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Purpose: Spinal wide dynamic range (WDR) neurons are well studied in pain models and they play critical roles in regulating 
nociception. Evidence has started to accumulate that acupuncture produces a good analgesic effect via activating different primary 
fibers with distinct intensities. The purpose of the present study was to compare the distinct intensities of pre-electroacupuncture (pre-EA) 
at local muscular receptive fields (RFs), adjacent or contralateral non-RFs regulating the nociceptive discharges of spinal WDR neurons 
evoked by hypertonic saline (HS).
Materials and Methods: Spinal segments of electrophysiological recording were identified by neural tracers applied at the left 
gastrocnemius muscle. The thresholds of Aβ (TAβ), Aδ (TAδ) and C (TC) components of WDR neurons were measured to determine the 
intensity of pre-EA by extracellular recording. The discharges of WDR neurons induced by distinct intensities of pre-EA and 200 µL 
HS (6%) injection in left gastrocnemius muscle of rats were observed by extracellular recording.
Results: The spinal segments of WDR neurons were confirmed in lumbar (L)5–6 area according to the projective segments of dorsal 
root ganglion. TAβ, TAδ and TC of WDR neurons was determined to be 0.5, 1, and 2 mA, respectively. The pre-EA with intensities of 
TAβ (P < 0.05), TAδ (P < 0.05), TC (P < 0.05) or 2TC (P < 0.01) at ipsilateral adjacent non-RFs significantly reduced the discharges of 
WDR neurons, while at local RFs only pre-EA of TAδ (P < 0.05), TC (P < 0.05) and 2TC (P < 0.01) could inhibit the nociceptive 
discharges. In addition, intensity of pre-EA at contralateral non-RFs should reach at least TC to effectively inhibit the firing rates of 
WDR neurons (P < 0.01).
Conclusion: Pre-EA could suppress nociceptive discharges of WDR neurons and the inhibitory effects were dependent on the distinct 
intensities and locations of stimulation.
Keywords: pre-electroacupuncture, wide dynamic range neurons, muscular receptive fields, intensity, hypertonic saline

Introduction
The spinal dorsal horn (SDH) is the first station that relays somatosensory afferents. Spinal wide dynamic range (WDR) 
neurons in the deep laminae (IV-VI) play a critical role in nociception. WDR neurons respond to a wide range of 
stimulation which transmits innocuous and noxious information through Aβ-, Aδ - and C-fibers.1 Previous studies 
showed that the WDR neurons exhibited progressive discharges in a graded manner depending on stimulus intensity, 
which manifested in an increase of discharge frequency and expansion of receptive fields (RFs).2–4 Accordingly, the 
WDR neurons significantly contribute to the encoding of spatial and qualitative aspects of pain and integration of various 
afferent inputs.5,6

Acupuncture analgesia (AA) is closely dependent on the stimulating intensities and locations of acupoints,7–9 where 
different types of afferent fibers (Aβ, Aδ and C) were activated. Electro-acupuncture (EA) with low intensity at local 
acupoint could activate non-nociceptive Aβ-fiber to elicit segmental analgesia, while systemic analgesia produced by 
heterotopic EA intervention relies on sufficient activation of noxious Aδ- and C-fibers.10,11 Therefore, distinct intensities 
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of EA may exert analgesic effect through different mechanisms. Meanwhile, the preventive analgesic effects of 
pretreatment of EA (pre-EA) have also been reported in numerous clinical trials and experimental studies.12,13 

However, the activity of WDR neurons during pre-EA with different intensities remain elusive.
As a group of convergent neurons encoding different stimulus, WDR neurons may integrate acupuncture and pain 

signals in SDH. Indeed, previous studies suggested that the activities of WDR neurons were greatly relevant to AA and 
EA intervention was able to inhibit nociceptive discharges of WDR neurons in various pain models.14,15 A recent study 
also showed that EA inhibited spontaneous firing of WDR neurons by activating A-fibers in muscular inflammatory pain 
in rats.16 Moreover, EA intervention at homotopic or heterotopic acupoints produced ameliorated effects on visceral pain 
via suppressing nociceptive discharges of WDR neurons in an intensity-dependent manner.17–19 These studies indicated 
that the inhibitory effects of EA intervention on WDR neurons were closely related to the activation of different afferent 
fibers. However, there is a lack of consensus about WDR neurons integrating the pre-EA intervention and somatic 
nociception.

The aim of the present study was to explore whether pre-EA regulates the nociceptive activities of WDR neurons 
according to different intensities and the locations of intervention. We first identified the intensity thresholds of Aβ 
(TAβ), Aδ (TAδ) and C (TC)-components of WDR neurons elicited by EA intervention. Then pre-EA with distinct 
intensities (TAβ, TAδ, TC or 2TC) was administered at local RFs, adjacent or contralateral non-RFs, respectively. 
Following the pre-EA intervention, nociceptive discharges of WDR neurons evoked by injection of hypertonic saline 
(HS) were observed. At last, the effects of pre-EA with different intensities and locations on discharges of WDR 
neurons were estimated.

Materials and Methods
Animals
Male Sprague-Dawley rats (200 ± 20 g) were provided by the SPF (Beijing) Biotechnology Co., Ltd. [experimental 
animal license number: SCXK(JING)2019−0010]. All animals were kept at a constant temperature of 24 ± 2°C with 
a 12-h light 12-h dark cycle and with free access to food and water. After a week of adjustable feeding, animals were 
randomly allocated to the normal, control, model and pre-EA group. The experimental procedures were approved by the 
Ethics Committee of the Institutional Animal Welfare and Use Committee of Acupuncture and Moxibustion Institute of 
China Academy of Chinese Medical Sciences. All manipulations were performed in accordance with the recommenda-
tions of the Guideline on the Humane Care and Use of Laboratory Animals issued by the Ministry of Science and 
Technology of the People’s Republic of China in 2006.

Microinjection of Neural Tracer
Under respiratory anesthesia with 2% isoflurane (0.5 L/min, RWD Life Science, People’s Republic of China), 5 μL 0.1% 
cholera toxin subunit B conjugates of Alexa Fluor-488 (AF488-CTB, C34775, Thermo, Germany) was slowly injected 
into the left gastrocnemius muscle of rats at a depth of 3–7 mm, right at the medial muscle belly. To prevent leakage, the 
microsyringe remained in place for 1 min after injection, and was then removed.20

Perfusion and Tissue Processing
Three days after injection of neural tracer, the rats were deeply anesthetized intraperitoneally with urethane (1.5 mg/kg) 
and then transcardially perfused with 250 mL of 0.9% NaCl, followed by 250 mL of cold 4% paraformaldehyde (PFA) in 
0.1 M phosphate-buffered solution (PB, pH 7.4). The lumbar (L)1–6 and sacral (S)1 of dorsal root ganglia (DRG) were 
collected and post-fixed in 4% PFA for 2 h and then cryoprotected in 25% sucrose at 4°C for 24 h. Using a cryostat 
(Thermo, Microm International FSE, Germany), DRGs were sliced transversely into 40 μm thick sections and mounted 
on silane-coated glass slides. After being coverslipped with 50% glycerin, all the labeled neurons in sections were 
observed and recorded with fluorescent microscope equipped with a digital camera (BX53, Olympus, Japan).21

https://doi.org/10.2147/JPR.S396481                                                                                                                                                                                                                                   

DovePress                                                                                                                                                               

Journal of Pain Research 2023:16 696

Yu et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Surgical Exposure of Spinal Cord
After rats were deeply anesthetized intraperitoneally with urethane (1.5 mg/kg), laminectomy was performed at the 
thoracic (T)12 to L2 to expose the lumbar enlargement (L4-6) of the spinal cord. Carefully removed dura mater of 
lumbosacral segments of spinal and tightly fixed the corresponding vertebrae in a rigid frame with clamps. Exposed area 
of spinal cord was covered with warm (37°C) artificial cerebrospinal fluid (CZ0516, Leagene, People’s Republic of 
China) during surgery and recording. A feedback-controlled heating blanket (ALC-HTP, Shanghai Alcott Biotech Co., 
People’s Republic of China) was used to monitor and maintain core body temperature at 37.0 ± 0.5°C.22

Extracellular Recording of the SDH Neurons
Extracellular recording of SDH neurons was performed at L4-6 segments through a 5 MΩ parylene-coated tungsten 
microelectrode23 (575,500, A-M Systems, Sequim, WA, United States) or a microelectrode array24 (ASSY, Lotus 
Biochips, United States) (Figure 1A and B). After surgery, recording electrodes were inserted perpendicularly into the 
SDH at a depth of approximately 600–1400 μm from the dorsal surface and 0.3 mm lateral to the central vessel by 
a micromanipulator (DMA-1510, Narishige, Japan). The reference electrode was placed in the nearby muscle. Signals 
from parylene-coated tungsten microelectrode were amplified by a preamplifier (AM-1800, AM Systems, Sequim, WA, 
United States) with a bandwidth of 300 Hz-5 kHz and captured online using the CED 1401-plus data acquisition system 
and analyzed offline by Spike 2 package software (Cambridge Electronic Devices, Cambridge, United Kingdom). 
Microelectrode array was attached to the headstage using a custom connector and signals were amplified by 
a preamplifier (LB-0164-1, Blackrock Microsystems, United States) with a bandwidth of 250 Hz–5 kHz and captured 
and amplified online by a data acquisition system (Cerebus-128, Blackrock Microsystems, United States).

Figure 1 Recording of neurons’ activity in the spinal dorsal horn (SDH) by a microelectrode array and experimental procedure. 
Notes: (A) Illustration of a microelectrode array with 4 electrodes (750-μm depth, 32 channels). (B) Schematic diagram of recording with microelectrode array and position 
of microelectrode across Lamine II-VI noted with dotted lines. (C) Experimental timeline. Following 20s recording of background (BG) discharge, distinct intensities (TAβ,TAδ, 
TC or 2 TC) of EA intervention were applied at ipsilateral RFs, adjacent or contralateral non-RFs for 1 min. Immediately after EA intervention, HS was injected at left 
gastrocnemius muscle (identified as muscular RFs) of rats. Then, the neuronal discharge was recorded for 1 min.
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Identification of WDR Neurons and Receptive Fields
WDR neurons were identified by a mechanical press stimulator (ALMEMO2450, Ahlborn, Germany) equipped with 
a blunt rubber tip 0.5 cm in diameter. The mechanical threshold for escape behavior was measured at gastrocnemius 
muscle in awakened rats, which was 149.1 ± 13.2 g (3 rats). Therefore, 60 and 200 g were determined as innocuous and 
noxious stimulation, respectively.25 During extracellular recording, mechanical stimulation was applied at the muscular 
RFs. Neurons responding to both innocuous and noxious stimulation were identified as WDR neurons. Additionally, to 
discriminate the responses of WDR neurons between the skin and muscle, local cutaneous afferents were blocked by 
hypodermic injection of 50 µL lidocaine hydrochloride (Haerbin sanmashouyaoye Co., People’s Republic of China) 
above the RFs.26 The present study focused on WDR neurons that responded only to pressure of the muscle but not to 
pinch of the skin.

Identification of Intensity Thresholds Activating Aβ-, Aδ- and C-Components of WDR 
Neurons
Identification of thresholds was performed at WDR neurons with RFs located at the anterior tibial muscle or the 
gastrocnemius muscle. Electrical stimulation was delivered through an electrical stimulator (PowerlabFE180, AD 
Instruments, Australia) at the RFs during extracellular single-unit recording. Intensity of electrical stimulation increased 
gradually from 0.1 mA (0.5 ms pulse width) until 3 components with corresponding latencies (Aβ, 0–20 ms, Aδ, 20–90 ms, 
C, 90–300 ms) appeared.23 Intensity that evoked discharge more than 3 times (6 times in total, 5 s intervals) was identified 
as threshold of corresponding component (TAβ, TAδ or TC).27,28

EA Intervention
EA intervention was applied at ipsilateral RFs, adjacent or contralateral non-RFs. A pair of stainless steel acupuncture 
needles (0.18 mm diameter, 13 mm length; Beijing Zhongyan Taihe Medicine Co., People’s Republic of China) were 
inserted into the muscle at a depth of 5 mm. EA intervention was applied with intensity of TAβ, TAδ, TC or 2TC (0.5 ms 
pulse width) at a frequency of 2 Hz for 1 min (Figure 1C), which was delivered by an electrical stimulator.

Administration of Saline
6% hypertonic saline (HS) was prepared as noxious stimulus. Immediately after EA intervention was finished, 200 µL 
HS was administered through the placement of a 10 cm long PE-10 tube at left gastrocnemius muscle of rats in advance 
(Figure 1C). Injection was administered at depth of 5–7 mm within 10s. Rats in control group were injected with the 
same volume of 0.9% NaCl.

Statistical Analysis
All data were expressed as means ± standard error of the means (SEM). Statistical analysis was performed with SPSS 23 
software. The Shapiro–Wilk test was used to evaluate whether these data fit normal distributions. Normally and non- 
normally distributed data were analyzed via parametric or non-parametric tests, respectively. Differences among multiple 
groups were analyzed with one-way analysis of variance (ANOVA) test followed by the LSD, SNK, or Dunnett’s T3 post 
hoc test. Differences with P < 0.05 were considered significant.

Results
Identification of WDR Neurons with Muscular Receptive Fields
To locate the exact segments of electrophysiological recording, the retrograde neural tracer was injected at left 
gastrocnemius muscle to identify the relevant sensory innervation. As shown in Figure 2A and B, the sensory neurons 
labeled by AF488-CTB were distributed from L3 to sacral (S)1 and concentrated at L5-6 DRGs, indicating that the 
sensory inputs of gastrocnemius muscle mainly projected to L5-6 SDH. Therefore, recording of WDR neurons was 
performed at L5-6 segments of the SDH. WDR neurons were identified by mechanical stimulation, including innocuous 
60 g and noxious 200 g pressure as well as innocuous brushing at left gastrocnemius muscle and anterior tibial muscle. 
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Neurons responded to both innocuous and noxious pressure but not brushing were identified as WDR neurons with 
muscular RFs (Figure 2C).16,25 A total of 106 WDR neurons were recorded from 70 rats. Most WDR neurons were 
distributed at a depth of 650–1300 μm below the dorsal surface of the spinal cord, corresponding to laminae IV-VI of the 
SDH (Figure 2D).

Thresholds of Aβ-, Aδ- and C-Components of WDR Neurons
Typical discharge of WDR neurons to multiple types of primary sensory inputs can be separated into Aβ-, Aδ- and 
C-components by the corresponding latencies (0–20, 20–90 and 90–300 ms, respectively).23 To determine the activation 
thresholds of 3 components of WDR neurons, increasing intensities of electrical stimulus (0.1–3 mA, 0.5 ms pulse width) 
was applied at the muscular RFs during extracellular recording (Figure 3A). Conduction velocity (CV) of different 
afferent fibers was calculated through dividing the distance between stimulus and recording site (about 0.12 m) by the 
latency, without regard to the synaptic delays occurring within the SDH. Elicited discharges of WDR neurons were 
shown in Figure 3B and Table 1. Aβ- was the fastest component (CV, 12.24 ± 8.86 m/s) with lowest threshold (TAβ, 0.53 
± 0.06 mA) and shortest latency (12.60 ± 4.97 ms). Aδ- was the slower component (CV, 3.36 ± 1.57 m/s) with higher 
threshold (TAδ, 0.90 ± 0.26 mA) and longer latency (44.26 ± 23.24 ms). C- was the slowest component (CV, 1.07 ± 
0.28 m/s) with highest threshold (TC, 2.06 ± 0.13 mA) and longest latency (117.88 ± 35.61 ms). Accordingly, intensity of 
TAβ, TAδ, TC and 2TC was determined as 0.5 mA, 1 mA, 2 mA and 4 mA in later experiments, respectively.

Nociceptive Discharges of WDR Neurons Elicited by HS
After identification of the general properties of WDR neurons, the nociceptive discharges were elicited by injection of HS 
at left gastrocnemius muscle of rats (Figure 4A). As expected, 11 WDR neurons from 9 rats exhibited robust discharges 
immediately after HS injection, while no firing was evoked by 0.9% NaCl (Figure 4B and C). Since the discharges of 

Figure 2 General properties of WDR neurons with receptive fields (RFs) at left gastrocnemius muscle. 
Notes: (A) Representative images of retrogradely labeled primary sensory neurons (white arrows) in lumbar (L)4 and L5 dorsal root ganglia (DRG) associated with left 
gastrocnemius muscle. (B) The number of labeled sensory neurons in L3-6 and sacral (S)1 DRGs (n=3). (C) Representative discharge mode of WDR neurons evoked by 60 
and 200 g pressure on muscular RFs and brush on local skin. (D) Percentages of WDR neurons distributed among different depths of SDH (106 neurons from 70 rats). All 
data were presented as means ± SEM.

Journal of Pain Research 2023:16                                                                                                     https://doi.org/10.2147/JPR.S396481                                                                                                                                                                                                                       

DovePress                                                                                                                         
699

Dovepress                                                                                                                                                                Yu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


WDR neurons induced by HS exhibited short duration and decreased rapidly, the firing rates during the 1st 1 min after 
injection were further analyzed. The discharge frequency gradually decreased over time. During the 1st 20s it was 28.3 ± 
11.6 Hz, but it decreased sharply to 16.2 ± 10.5 Hz in the 3rd 20s (P < 0.05, Figure 4C). Further analysis of firing rates of 
WDR neurons in the 1st 20s course showed that a majority of WDR neurons (55%) fired at a rate of 20–30 Hz, 18% 
WDR neurons fired at 10–20 Hz, and 27% WDR neurons fired at 30–60 Hz (Figure 4D). Therefore, the activities of 
WDR neurons within the 1st 20s after HS were selected to be observed.

Effects of Pre-EA at RFs on Nociceptive Discharges of WDR Neurons Evoked by HS
There were quite a number of WDR neurons with RFs located at both gastrocnemius muscle and anterior tibial 
muscle. Pre-EA of TAβ (0.5 mA), TAδ (1 mA), TC (2 mA) or 2TC (4 mA) was administered at left anterior tibial 
muscle. Immediately after pre-EA intervention, HS was applied to the ipsilateral gastrocnemius muscle. Nociceptive 
activities of WDR neurons were compared to evaluate the effects of pre-EA with distinct intensities at RFs. 
Figure 5A displayed representative firing traces of WDR neurons in 4 EA groups. Compared with the model 
group (28.3 ± 11.6 Hz), pre-EA of TAδ (8.92 ± 4.26 Hz, P < 0.05), TC (10.20 ± 6.50 Hz, P < 0.05) and 2TC 

(6.62 ± 3.04 Hz, P < 0.01) significantly reduced discharge frequencies of WDR neurons (Figure 5B), with 
suppressive rates of 68.48%, 63.96% and 76.61%, respectively. However, pre-EA of TAβ had no inhibitory effect 

Figure 3 Intensity thresholds of electrical stimulation activating Aβ, Aδ and C-components of WDR neurons. 
Notes: (A) Schematic diagram of experimental setup. Electrical stimulation (0.1–3 mA, 0.5 ms) was applied at muscular RFs of WDR neurons and action potentials of WDR 
neurons were recorded by a microelectrode inserted in the enlargement of spinal cord. (B) Representative discharges of Aβ (0–20 ms latency), Aδ (20–90 ms latency) and 
C (90–300 ms latency) components of WDR neurons evoked by electrical stimulation with intensity of 0.5, 1 and 2 mA, respectively (9 neurons from 7 rats).

Table 1 Identification of the Threshold, Latency, and CV of Aβ-, Aδ- and 
C-Components of WDR Neurons (9 Neurons from 7 Rats) by Electrical Stimulation

Component Threshold (mA) Latency (ms) CV (m/s)

Aβ- 0.53 ± 0.06 12.60 ± 4.97 12.24 ± 8.86

Aδ- 0.90 ± 0.26 44.26 ± 23.24 3.36 ± 1.57

C- 2.06 ± 0.13 117.88 ± 35.61 1.07 ± 0.28

Abbreviation: CV, conduction velocity.
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on WDR neurons. These results suggested that pre-EA administered at the RFs required Aδ- or C- afferents to 
inhibit nociceptive responses of WDR neurons.

Effects of Pre-EA at Adjacent Non-RFs on Nociceptive Discharges of WDR Neurons
WDR neurons that responded to mechanical stimulation only on the gastrocnemius muscle but not the anterior tibial muscle were 
observed in this part. Likewise, pre-EA of 4 intensities was administered at left anterior tibial muscle (identified as adjacent non- 
RFs) and HS was applied to the ipsilateral gastrocnemius muscle. As shown in Figure 5C and D, discharge frequency of WDR 
neurons in TAβ (11.9±5.37 Hz, P < 0.05), TAδ, (9.32 ± 7.66 Hz, P < 0.05), TC (9.43±2.85 Hz, P < 0.05) and 2TC (4.32 ± 4.46 Hz, 
P < 0.01) groups decreased significantly compared with that of the model (Figure 5D). The inhibition rate of 4 groups was 
57.95%, 67.06%, 66.68% and 84.73%, respectively. These results indicated that pre-EA at adjacent non-RFs could effectively 
inhibit the nociceptive activities of WDR neurons, especially pre-EA of TAβ. The other intensities of pre-EA at adjacent non-RFs 
produced the same effects as that in the RFs.

Effects of Pre-EA at Contralateral Non-RFs on Nociceptive Discharges of WDR 
Neurons
It has been reported that heterotopic EA intervention can elicit extrasegmental analgesia.7,29 Meanwhile, the activities of the 
WDR neurons could be inhibited by heterotopic stimulation with high intensity in different pain models of rats.30,31 Here, we 
examined the effective intensity of pre-EA at right anterior tibial muscle (contralateral non-RFs) which suppressed nociceptive 
firing of WDR neurons in an acute muscle pain model. Interestingly, pre-EA of TC and 2TC remarkably reduced HS-evoked 
WDR neuronal activities to 7.49 ± 4.70 Hz and 6.25 ± 6.74 Hz, and the inhibiting rate was 73.53% and 77.92%, respectively 
(Figure 6, P < 0.01). However, no obvious alleviation was observed for pre-EA with the intensity of TAδ (13.58±5.07 Hz, 
Figure 6, P > 0.05) and TAβ (15.74 ± 5.36 Hz, Figure 6, P > 0.05) on firing frequency of WDR neurons. Overall, these results 
indicated that intensity of heterotopic pre-EA intervention should reach at least TC to suppress nociceptive discharges of WDR 
neurons.

Figure 4 Injection of hypertonic saline (HS) at RFs evoked robust discharges of WDR neurons. 
Notes: (A) Schematic diagram of experimental setup. 200 μL HS was injected at gastrocnemius muscle and action potential of WDR neurons was recorded by 
a microelectrode array inserted in L5-6 segment of spinal cord. (B) Representative traces of discharges of WDR neurons in the 3 groups. (C) Discharge frequency of 
WDR neurons in the 3 groups. Frequency of model group was further analyzed during 0–20, 20–40 and 40–60 s post-injection of HS (5 neurons from 3 rats in normal group, 
6 neurons from 3 rats in control group, 11 neurons from 9 rats in model group). (D) Percentages of WDR neurons with different discharge frequency after injection of HS 
within 20s (11 neurons from 9 rats). All data were presented as means ± SEM. *, compared with normal, *P < 0.05, **P < 0.01, ***P < 0.001. #, compared with control, #P < 
0.05, ##P < 0.01, ###P < 0.001. &Compared with 0–20s, &&P < 0.05.
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Figure 5 Changes of noxious firing of WDR neurons after pre-EA at ipsilateral RFs or non-RFs with different intensities. 
Notes: (A, B) Representative discharge traces (A) and frequency (B) of WDR neurons after pre-EA at ipsilateral RFs (6 neurons from 3 rats in TAβ group, 6 neurons from 4 
rats in TAδ group, 8 neurons from 3 rats in TC group, 5 neurons from 4 rats n=5 in 2TC group). (C, D) Representative discharge traces (C) and frequency (D) of WDR 
neurons after pre-EA at ipsilateral non-RFs (8 neurons from 8 rats in TAβ group, 5 neurons from 4 rats in TAδ group, 6 neurons from 3 rats in TC group, 5 neurons from 3 rats 
in 2TC group). All data were presented as means ± SEM. *, compared with normal, *P < 0.05, **P < 0.01, *** P < 0.001. #Compared with control, #P < 0.05, ##P < 0.01, ###P < 
0.001. &Compared with model, &P < 0.05, &&P < 0.01.

Figure 6 Changes of activity of WDR neurons after contralateral pre-EA with different intensities. 
Notes: (A) Representative traces of discharge of WDR neurons in the 4 groups. (B) Discharge frequency of WDR neurons in the 7 groups (8 neurons from 6 rats in TAβ 

group, 5 neurons from 4 rats in TAδ group, 8 neurons from 3 rats in TC group, 5 neurons from 3 rats in 2TC group). All data were presented as means ± SEM. *, compared 
with normal, **P < 0.01, ***P < 0.001. #Compared with control, ##P < 0.01, ###P < 0.001. &Compared with model, &&P < 0.01.
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Discussion
In the present study, the inhibitory effects of pre-EA with distinct intensities and locations on nociceptive discharges of 
WDR neurons were compared. Specifically, pre-EA of TAβ, TAδ, TC or 2TC at ipsilateral adjacent non-RFs could inhibit 
nociceptive discharges of WDR neurons, while in local RFs, only TAδ, TC or 2TC of pre-EA could exert inhibitory 
effects. Meanwhile, at contralateral non-RFs, intensity of pre-EA should reach at least TC to suppress discharges of WDR 
neurons. These results suggested that pre-EA could inhibit nociceptive activities of WDR neurons and the effective 
intensities varied depending on the locations of stimulation.

Intramuscular injection of HS is commonly used to evoke acute muscle pain.32–34 Application of HS at gastrocnemius 
muscle induced mechanical hyperalgesia35,36 and c-Fos expression in deep (IV-VI) lamina of SDH of L4-6 segments.37,38 

In this study, WDR neurons in deep lamina IV-VI of SDH exhibited obvious discharges, indicating that WDR neurons 
were activated following intramuscular injection of HS. Interestingly, pretreatment of EA effectively inhibits nociceptive 
activities of WDR neurons and the effects were dependent on intensities and locations of intervention, showing the 
preventive analgesic effects of pre-EA.

Behavior and electrophysiological evidence have demonstrated that activation of low-threshold mechanoreceptors 
could alleviate pain symptoms and inhibit the spontaneous discharges of dorsal horn neurons.39–42 This analgesic effect 
has been generally explained by the gate control theory, which suggests that the nociceptive (Aδ/C) inputs are gated by 
feed-forward activation of non-nociceptive (Aβ) afferents in SDH. The spinal WDR neurons receive inputs from both 
non-nociceptive (Aβ) and noxious (Aδ and C) afferents.43 Activation of A-fibers inhibited the nociceptive discharges of 
WDR neurons evoked by C-fiber.44 In addition, the underlying mechanisms of the segmental analgesia of acupuncture 
have been suggested to be associated with the gate control theory.10,16,45 In this study, pre-EA with low intensity TAβ 

inhibited nociceptive discharges of WDR neurons, indicating that anti-nociceptive effects of pre-EA may also be related 
to the gate control theory. However, the phenomena only occurred when pre-EA with TAβ was administered at adjacent 
non-RFs. As we know, there are also inhibitory fields (adjacent non-RFs) around the excitatory fields (known as RFs) of 
WDR neurons.46 It was demonstrated that tactile stimulus of adjacent non-RFs could reduce the activities of WDR 
neurons to nociceptive stimulation.47–49 That is why pre-EA of TAβ at non-RFs was effective rather than at RFs. Besides, 
pre-EA of TAδ at both RFs and non-RFs was effective on the nociceptive firing of WDR neurons.

Apart from local acupoints, contralateral or distal acupoints are also frequently used to relieve pain.7,50,51 Different 
from segmental analgesia induced by homotopic acupoint, systemic analgesia by heterotopic acupoints requires relatively 
higher intensity which is enough to activate myelinated fibers (thinly Aδ- and/or C-fibers).9,52,53 Mechanisms underlying 
systemic AA involve the diffuse noxious inhibitory controls (DNICs),54–57 which refer to the strong inhibitory effects on 
spinal WDR neurons by a nociceptive stimulus applied to any part of the body distinct from their RFs.58 In the present 
study, heterotopic nociceptive afferent stimulation by pre-EA inhibited nociceptive discharges of WDR neurons, 
indicating the information was convergent and integrated by WDR neurons. Specifically, ipsilateral pre-EA with high 
intensity (TAδ, TC or 2TC) significantly decreased discharge frequency of WDR neurons. While at contralateral non-RFs, 
only intensity higher than TC could generate inhibitory effects on WDR neurons. This was consistent with a previous 
study which reported that threshold of Aδ-fiber activation showed less effective when administered at contralateral 
acupoints.11 Consequently, these results implied that inhibitory effects of pre-EA with high intensity on nociceptive 
discharges of WDR neurons may be through DNIC pathway, and the extent to which DNIC was triggered varied with 
distinct intensities.

Activation of different somatic afferents play important roles in AA. Previous studies determined the intensity of EA 
by recordings of nociceptive reflexes (RIII reflex).10,11,16 As the C-fiber reflex was a kind of nociceptive response,59,60 it 
was difficult to find out the threshold of Aβ-fiber. Other studies employed single-unit recording of primary afferent fibers 
or sensory neurons to determine the intensity.25,45,61 In the present study, to better investigate the inhibitory effects of pre- 
EA on spinal WDR neurons, it was more reliable to determine the intensities of EA by thresholds of the 3 components of 
WDR neurons. Moreover, this measurement may reveal the integration of pre-EA and nociceptive signaling in the dorsal 
horn.
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However, the present study has some limitations. We only analyzed discharges of WDR neurons by in vivo 
electrophysiological recording, further study is needed to evaluate whether pre-EA could relieve acute pain behavior. 
Additionally, we merely examined the effects of pre-EA at spinal level. Supraspinal components may also participate in 
this complex loop, especially in systemic analgesia of heterotopic pre-EA. Further studies should be performed to 
elucidate the supraspinal mechanisms of antinociceptive effects of pre-EA with distinct intensities.

Conclusion
In summary, different afferent stimulation of pre-EA and nociceptive information were convergent and integrated by 
WDR. Pre-EA with distinct intensities inhibits noxious discharges of WDR neurons depending on the locations of 
stimulation. Our studies suggest novel therapeutic strategies for parameters’ selection of pre-EA for acute pain.
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