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Purpose: Because chronic kidney disease (CKD) is often under-coded as a diagnosis in claims data, we aimed to develop claims- 
based prediction models for CKD phenotypes determined by laboratory results in electronic health records (EHRs).
Patients and Methods: We linked EHR from two networks (used as training and validation cohorts, respectively) with Medicare 
claims data. The study cohort included individuals ≥65 years with a valid serum creatinine result in the EHR from 2007 to 2017, 
excluding those with end-stage kidney disease or on dialysis. We used LASSO regression to select among 134 predictors for predicting 
continuous estimated glomerular filtration rate (eGFR). We assessed the model performance when predicting eGFR categories of <60, 
<45, <30 mL/min/1.73m2 in terms of area under the receiver operating curves (AUC).
Results: The model training cohort included 117,476 patients (mean age 74.8 years, female 58.2%) and the validation cohort included 
56,744 patients (mean age 73.8 years, female 59.6%). In the validation cohort, the AUC of the primary model (with 113 predictors and 
an adjusted R2 of 0.35) for predicting eGFR <60, eGFR<45, and eGFR <30 mL/min/1.73m2 categories was 0.81, 0.88, and 0.92, 
respectively, and the corresponding positive predictive values for these 3 phenotypes were 0.80 (95% confidence interval: 0.79, 0.81), 
0.79 (0.75, 0.84), and 0.38 (0.30, 0.45), respectively.
Conclusion: We developed a claims-based model to determine clinical phenotypes of CKD stages defined by eGFR values. 
Researchers without access to laboratory results can use the model-predicted phenotypes as a proxy clinical endpoint or confounder 
and to enhance subgroup effect assessment.
Keywords: EHR, prediction, RPDR

Introduction
Chronic kidney disease (CKD) is a serious public health challenge that affects approximately 32 million individuals in 
the United States (US),1 with over 6% of individuals having moderate-to-severe CKD (stages 3–5) between 2015 and 
2018. It is estimated that the Medicare spending on beneficiaries with CKD exceeded $87 billion, representing 23% of 
total Medicare fee-for-service (FFS) expenditures in 2019.1 CKD is associated with poor quality of life, high morbidity, 
and increased mortality.2–4 Additionally, it is commonly assessed as a key factor for risk stratification and confounding 
adjustment in comparative safety and effectiveness research.5,6

In routine clinical practice, a patient with CKD is identified by measuring their serum creatinine value based on which 
the glomerular filtration rate can be estimated. While much of the comparative safety and effectiveness research has 
relied on administrative claims data,7 information on laboratory results is not available in claims, and CKD is very 
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unreliably coded as a diagnosis.8,9 CKD stages based on only International Classification of Diseases (ICD) codes were 
found to have low sensitivity (3–30%)9,10 with widely variable positive predictive values (PPVs).3,9,11,12 Because patients 
with advanced CKD are often excluded from clinical trials, evidence from real-world data such as claims data is 
particularly important for informing clinical decisions in routine care. While electronic health records (EHRs) have been 
increasingly used to generate real-world evidence, missing data due to care provided by provider networks outside of the 
reach of the research team has been a great threat to study validity.13 Yet, relying on claims data may lead to 
misclassification of CKD in clinical studies based on data lacking detailed laboratory results. Therefore, we aimed to 
build prediction models for identifying a CKD phenotype determined by laboratory results in EHR using information 
available in claims data.

Methods
Data Source
We used data from the Research Patient Data Repository (RPDR)14 linked to Medicare FFS Parts A (inpatient coverage), 
B (outpatient coverage), and D (prescription benefits) claims data from 2007 to 2017. The RPDR includes longitudinal 
EHR data from 2 networks in the Boston metropolitan area. The first network (EHR system 1) consists of 1 tertiary 
hospital, 2 community hospitals, and 19 primary care centers. The second network (EHR system 2) includes 1 tertiary 
hospital, 1 community hospital, and 18 primary care centers. EHR system 1 was used for training and system 2 for 
validating the EHR-continuity prediction model. This dataset includes information on body mass index (BMI), blood 
pressure, smoking status, and laboratory and radiology test results. The Medicare claims data were linked with the EHR 
dataset by the unique Medicare beneficiary number, date of birth, and sex, with a success linkage rate of 98.7%.15 

Medicare is a US federal health insurance program that currently covers approximately 50 million Americans by 
providing medical and prescription drug coverage to individuals aged 65 years and older and to younger individuals 
with disabilities. The Medicare FFS claims database contains longitudinal, individual-level data on healthcare utilization, 
inpatient and outpatient diagnoses, diagnostic tests and procedures, and pharmacy filled prescriptions. These data are 
commonly used in real-world drug effectiveness and safety studies.15–17 This study was approved by the Institutional 
Review Board of the Brigham and Women’s Hospital, Boston, Massachusetts.

Study Population
Using the EHR-Medicare linked database, we identified a cohort with a valid serum creatinine laboratory result 
(measurement date = cohort entry date [CED]) and at least 90 days of continuous Medicare enrollment before and 
after the CED. Operationally, a valid serum creatinine measurement means a laboratory value with a unit-specific Logical 
Observation Identifiers Names and Code (LOIC) that corresponds to serum creatinine, excluding those with implausible 
values (Table S1). The range of implausible values was verified by board-certified physicians on the team (JMP 
and KJN).

Patients with end-stage kidney disease (ESKD), who were on dialysis, who were younger than 65 years of age, or had 
missing information on age or sex were excluded.

Cohort Characteristics
Baseline characteristics were assessed during the baseline assessment period (BAP), which was defined as 90 days before 
and after CED. We considered 134 potential variables based on clinical expertise and a comprehensive literature 
review.18–20 These included demographic characteristics (eg, age and sex), CKD-related and other comorbidities (eg, 
acute kidney injury, diabetes, anemia, etc.), medication use variables, a combined comorbidity score,21 a claims-based 
frailty index (CFI) validated against clinical measures of frailty,22–25 and healthcare utilization variables (ie, number of 
outpatient office visits, number of emergency room visits, number and duration of hospitalizations). A full list of included 
variables is provided in the Supplementary Appendix (Table S2).
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Outcome
The study outcomes were continuous estimated glomerular filtration rate (eGFR), and eGFR in categories (<60, <45, and 
<30 mL/min/1.73m2). This was calculated based on measured serum creatinine using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation:

where:
Scr is serum creatinine in mg/dL,
κ is 0.7 for females and 0.9 for males,
α is −0.329 for females and −0.411 for males,
Min indicates the minimum of Scr/κ or 1, and
Max indicates the maximum of Scr/κ or 1.

Statistical Analysis
To describe the baseline characteristics of patients included in the study, we used means and standard deviations (SDs) for 
continuous variables and proportions for categorical variables. The models were developed using data from the training set. We 
first applied the least absolute shrinkage and selection operator (LASSO) regression with Bayesian information criteria to select 
predictors from the 134 preselected variables. To get our primary model, we then fit a linear regression model with the 
continuous eGFR as the dependent variable and the selected predictor variables as independent variables. Because those with 
eGFR <30 represent an infrequent and severe phenotype, the predictors of this particular phenotype and their coefficients may 
be different from that for the continuous eGFR. Therefore, in a secondary analysis, we used LASSO regression with Bayesian 
information criteria to select predictors for the binary outcome of eGFR <30 and fit a logistic regression with the LASSO- 
selected variables predicting eGFR <30. Model performance characteristics were assessed by calculating the area under the 
receiver operating curves (AUC) for the predicted probability of eGFR in the training and validation sets. We used the 
coefficient of determination, R2, to assess our primary model predicting continuous eGFR. Additionally, model calibration 
was assessed using goodness-of-fit to compare the observed and predicted events of CKD, which were tested by Hosmer– 
Lemeshow tests. We calculated overall accuracy, defined as the number of accurate predictions divided by the number of total 
predictions, PPVs, defined as the probability of being a true case, given positive prediction by the model, and sensitivity, defined 
as the probability of being identified as a case of specific eGFR by the model for a true case for that specific level. The optimal 
cut-off was chosen to maximize overall correctness while keeping a PPV of at least 80% if achievable (choose the optimal PPV 
if a PPV of 80% is not possible).26 All analyses were conducted in SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

Results
Patient Inclusion and Characteristics
Out of a total of 718,341 patients in the linked EHR-Medicare dataset, 478,699 (66.6%) had a valid serum creatinine 
laboratory result. After applying the inclusion/exclusion criteria, 174,220 patients were included in the analysis: 117,476 
(67.4%) in the training set and 56,744 (32.6%) in the validation set (Figure 1).

Overall, patients included in the training and validation sets had comparable characteristics: the mean age was 74.8 
(73.2) years in the training (validation) set, 58.2% (59.6%) were female in the training (validation) set, the majority of 
patients were white in both sets, mean eGFR was 70.9 (72.5) mL/min/1.73m2 in the training (validation) set, and both 
sets had similar distributions of comorbidities, medication use, and health care utilization (Table 1).

Model to Predict Continuous eGFR Values
Our primary model predicting continuous eGFR included a total of 113 factors with an adjusted R2 of 0.354. The top- 
ranked predictors being history of CKD, age, portal vein thrombosis, liver transplantation, acute kidney injury, 
hyperkalemia, and use of loop diuretics (Table S2). The mean measured and predicted eGFR values were similar within 
each predicted eGFR decile in the training vs validation set (Figure 2). For example, the mean measured eGFR in the first 
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decile was 58.3 mL/min/1.73m2 (±17.7 SD) in the training set and 59.4 mL/min/1.73m2 (±18.0 SD) in the validation set. 
A similar trend was observed for the SD.

Performance of the Model Predicting eGFR <60 and <45 mL/min/1.73m2

The AUC was similar across the three categorical levels of eGFR score when comparing the validation set to the training 
set (Figure 3). In the validation set, the AUC was 0.81 and 0.88 when predicting eGFR <60 and <45 mL/min/1.73m2, 
respectively. Based on the optimal cut-off, the overall accuracy was 0.81 (95% confidence interval [CI]: 0.81, 0.81) and 
0.90 (0.90, 0.91) when predicting eGFR <60 and eGFR <45 mL/min/1.73m2, respectively. The corresponding PPVs were 
0.80 (0.79, 0.81) and 0.79 (0.75, 0.84) [Table 2]. Based on the Hosmer-Lemeshow Goodness-of-Fit test, the model tends 
to overestimate the risks of the high-risk patients, which is more pronounced when predicting eGFR <45 than <60 mL/ 
min/1.73m2 (Tables S3 and S4).

Performance of the Model Predicting eGFR <30 mL/min/1.73m2

The primary model predicting continuous eGFR has an AUC of 0.92 in the validation set when predicting eGFR <30 mL/ 
min/1.73m2. The secondary model developed to predict the binary outcome of eGFR <30 mL/min/1.73m2 included 
a total of 53 factors. The top-ranked predictors included history of CKD, acute kidney injury, age, use of loop diuretics, 
hyperkalemia, abdominal ultrasound testing, and liver dysfunction (Table S5). The AUC of this secondary model was 
0.93 when predicting binary eGFR <30 mL/min/1.73m2 (Table 3). The overall accuracy of the model was similar for the 
primary and secondary models (0.97, 95% CI: 0.97, 0.98). Compared to the primary model, the secondary model yielded 
a higher PPV (0.56 vs 0.38) at the cost of lower sensitivity (0.003 vs 0.05, Table 3). Based on the Hosmer-Lemeshow 
Goodness-of-Fit test, the model tends to overestimate the risks of the high-risk patients (Tables S6 and S7).

Discussion
In this study, we developed and validated a model based on information in claims data to identify a CKD phenotype. 
Based on data from 174,220 Medicare beneficiaries, our model was able to predict a CKD phenotype with good 
discrimination capability. The AUC for predicting eGFR of <60, <45, and <30 mL/min/1.73m2 was 0.81, 0.88, and 
0.92, respectively. While the PPVs for the models identifying eGFR of <60 and <45 mL/min/1.73m2 were satisfactory 
(ranging between 0.79 and 0.80), the PPV for identifying eGFR <30 mL/min/1.73m2 was suboptimal.

Given the burden of CKD, it is critical to accurately identify patients with CKD for safety and effectiveness studies. In 
a systematic review of the validity of administrative database coding for CKD, sensitivity and PPVs were substantially 

Figure 1 Flowchart of study population derivation. 
Abbreviations: HER, electronic health records; ESKD, end-stage kidney disease; BAP, baseline assessment period.
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Table 1 Patient Characteristics in the Training and Validation Sets (N = 174,220)

Patient Characteristics Training Set (n = 117,476) n (%) Validation Set (n = 56,744) n (%)

Age, years, mean (SD) 74.8 (7.9) 73.8 (7.2)
Female 68,390 (58.2) 33,808 (59.6)

Race/Ethnicity
White 105,704 (90) 48,795 (86)

Black 3400 (2.9) 35,66 (6.3)
Hispanic 1750 (1.5) 1278 (2.3)

Other 4587 (3.9) 2012 (3.5)

eGFR
eGFR: mean (SD) 70.9 (19.5) 72.5 (19.4)

eGFR<30 mL/min/1.73m2 3273 (2.8) 1455 (2.6)
eGFR<45 mL/min/1.73m2 13,169 (11.2) 5661 (10.0)

eGFR<60 mL/min/1.73m2 33,401 (28.4) 14,555 (25.7)

CKD-related Comorbidities
Hypertension 81,816 (69.6) 38,080 (67.1)

Anemia 25,514 (21.7) 13,768 (24.3)
Fluid electrolyte imbalance 22,099 (18.8) 12,182 (21.5)

Chronic kidney disease 14,717 (12.5) 7525 (13.3)

Acute kidney injury 8153 (6.9) 4777 (8.4)
Kidney stones 4136 (3.5) 2160 (3.8)

Hyperkalemia 4089 (3.5) 1821 (3.2)

Other Comorbidities
Hyperlipidemia 73,273 (62.4) 34,953 (61.6)

Obesity 11,477 (9.8) 5895 (10.4)
Smoking 18,791 (16) 11,669 (20.6)

Type 1 diabetes mellitus 4079 (3.5) 2079 (3.7)

Type 2 diabetes mellitus 29,151 (24.8) 15,259 (26.9)
Ischemic heart 27,192 (23.1) 15,257 (26.9)

Ischemic stroke 13,666 (11.6) 5992 (10.6)

Heart failure 17,011 (14.5) 9775 (17.2)
Frailty category: ≥0.25 15,904 (13.6) 7738 (13.6)

Frailty category: 0.15–0.24 47,175 (40.2) 24,645 (43.4)

Frailty category: <0.15 54,397 (46.3) 24,361 (42.9)
Falls 13,157 (11.2) 5565 (9.8)

Medication Use
Statin 60,464 (51.5) 29,979 (52.8)

Beta blockers 48,606 (41.4) 25,574 (45.1)

ACE inhibitors 35,449 (30.2) 17,148 (30.2)
Proton pump inhibitors 28,571 (24.3) 15,843 (27.9)

Opioids 17,596 (15.0) 14,178 (25)

Warfarin 13,028 (11.1) 7789 (13.7)
Calcium channel blockers 10,542 (9.0) 5577 (9.8)

Antiplatelet agents 9871 (8.4) 5300 (9.3)

ARBs 6212 (5.3) 3107 (5.5)
Insulin 3269 (2.8) 1960 (3.5)

Antiarrhythmics 2741 (2.3) 1956 (3.4)

Healthcare Utilization
Number of ED visits: ≥1 50,309 (42.8) 25,660 (45.2)

Number of inpatient visits: ≥1 40,801 (34.7) 25,370 (44.7)

Abbreviations: SD, standard deviation; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; ACE, angiotensin- 
converting enzyme; ARBs, angiotensin II receptor antagonists; ED, emergency department.
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variable in 19 studies.12 Particularly, sensitivity values had a median of 0.41 with a range from 0.03 to 0.88, while PPVs had 
a median of 0.78 with a range from 0.29 to 1.00. However, the majority of the studies included in the systematic review had 
relatively small sample sizes, different study populations (eg, some included patients with ESKD), variant algorithms for CKD 
definition, and different reference standards (eg, medical chart review and laboratory values). Additionally, in a large study of 
a US commercial insurance claims database, the PPV of a claims-based (ICD-10) algorithm to identify adults with CKD stages 
3–5 was 0.86.7 The results from our models, especially PPVs, well align with the upper bounds reported in previous studies.

Since patients with advanced CKD are often excluded from clinical trials,27 it is important to evaluate drug safety and 
effectiveness in patients with advanced CKD in the population using routinely collected information in databases, such as 
insurance claims data. Development and validation of a claims-based CKD phenotype prediction model can facilitate 
identification of patients with CKD because laboratory results (eg, serum creatinine) are typically not available and CKD 
is unreliably coded as a diagnosis in the claims data.8,9 Currently, there is no diagnosis-code-based algorithm that can 
identify those with moderate-to-severe CKD (ie, eGFR <45 [stage 3b and worse] and eGFR <30 [stage 4 and worse]). 
Our model therefore can advance researchers’ ability to investigate the subgroup effects of the clinical questions at hand 
among patients of higher vulnerability due to advanced renal dysfunction.

The model developed in this study was able to predict with sufficient accuracy a CKD phenotype using routinely collected 
data. Our cut-off was chosen to optimize PPV at the cost of reduced sensitivity because claims data usually offer a large cohort 
containing sufficient patients with CKD. Using a cut-off with high PPV can ensure those identified as having CKD have a high 
probability of having true CKD in which a valid causal inference regarding CKD can be drawn.9 The predicted CKD can also be 
used as a proxy factor for confounding adjustment. Because claims data typically do not have laboratory results, renal function 
defined by laboratory results would otherwise be an important unmeasured confounder in the analysis. Another possible 
application of our model is to use the predicted CKD as the clinical end points in a comparative safety analysis. This application 
will favor high PPV, since relative risk estimates are unbiased if outcomes are assessed with 100% specificity, even if sensitivity is 
lower.28

Practically, our algorithm can be used as an imputation model in settings where eGFR is critical but not available. This 
requires the missing at random assumption where all predictors of missingness are observed when imputing eGFR. There are 
two main reasons that may enhance our confidence in predicting the missingness (ie, the data missing mechanism is missing at 

Figure 2 Mean measured eGFR by predicted eGFR decile in the training vs validation sets. Error bars represent standard deviations.
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random). First, serum creatinine is widely ordered as a routine laboratory test, making it a simple and practical marker to 
estimating GFR. Second, the risk factors that often prompt clinicians to order serum creatinine test are captured in the claims 
data, including medical diagnosis (eg, CKD, acute kidney injury, and diabetes), medical procedures (eg, cardiac catheteriza-
tion), and use of certain medications (eg, diuretics, diabetes medications, and angiotensin II receptor blockers [ARBs]).

The study has several limitations. First, the study population was limited to patients aged 65 years or older with Medicare 
coverage; thus, we were not able to generalize the results to patients younger than 65 years. Because CKD is highly prevalent 

Figure 3 Area under the receiver operating characteristic (AUROC) curves of the performance of the eGFR prediction tool in the training and validation set.

Table 2 Performance of the Model Predicting eGFR <60 and <45 mL/min/1.73m2 Categories

Model/Categories AUC in Training AUC in Validation Performance in the Validation Set

Overall Accuracy (95% CI) PPV (95% CI) Sensitivity (95% CI)

eGFR<60 0.81 0.81 0.81 (0.81, 0.81) 0.80 (0.79, 0.81) 0.35 (0.34, 0.36)
eGFR<45 0.87 0.88 0.90 (0.90, 0.91) 0.79 (0.75, 0.84) 0.04 (0.04, 0.05)

Abbreviations: AUC, area under the receiver operating characteristic; CI, confidence interval; PPV, positive predictive value; eGFR, estimated glomerular filtration rate.

Clinical Epidemiology 2023:15                                                                                                      https://doi.org/10.2147/CLEP.S397020                                                                                                                                                                                                                       

DovePress                                                                                                                         
305

Dovepress                                                                                                                                                        Mansour et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


in older adults and Medicare claims data are often used in comparative effectiveness research,29–31 we argue that our models 
are useful as they are not intended to generalize to the younger populations. Second, the application of our model to other 
populations relies on the assumption that the relationship between covariates and renal dysfunction is similar across care 
delivery systems. We used two academic EHR systems in Massachusetts as the training and validation datasets. These two 
systems both consist of care facility of all care continuum, including primary care center, community hospitals, and tertiary 
referral centers. Because both care delivery networks are general hospital based rather than specialty-based centers (eg, cancer 
centers), it is more likely that this assumption can be met, which is supported by the fact that we did not observe reduction in 
model performance in the validation set. Third, our model relies on serum creatinine as the gold-standard for kidney function, 
which may underestimate severity of kidney disease in patients with reduced muscle mass.32

Conclusion
In conclusion, based on a cohort of Medicare beneficiaries aged 65 years or older, we developed and validated 
a phenotyping algorithm to identify patients with CKD stages 3–5 based on information in claims data. Our models 
can be used as a proxy factor for confounding adjustment, as a proxy clinical end point during follow-up, and to enhance 
assessment of subgroup effects by these CKD phenotypes in clinical research using large insurance claims data in the 
absence of laboratory testing results.
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Abbreviations: AUC, area under the receiver operating characteristic; CI, confidence interval; PPV, positive predictive value; eGFR, estimated glomerular filtration rate.
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