting)

Zhang37 M/44 China Stroke, cognitive impairment, gait disorders, 

spine disorders

WMHs, LIs, 

CMBs

Hypertension c.523G>A, p. 

V175M

Exon 2 ↓ # 37 LP (PS3 

+PM2_Supporting 
+PM5_Supporting)

Lee30 M/48 Taiwan, 

China

Stroke, spine disorders WMHs, LIs Hypertension, 

dyslipidemia, 
coronary artery 

disease

c.536T>A, p. 

I179N

Exon 2 ↓ 30 LP (PS3 

+PM2_Supporting 
+PP3)

Lee30 M/62 Taiwan, 
China

Stroke, cognitive impairment, spine disorders, 
psychiatric disorders

WMHs, LIs, 
CMBs, ICH

Hypertension, 
smoking

c.543delT, p. 
A182Pfs*33

Exon 2 ↓ * 30 P (PVS1+PS3 
+PM2_Supporting)

Chen36 M/40 China Stroke, cognitive impairment, spine disorders, 

psychiatric disorders, alopecia

WMHs, LIs, 

CMBs

No c.543delT, p. 

A182Pfs*33

Exon 2 ↓ * 30 P (PVS1+PS3 

+PM2_Supporting)
Zhang32 M/77 China Stroke, cognitive impairment WMHs, LIs, 

CMBs

Hypertension c.589C>T, p. 

R197X

Exon 3 NA P (PVS1+PM1 

+PM2_Supporting)

Zhou33 F/49 China Cognitive impairment WMHs No c.589C>T, p. 
R197X

Exon 3 NA P (PVS1+PM1 
+PM2_Supporting)

Zhuo42 F/46 China Stroke, cognitive impairment WMHs, LIs, No c.614C>G, p. 

S205C

Exon 3 ↓ 42 LP (PS3 

+PM2_Supporting 
+PP3)

Lee30 M/54 Taiwan, 

China

Cognitive impairment, psychiatric disorders, 

spine disorders

WMHs, LIs Hypertension c.767T>C, p. 

I256T

Exon 3 ↓ # 30 LP (PS3 

+PM2_Supporting 
+PP3)

Lee30 F/49 Taiwan, 

China

Stroke, cognitive impairment, spine disorders, 

psychiatric disorders

WMHs, LIs, 

CMBs, ICH

Dyslipidemia c.827G>C, p. 

G276A

Exon 4 ↓ 30 LP (PS3 

+PM2_Supporting 
+PP3)
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Zhang37 M/42 China Stroke, cognitive impairment, spine disorders WMHs, LIs Hypertension c.832T>C, p. 
F278L

Exon 4 ↓ # 37 LP (PS3 
+PM2_Supporting 

+PP3)

Zhang37 F/54 China Stroke, cognitive impairment, gait disorders, 
spine disorders

WMHs, LIs, 
CMBs

No c.834C>G, p. 
F278L

Exon 4 ↓ # 37 LP (PS3 
+PM2_Supporting 

+PP3)

Nozaki20 M/49 Japan Cognitive impairment, gait disorders, spine 
disorders

WMHs No c.848G>A, p. 
G283E

Exon 4 ↓ # 20,41 LP (PS3 
+PM2_Supporting 

+PP3)

Verdura6 F/49 France Migraine WMHs, LIs, Hypertension c.852C>A, p. 
S284R

Exon 4 ↓ # 6,41 LP (PS3 
+PM2_Supporting 

+PM5)

Verdura6 M/50 France Stroke, gait disorders WMHs, LIs No c.854C>A, p. 
P285Q

Exon 4 ↓ 6,41 LP (PS3 
+PM2_Supporting 

+PM5)

Nozaki20 M/20 Japan Stroke, cognitive impairment, gait disorders, 
alopecia, spine disorders

WMHs, CMBs Hypertension c.854C>T, p. 
P285L

Exon 4 ↓ # 20,37 LP (PS3 
+PM2_Supporting 

+PM5)
Nozaki20 M/51 Japan Stroke, cognitive impairment, gait disorders, 

spine disorders

NA No c.854C>T, p. 

P285L

Exon 4 ↓ # 20,37 LP (PS3 

+PM2_Supporting 

+PM5)
Chen36 F/32 China Stroke, cognitive impairment, gait disorders, 

alopecia, psychiatric disorders

WMHs, LIs, 

CMBs

Hypertension c.854C>T, p. 

P285L

Exon 4 ↓ # 20,37 LP (PS3 

+PM2_Supporting 

+PM5)
Zhang37 F/42 China Stroke, cognitive impairment, gait disorders, 

spine disorders

WMHs, LIs No c.854C>T, p. 

P285L

Exon 4 ↓ # 20,37 LP (PS3 

+PM2_Supporting 

+PM5)
Verdura6 M/49 France Stroke, cognitive impairment, gait disorders WMHs, LIs No c.856T>G, p. 

F286V

Exon 4 ↓ 6,41 LP (PS3 

+PM2_Supporting 

+PP3)
Lee30 F/55 Taiwan, 

China

Stroke, cognitive impairment, spine disorders, 

alopecia, psychiatric disorders

WMHs, LIs, 

CMBs

No c.865C>T, p. 

Q289X

Exon 4 ↓ * 30 P (PVS1+PS3 

+PM2_Supporting)

Donato55 M/65 Italy Cognitive impairment, gait disorders WMHs No c.883G>A, p. 
G295R

Exon 4 ↓ # 41 LP (PS3 
+PM2_Supporting 

+PP3)

Ragno23 M/44 Italy Cognitive impairment, migraine WMHs, 
cerebral 

atrophy, CMBs

Hypertension c.889G>A, p. 
V297M

Exon 4 ↓ 20 LP (PS3 
+PM2_Supporting 

+PP3)

(Continued)
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Table 1 (Continued). 

Cases Gender/ 
Onset 
Age

Nationality Clinical Manifestations Imaging Accompanying 
Diseases

Variants 
(NM_002775.5)

Exon HtrA1 
Protease 
Activity

ACMG Criteria

Muthusamy27 M/41 America Stroke, cognitive impairment, seizures, TGA WMHs, LIs, 

CMBs

Hypertension, 

dyslipidemia

c.889G>A, p. 

V297M

Exon 4 ↓ 20 LP (PS3 

+PM2_Supporting 

+PP3)
Chen36 M/51 China Stroke, cognitive impairment, gait disorders, 

psychiatric disorders

WMHs, LIs, 

CMBs

Hypertension c.889G>A, p. 

V297M

Exon 4 ↓ 20 LP (PS3 

+PM2_Supporting 

+PP3)
Ohta34 M/49 Japan Stroke, gait disorders WMHs, LIs No c.904C>T, p. 

R302X

Exon 4 ↓ * 41 P (PVS1+PS3 

+PM2_Supporting)

Tateoka35 M/59 Japan Stroke, cognitive impairment WMHs, LIs, 
CMBs

No c.904C>T, p. 
R302X

Exon 4 ↓ * 41 P (PVS1+PS3 
+PM2_Supporting)

Wu57 M/35 China Stroke, cognitive impairment WMHs, LIs No c.905G>A, p. 

R302Q

Exon 4 ↓ # 20 LP (PS3 

+PM2_Supporting 
+PP3)

Ito51 M/30 Japan Stroke, cognitive impairment, spine disorders WMHs, LIs, 

CMBs

No p.R302Q Exon 4 ↓ # 20 LP (PS3 

+PM2_Supporting 
+PP3)

Nozaki20 M/63 Japan Stroke, cognitive impairment, gait disorders, 

spine disorders

NA Hypertension c.905G>A, p. 

R302Q

Exon 4 ↓ # 20 LP (PS3 

+PM2_Supporting 
+PP3)

Nozaki20 M/40 Japan Cognitive impairment, gait disorders, spine 

disorders, alopecia

WMHs, CMBs No c.905G>A, p. 

R302Q

Exon 4 ↓ # 20 LP (PS3 

+PM2_Supporting 
+PP3)

Mahale58 F/37 India Migraine, seizures, cognitive impairment WMHs, CMBs No C.905G>A, p. 

R302Q

Exon 4 ↓ # 20 LP (PS3 

+PM2_Supporting 
+PP3)

Zhang37 F/66 China Stroke, cognitive impairment, spine disorders WMHs No c.954G>C p. 

Q318H

Exon 4 ↓ # 37 LP (PS3 

+PM2_Supporting 
+PP3)

Nozaki20 M/53 Japan Stroke, cognitive impairment, gait disorders, 

spine disorders

NA Hypertension, 

dyslipidemia

c.956C>T, p. 

T319I

Exon 4 ↓ # 20 LP (PS3 

+PM2_Supporting 
+PP3)

Muthusamy27 F/64 America Stroke, cognitive impairment, migraine WMHs, CMBs Hypertension, 
diabetes

c.958G>A, p. 
D320N

Exon 4 NA LP (PS3 
+PM2_Supporting 

+PP3)
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Lee30 M/60 Taiwan, 

China

Stroke, cognitive impairment, spine disorders WMHs, LIs No c.971A>C, p. 

N324T

Exon 4 ↓ 30 LP (PS3 

+PM2_Supporting 

+PP3)
Liu18 F/37 China Stroke, cognitive impairment, psychiatric 

disorders

WMHs, LIs, 

CMBs

No c.971A>C, p. 

N324T

Exon 4 ↓ 30 LP (PS3 

+PM2_Supporting 

+PP3)
Verdura6 F/66 France Stroke WMHs, LIs, 

CMBs

Hypertension c.973–1G>A Intron4 NA LP (PVS1 

+PM2_Supporting)

Zhang37 F/55 China Stroke, cognitive impairment, ICH, migraine, 
gait disorders

WMHs, LIs, 
CMBs

Hypertension c.973–2A>G Intron4 NA LP (PVS1 
+PM2_Supporting)

Zhang37 F/44 China Stroke, cognitive impairment, ICH, migraine, 

gait disorders, spine disorders

WMHs, LIs, 

CMBs, ICH

Hypertension c.1015G>A, p. 

V339M

Exon 6 ↓ # 37 LP (PS3 

+PM2_Supporting 
+PP3)

Zhang37 M/39 China Stroke, cognitive impairment, alopecia, spine 

disorders

WMHs, LIs Smoking c.1049G>A, p. 

G350E

Exon 6 ↓ # 37 LP (PS3 

+PM2_Supporting 
+PP3)

Note: References cited in the column “HtrA1 protease activity” are those of the authors who have performed relevant validation. 
Abbreviations: F, female; M, male; NA, not available; CMBs, cerebral microbleeds; ICH, intracranial hemorrhage; LIs, lacunar infarctions; WMHs, white matter hyperintensities; ↓The decrease in HtrA1 protease activity; #Dominant 
negative effect; *NMD, nonsense mediated mRNA decay; ACMG, American College of Medical Genetics and Genomics; P, pathogenic; LP, likely pathogenic; TGA, Transient global amnesia.
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Figure 1 Geographical and gender distribution of pathogenic and likely pathogenic symptomatic HTRA1 variant carriers. Symptomatic carrier is prevalent in Asian and 
European countries, especially in China (50.91%). Symptomatic carrier has gender differences, and it mostly affects males. The color depth represents the number of cases. 
Abbreviations: F, female; M, male.

Figure 2 The frequency of initial symptoms, clinical manifestations, and imaging manifestations in pathogenic and likely pathogenic symptomatic HTRA1 variant carriers. 
Abbreviations: TGA, Transient global amnesia; WMHs, white matter hyperintensities; LIs, lacunar infarctions; CMBs, cerebral microbleeds; ICH, intracranial hemorrhage.
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Some patients had gait and psychiatric disorders. The symptoms of symptomatic carriers outside the nervous system are 
less common than those of CARASIL. Patients with spine disorders and alopecia accounted for 47.27% and 20% of the 
total number of patients, respectively. Ragno23 has reported that symptomatic carriers may have cutaneous sensory and 
autonomic small-fiber neuropathy.

Similar to common hereditary CSVDs such as CADASIL and CARASIL, some pathogenic and likely pathogenic 
symptomatic HTRA1 variant carriers do not have traditional vascular risk factors (Table 1). Some patients have 
hypertension (50.91%) and dyslipidemia (10.91%), and one patient have vitiligo, autoimmune hyperthyroidism.24 

Consensus recommendations of the European Academy of Neurology25 suggest that even if patients are accompanied 
by traditional cerebrovascular disease risk factors, the diagnosis of monogenic CSVD should be considered. Ordinal 
logistic regression analysis was performed to reveal risk factors for the clinical phenotype.26 Patients with vascular risk 
factors presented with more severe clinical symptoms.

Clinicoradiographic characteristics of pathogenic and likely pathogenic symptomatic HTRA1 variant carriers may 
overlap with sporadic CSVD.27 Presently, there are no specific imaging signs for symptomatic carriers. White matter 
hyperintensities (WMHs, 100%), lacunar infarctions (LIs, 75%), and cerebral microbleeds (CMBs, 55.77%) were the 
most common imaging manifestations (Figure 2). Rare genetic variants of the HTRA1 gene and HtrA1 protease play an 
important role in the burden of WMH in the general population.28 Loss-of-function variants in HTRA1 gene associated 
with an increased WMH volume. Domain-specific burden tests revealed that the association with WMH volume was 
restricted to variants in the protease domain. The WMH volume was brought forward by 11 years in carriers of a rare 
protease domain variant. With the development of brain imaging genomics,29 quantitative analysis of the location and 
number of WMHs, LIs, and CMBs; brain volume; cerebral blood flow; and tissue metabolism capacity in symptomatic 
carriers has become feasible.

Most pathogenic and likely pathogenic heterozygous HTRA1 gene variants of symptomatic carriers were missense 
variants, and some of them were nonsense variants,30–35 frameshift variants,27,30,36 and splice site variants.6,36,37 The 
variant sites of the heterozygous HTRA1 gene were mostly located in exon 4 (50.91%), and the trypsin-like serine 
protease domain was the most common domain in HtrA1 protease (61.82%). Moreover, we found two variant site 
aggregation regions (166–182 aa and 276–302 aa). The former was located in the linker region of the trypsin-like serine 
protease domain while the latter was located in Loop D and Loop 3, which activate the serine protease activity (Figure 3). 
The severity of the clinical manifestations of symptomatic carriers was related to the location of the HTRA1 gene variant. 
When the variant was located in the loop 3/loop D domain or exon 4, the patient had a more severe clinical phenotype.26

According to the American College of Medical Genetics and Genomics (ACMG) standards and guidelines,14 we 
conducted pathogenicity analysis on the collected proband data (Table 1). The variants of uncertain significance (VUS) 
were presented in Supplement Table 1. Not all rare heterozygous HTRA1 missense variants are pathogenic or likely 
pathogenic,25 and heterozygous HTRA1 nonsense or frameshift variants are pathogenic or likely pathogenic for the 
moment.38 Among them, 72.37% of the variants were pathogenic or likely pathogenic, and 27.63% of the variants of 
uncertain significance. Among probands rated as variants of indeterminate significance, the judgment of pathogenicity 
was often affected by lack of evidence such as de novo data (with or without paternity and maternity confirmed) —PS2/ 
PM6, and functional data —PS3/PM1/PP2. When considering a patient’s diagnosis of heterozygous HTRA1 gene variants 
of symptomatic carriers or other hereditary diseases, clinicians need to pay attention to de novo data and functional data, 
which may affect the pathogenicity analysis.

Possible Pathogenic Mechanism
The molecular mechanism of heterozygous HTRA1 gene variant is not completely clear,21 and the molecular pathogen
esis caused by variants at different sites is different.39 Presently, it is mainly focused on preliminary studies on the effect 
of HtrA1 protease activity and downstream TGF-β1 signaling pathway (Figure 4). The HtrA1 protease is composed of 
trimers, and each adjacent HtrA1 subunit activates each other through the linker region, the sensor domains of Loop 3 
and Loop D.40 Variant sites p.R166C,41 p.R166L,41 p.A173P,41 p.G283E,20 p.G295R,41 and p.T319I20 hinder the 
formation of stable trimers by HtrA1, thus, affecting the activation cascade. It has been suggested that if the variant is 
located in the key structures of HtrA1 protease, such as the linker region, Loop 3, or Loop D, the communication 
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between HtrA1 subunits can be affected.17 It also has a dominant negative effect, which reduces the activity of HtrA1. 
For example, variants in p.P285L and p.R302Q cause damage to the HtrA1 enzyme activation cascade.20 However, the 
heterozygous HTRA1 gene variant site located outside the linker region and the Loop 3/Loop D domain require a careful 
assessment of pathogenicity.

Figure 3 Variant sites of pathogenic and likely pathogenic symptomatic HTRA1 variant carriers. In NP_002766.1, Domains 1–4 are insulin-like growth factor binding protein, 
Kazal-type serine protease inhibitor, trypsin-like serine protease, and PDZ domains, respectively. The corner numbers indicate the number of probands at the particular site. 
According to ACMG guidelines, red represents a pathogenicity rating of pathogenic, and blue represents a pathogenicity rating of likely pathogenic.

Figure 4 Possible pathogenic mechanism of heterozygous HTRA1 gene variant. The decrease in HtrA1 protease activity has three pathogenic mechanisms (1–3). 1: variant 
HtrA1 enzyme is unable to form stable trimers, and it has a dominant negative effect to inhibit wild HtrA1 activity; 2: variant HtrA1 enzyme affects the communication 
between its subunits, and it has a dominant negative effect on inhibiting wild HtrA1 activity; 3: variant HtrA1 enzyme shows a decrease in its own activity, and it has no 
dominant negative effect on wild HtrA1. 
Abbreviations: CTGF, connective tissue growth factor; PAI-1, plasminogen activator inhibitor-1.
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Moreover, mutant HtrA1 inhibited the activity of wild HtrA1, and it had a dominant negative effect, which was 
defined as the mutated allele being a loss of function mutant that interfered with the normal function of the remaining 
wild-type allele, leading to a further decrease in enzyme activity. As for heterozygous HTRA1 gene variants, missense 
variants in p.R166L,6,41 p.A173P,6,41 p.V175M,37 p.I256T,30 p.F278L,37 p.G283E,20,41 p.S284R,6,41 p.P285L,20,37 p. 
G295R,41 p. R302Q,20 p.Q318H,37 p.T319I,20 p.V339M37 and p.G350E37 have dominant negative effects. However, 
missense variants in p.G120D,30 p.R166C,41 p.I179N,30 p.S205C,42 p.G276A,30 p.P285Q,6,41 p.F286V,6,41 p.V297M20 

and p.N324T30 do not show a dominant negative effect. Nonsense variant site p.Q289X may be submitted to nonsense 
mediated mRNA decay (NMD).30 Frame shift variant site p.A182Pfs*33 caused premature termination codons (PTC), 
and the pathogenesis may be submitted to NMD.30 Nonsense variant site p.R302X was also related to NMD.41 In 
summary, the decrease in HtrA1 protease activity is currently the most important explanation for the genetic pathogenic 
mechanism of symptomatic heterozygous HTRA1 variant carriers.

HtrA1 protease is involved in the transduction of TGF-β1 signaling pathway, which can inhibit the expression of 
TGF-β1.43 A recent study demonstrated that in HTRA1-/- mouse model, the decreased HtrA1 enzymatic activity can lead 
to the accumulation of matrisome proteins such as latent TGF-β binding protein 4 (LTBP-4) and hub protein fibronectin 
(FN), which are substrates of HtrA1. Candesartan treatment alleviated matrisome protein accumulation, and may be 
a potential treatment for CARASIL.44 The p.S205C variant site can upregulate the expression of TGF-β1, Smad2/3, 
Smad4, phosphorylated Smad2/3, and Smad4.42 The abnormal signal transduction of the TGF-β1/Smads pathway may be 
a potential molecular pathogenic mechanism, suggesting that TGF-β1 antagonists can be used for the treatment of 
symptomatic heterozygous HTRA1 variant carriers.42 In addition to the TGF-β1/Smad signaling pathway, a high 
expression of CTGF and PAI-1 genes was observed in patients with p.E42fs and p.A321T variants.39 It is suggested 
that the TGF-β1/non-Smad pathway may also be involved in the molecular pathogenesis of symptomatic heterozygous 
HTRA1 variant carriers. Increased expression of TGF-β signaling pathway is a common cause of increased Fn1 mRNA 
expression and vascular intimal thickening.45 However, a recent study analyzed various signaling pathways regulated by 
TGF-β and found that TGF-β is deposited in HTRA1-/- mice, but Fn1 mRNA expression has not been significantly 
increased or decreased, suggesting that TGF-β signaling pathway may be less effective in CARASIL.44

Interestingly, TGF-β signaling was found to be associated with some clinical manifestations of HTRA1-related CSVD. 
Bone morphogenetic protein (BMP), a member of the TGF-β family, is involved in the maintenance of hair follicle stem 
cells.46,47 When the secretion of BMP is increased or its function is hyperactive, it will inhibit the activity of hair follicle 
stem cells, thereby promoting alopecia. TGF-β may also promote the production of IL-17 by cooperating with IL-6, 
aggravate the inflammatory response, stimulate the increase of NO secretion, and eventually lead to migraine.48,49 TGF-β 
receptors in astrocytes can be activated by binding to serum albumin, increasing the level of downstream p-Smad1/5/8, 
and participating in the occurrence of epilepsy.50

Pathology and Pathophysiology
The pathology and pathophysiology of CSVD related to heterozygote HTRA1 variant (symptomatic carrier) is overlapped 
by that to homozygote HTRA1 variant (CARASIL). Autopsy study of a heterozygous HTRA1 variant case (p.G283E) 
revealed cerebral small arteries showed intimal proliferation, splitting of the internal elastic lamina, hyaline degeneration 
of media, and diffuse and focally intensive myelin pallor in the white matter.20 Another autopsy study of a patient with 
heterozygous HTRA1 variant (p.R302Q) found that internal elastic lamina splitting, myointimal cell proliferation, smooth 
muscle cell (SMC) loss, intima and adventitia fibrosis, lipohyalinosis, lumen narrow or occlusive in arterioles smaller 
than 100 μm.51 100–500 μm arteries revealed lumen distorted dilation, aneurysm-like structures, and tunica media TGF- 
β1 high expression.51 Pathological observation of frontal white matter suggested focal myelin pallor with preserved 
U-fibers.51 Cerebrovascular pathophysiological regulations were secondary to the vascular structure pathological 
changes. Disruption of the autoregulatory mechanism of cerebral blood flow may ultimately lead to white matter 
ischemia.13,52 Animal study also confirmed that cerebral blood flow decreased in HTRA1 -/- mice.44
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Conclusion and Perspectives
Symptomatic HTRA1 variant carriers is a monogenic CSVD, and the penetrance appears to be low. According to ACMG 
standards and guidelines, There are mostly pathogenic or likely pathogenic variants, and a little variants of uncertain 
significance. Through a literature review, we summarized the following characteristics of pathogenic and likely 
pathogenic symptomatic HTRA1 variant carriers: (1) To date, the majority of reported symptomatic HTRA1 carriers 
are in European and Asian countries, particularly in China which was found to have the highest number of reported cases. 
(2) The age of first onset was mostly concentrated in the fourth and fifth decades. The clinical manifestations and 
imaging signs were similar to those of sporadic CSVDs, and there was no specificity. Diagnosis mainly depends on 
genetic testing. (3) The heterozygous HTRA1 variants were mostly missense variants. The variant sites were mostly 
concentrated in Exon 4, which is located in the trypsin-like serine protease domain of HtrA1 protease. The two variant 
sites, 166–182 aa and 274–302 aa, were the most concentrated. (4) The molecular pathogenesis caused by variants at 
different sites is different, and the decrease in HtrA1 protease activity is currently the most important explanation for the 
genetic pathogenesis.

However, the correlation between the genotype and clinical phenotype still needs to be further confirmed. In the 
future, imaging genomic methods can be used to find characteristic images of the disease and to differentiate it from other 
common monogenic CSVDs, such as CADASIL and CARASIL. Additionally, studies should focus on the genetic testing 
of patients with sporadic CSVDs to further enrich the spectrum of heterozygous variants in the HTRA1 gene. The 
pathogenic mechanism of symptomatic carrier has not been fully clarified yet, and the study of HtrA1 protease activity is 
currently a hot topic. The downstream TGF-β1 signaling pathway transduction may be taken into consideration for future 
study.
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