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Abstract: After a detailed description of orexins and their roles in sleep and other medical disorders, we discuss here the current 
clinical evidence on the effects of dual (DORAs) or selective (SORAs) orexin receptor antagonists on insomnia with the aim to 
provide recommendations for their further assessment in a context of personalized and precision medicine. In the last decade, many 
trials have been conducted with orexin receptor antagonists, which represent an innovative and valid therapeutic option based on the 
multiple mechanisms of action of orexins on different biological circuits, both centrally and peripherally, and their role in a wide range 
of medical conditions which are often associated with insomnia. A very interesting aspect of this new category of drugs is that they 
have limited abuse liability and their discontinuation does not seem associated with significant rebound effects. Further studies on the 
efficacy of DORAs are required, especially on children and adolescents and in particular conditions, such as menopause. Which 
DORA is most suitable for each patient, based on comorbidities and/or concomitant treatments, should be the focus of further careful 
research. On the contrary, studies on SORAs, some of which seem to be appropriate also in insomnia in patients with psychiatric 
diseases, are still at an early stage and, therefore, do not allow to draw definite conclusions. 
Keywords: insomnia, orexin, hypocretin, orexin receptor antagonist, dual orexin receptor antagonists, selective orexin receptor 
antagonists

Introduction
The discovery of the neuropeptides named orexins1 (orexin A and orexin B) or hypocretins2 (hypocretin 1 and 
hypocretin 2) in 19981 has triggered in the last decades an enormous research effort aimed at the definition of the 
roles of orexins in multiple physiological functions and as a druggable target in pathophysiology. Besides the involve-
ment of orexins in narcolepsy type 1 (NT1, narcolepsy with cataplexy),3 which is the prototypal disorder in which 
a deficit in orexins is the main biological feature, the importance of orexins has gradually become evident in a large series 
of disorders, as also briefly summarized in this review.

Among the disorders in which orexins are involved, a particularly important position is held by insomnia because of 
its distinct epidemiology and health and socioeconomic impact.4 Despite the undoubtful efficacy of cognitive-behavioral 
therapy for insomnia (CBT-I), which currently remains the first-line treatment, there still is a considerable number of 
patients who do not remit with this approach.5 This implies that the use of drugs to treat insomnia is often needed and 
useful.4 In addition to the conventional drug classes used, the most recent class of drugs for the treatment of insomnia is 
represented by the dual (DORAs) or selective (SORAs) orexin receptor antagonists.6,7 After a detailed description of 
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orexins and their roles in sleep and other medical disorders, we will discuss here the current clinical evidence on the 
effects of DORAs and SORAs on insomnia based on peer-reviewed published papers.

The Biology of Orexins
General Considerations
In 1998, two independent groups working on rat hypothalamic mRNA and proteins reported the discovery of two novel 
hypothalamic neuropeptides, which they named hypocretin 1 and 2,2 or orexin A and B,1 respectively. The double orexin/ 
hypocretin nomenclature of these peptides persists to date. However, the International Union of Basic and Clinical 
Pharmacology recommended in 2012 to designate the peptides and their receptors after the term orexin, and to designate 
their respective genes and mRNA after the term hypocretin (abbreviated as HCRT).8 The HCRT gene codes for 
a precursor peptide, named pre-pro-orexin, which is cleaved into the orexin-A and orexin-B active peptides. 
Differences between the structures of orexin A and orexin B, which are highly conserved among mammals, are thought 
to confer relative resistance to proteolytic degradation to orexin A,1 which binds two G-protein coupled receptors named 
OX1R and OX2R with similar affinity. The affinity of orexin B for OX2R is similar to that of orexin A, whereas that for 
OX1R is 2–3 orders of magnitude lower.1

The orexins are released by neurons in the tuberal region of the hypothalamus9 that also release glutamate.10,11 Orexin 
neurons are inhibited by glucose and excited by non-essential amino acids and by acidification and increases in the CO2 

concentration.12,13 Orexin neurons are also directly excited by the orexigenic hormone ghrelin and indirectly inhibited by 
the anorexigenic hormone leptin.14

Orexin neurons receive projections from several brain areas that include the hypothalamus, the basal forebrain, the 
amygdala, and the brainstem.15,16 Projections from the hypothalamus involve the ventrolateral preoptic nucleus (VLPO), 
which is key to Sleep control, and the suprachiasmatic nucleus, which is the site of the master circadian clock, with the 
latter projections being largely indirect.16 In turn, orexin neurons project to multiple neuronal systems widely distributed 
in the brain. The targets of these projections include the VLPO and the tuberomammillary nucleus (TMN) of the 
hypothalamus and the locus coeruleus (LC) in the pons, which are involved in sleep control, as well as the arcuate 
nucleus (ARC) of the hypothalamus, which is involved in the control of feeding, and the midbrain ventral tegmental area 
(VTA), which is relevant to motivation and reward.17 In the pons and medulla, orexin fibers are distributed through the 
raphe nuclei and the reticular formation, which are relevant to sleep and motor control.17 The orexin neurons also widely 
project to structures of the central autonomic network involved in sympathetic and parasympathetic control, including the 
rostral ventrolateral medulla (RVLM) and the hypothalamic paraventricular nucleus (PVN).18 In general, these structures 
express OX1R and OX2R to different extents: for instance, VLPO, TMN, and LC neurons mostly express OX2R, OX2R, 
and OX1R, respectively (Figure 1).19

Orexin Modulation of the Wake-Sleep States
Orexins are key to vigilance state control, as shown dramatically by the profound wake-sleep state instability in patients 
with NT1, who develop near-complete loss of orexin neurons,9 and in orexin knock-out (KO) mice.20,21 Moreover, early 
work at Stanford University22 revealed the occurrence of a NT1 phenotype in dogs with either congenital lack of 
functional OX2R or sporadic loss of orexin peptides. The vigilance state instability occurring due to impaired orexin 
signaling entails excessive daytime sleepiness (EDS) and sleep attacks fragmenting wakefulness, as well as a striking 
dysregulation of motor control that manifests both as lack of muscle tone during episodes of cataplexy and sleep 
paralysis20,21,23 and as excessive muscle tone during sleep.24,25 Intriguingly, inappropriately high and/or inappropriately 
timed orexin release also destabilizes wake-sleep states and muscle control during sleep.26 Excessive orexin neuron 
excitability underlies the increase of sleep fragmentation that occurs with aging, even despite the age-related decrease in 
orexin neuron number.27

Preclinical evidence suggests that orexins are critical in sustaining active waking behaviors that drive sleep need.28 

Accordingly, orexin neurons discharge action potentials during active wakefulness and particularly during exploration 
behavior, whereas they are almost silent during sleep except for occasional burst discharge occurring during the phasic 
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(rapid-eye-movement) REM sleep episodes, sometimes in association with spontaneous muscle twitches.29 During 
transitions from sleep to wakefulness, orexin neurons fire prior to the onset of electroencephalographic (EEG) activation 
and respond with a short latency to arousing sound stimuli during sleep.30 Accordingly, optogenetic activation of orexin 
neurons is sufficient to drive awakening.31 However, brain interstitial orexin concentration depends quite loosely on 
wake-sleep states.32–34 While the mechanisms of this apparent mismatch remain unclear, this mismatch may explain why 
orexin deficiency adversely affects vigilance state control well beyond active wakefulness.

The histaminergic and other aminergic neurons in the brainstem have been compared to an orchestra, with orexin 
neurons as a director and the histamine neurons as the first violin.35 An influential model of wake-sleep state regulation 
postulated the existence of mutually inhibitory neural circuits, or “flip-flop switches”, controlling transitions between 
wake-sleep states.36,37 One switch consists of sleep-on neurons, including in the VLPO, and of sleep-off neurons, 
noradrenergic neurons in the LC, histaminergic neurons in the TMN, and serotonergic neurons in the dorsal and median 
raphe nuclei.36 The other switch consists of REM-on neurons, such as in the murine pontine sublaterodorsal (SLD) 
nucleus (also named subcoeruleus nucleus in humans and peri-locus coeruleus alpha in cats38), and of REM-off neurons, 
including in the ventrolateral periaqueductal gray.37 The mutually inhibitory connections in flip-flop switches allow for 
rapid and complete transitions between vigilance states, although they are inherently prone to instability. Orexin neurons 
were thought to increase the activity of wake-on neurons of one switch and of REM-off neurons of the other switch 
without being part of either switch,36,37 thereby acting like a “finger” on the switches that might prevent unwanted state 
transitions.36,37 Nevertheless, recent findings challenged this aspect of the model, showing that orexin neurons may 
indeed be part of the wake on-off flip-flop switch. In particular, sleep-promoting VLPO neurons that are inhibited by 
noradrenaline project to and inhibit orexin neurons,39 and are themselves indirectly inhibited by orexin neurons through 
orexins and co-released glutamate.40 This pathway, which depends on OX2R,40 may be alternative to orexin-mediated 
excitation of LC neurons,41 which depends on OX1R,19,42 in driving arousal from sleep.40 There is also evidence that the 
wake-promoting effects of orexin-A, at least at supraphysiological concentrations, are mediated by excitation of 
histaminergic TMN neurons,43 which depends on OX2R.19 Other preclinical studies indicate that although OX2R play 
the more prominent role in the orexin modulation of wake-sleep states, OX1R are also relevant to the physiological 

Figure 1 Neurochemistry and neuroanatomy of orexin neuron signaling. (A) summarizes the neurochemistry of orexin neuron signaling. Orexin neurons synthetize pre- 
pro-orexin, which is cleaved into the orexin (A and B) peptides (OXA and OXB, respectively). Orexin A acts by binding both orexin receptor 1 and (OXR1 and OXR2, 
respectively), whereas orexin B binds with high potency only OXR2. Orexin neurons may co-release glutamate, which binds its receptors (GluR), and dynorphin, which binds 
kappa opioid receptors (KOR) and mu opioid receptors (MOR). (B) illustrates three of the main projections of orexin neurons that are of particular relevance to wake-sleep 
control. Orexin (ORX) neurons indirectly inhibit neurons of the ventrolateral preoptic nucleus (VLPO) of the hypothalamus, which promote sleep, express gamma- 
aminobutyric acid (GABA) and galanin, and inhibit ORX neurons. In addition, ORX neurons directly excite and indirectly disinhibit neurons of the hypothalamic 
tuberomammillary nucleus (TMN), which co-release histamine and GABA to promote wakefulness. Finally, ORX neurons excite neurons of the locus coeruleus in the 
pons, which release noradrenaline and promote wakefulness. The effects of ORX neurons on the VLPO and TMN are mainly mediated by OX2R, whereas those on the LC 
are mainly mediated by OX1R. Other projections of ORX neurons as well as of VLPO, TMN, and LC neurons were omitted for clarity.
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control of REM sleep and vigilance-state related muscle tone and to the promotion of arousal.42,44,45 Nevertheless, recent 
work demonstrated that pharmacological OX2R agonism is sufficient to ameliorate cataplexy and sleep/wake fragmenta-
tion in orexin KO mice46 and in orexin-neuron deficient orexin-ataxin 3 mice.47 This discrepancy awaits clarification.

Orexin Modulation of Other Physiological Functions
Orexins modulate multiple physiological functions in addition to vigilance state control.48 Here, we will focus on four 
functions that have been relatively well explored and that may be particularly relevant to the large-scale treatment of 
insomnia with orexin receptor antagonists: cardiovascular and respiratory control, control of energy metabolism, reward 
and addiction, and stress.

As previously discussed, the orexin neurons are part of the central autonomic network,18 which underlies their 
prominent role in autonomic cardiovascular control.49 Intracerebroventricular injection of orexins increases arterial 
pressure and heart rate,50 an effect mediated by OX1R.51 Downregulation of OX1R in the PVN, another target of orexin 
neurons, reduces hypertension in the obese Zucker rat lacking leptin receptors.52 On the other hand, orexin microinjec-
tion in the RVLM, which is a key pre-sympathetic structure of the central autonomic network, increases heart rate, 
sympathetic nerve activity, and arterial pressure via both OX1R and OX2R,53,54 and OX2R blockade decreases arterial 
blood pressure in spontaneously hypertensive rats.55 Orexin-mediated cardiovascular activation may thus involve both 
OX1R and OX2R and be relevant to the pathophysiology of arterial hypertension. Patients with NT1, orexin KO mice 
lacking orexin peptides, and orexin-ataxin 3 mice lacking orexin neurons show an attenuated decrease in arterial blood 
pressure between daytime wakefulness and nighttime sleep (ie, a non-dipper blood pressure pattern), associated with 
smaller cardiovascular deactivation from wakefulness to non-REM sleep and with enhanced cardiovascular activation 
from non-REM sleep to REM sleep.21,56,57 This pattern was traced down to a dysregulation of sympathetic activity to the 
heart and blood vessels during sleep.58 On the other hand, even partial lack of orexins increases atherosclerosis burden in 
susceptible mice by increasing circulating inflammatory monocytes, an effect mediated by OX1R in the bone marrow.59

The role of orexins in respiratory control is worth addressing in light of the possible implications for the treatment 
with orexin receptor antagonists of insomnia comorbid with obstructive sleep apnea. Orexin neurons in mice are excited 
by hypercapnia.13,60 Early studies on mice convincingly reported a role of orexins in chemoreflex responses to 
hypercapnia, but not to hypoxia, during wakefulness, and suggested a role for both orexin receptor types, with OX2R 
being the more involved.61 However, later work pointed to a specific role of OX1R in the rostral medullary raphe and the 
retrotrapezoid nucleus in the chemoreflex response to hypercapnia in rats,62,63 and recent data indicate that orexins 
facilitate chemoreflex responses to both hypercapnia and hypoxia in these animals.64 On the other hand, impaired 
chemoreflex responsiveness during wakefulness and frequent central sleep apneas were reported in orexin KO mice.65 

However, work on people with NT1 found that hypercapnic responsiveness was unaltered, whereas hypoxic responsive-
ness was reduced only in subjects carrying the HLA DQB1*0602 allele.66 Recent data did not confirm increased sleep 
apnea in orexin KO mice,67 whereas a mild increase in obstructive, rather than central, sleep apnea was reported in 
subjects with NT1.66,68 Taken together, these data point to a role of orexins in respiratory control, although this role is 
either not a major one or not well conserved among species.

The name orexins was given after the Greek word orexis, which stands for appetite, following the discovery that 
central orexin administration stimulated feeding, and that the hypocretin gene was upregulated with fasting.1 As 
discussed above, orexin neurons project to the ARC, which is key to feeding and metabolic control, and are sensitive 
to nutrient levels and hormones that control feeding and energy metabolism, such as ghrelin and leptin.14 Preclinical data 
indicate that orexin deficiency is causal to obesity, although this effect is also modulated by genetic background, orexin 
co-transmission, and histamine signaling.69,70 This effect has largely been ascribed to lack of OX2R signaling, as 
enhanced OX2R signaling prevents diet-induced obesity and improves leptin sensitivity in mice.71 However, recent 
data revealed that OX1R and OX2R both have unique roles in energy metabolism and modulate the interaction of diet 
and exercise on body weight gain, with OX2R being more relevant to the control of energy expenditure and OX1R being 
more relevant to reward-based feeding.72

The role of orexins in promoting reward and addiction73 is a burgeoning field of research of potentially critical 
relevance to public health.74–77 Addiction is defined by the American Society of Addiction Medicine as a chronic disease 
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whereby people use substances or engage in behaviors that become compulsive and often continue despite harmful 
consequences (www.asam.org, last accessed on December 4, 2022). Orexis may also mean conation or desire; in 
hindsight, this term appears quite appropriate, as research revealed the orexin role in modulating motivational, rather 
than primary reinforcing aspects, of drug reward.76 These effects likely depend on orexin neuron projections to the VTA 
and to other brain structures involved in motivation and reward, such as the nucleus accumbens and the paraventricular 
nucleus of the thalamus.17,75,76 A significant shortcoming in the present literature is the greater focus on OX1R and 
a relative paucity of studies of OX2R signaling for addiction.75 Nevertheless, the available evidence indicates that the 
stimulation effects of orexins on reward and addiction are mediated by both OX1R and OX2R.75,76 The susceptibility of 
people with NT1 to drug addiction is still debated.76,78 However, the relevance of orexin signaling to opiate addiction is 
dramatically revealed by the striking increase in orexin neurons detected at immunohistochemistry with chronic opiate 
administration in human heroin addicts and in mouse models.77 The mechanisms underlying this increase in neuron 
number are incompletely understood and may concern a population of orexin neurons, whose orexin synthesis is so 
limited at baseline to remain below the immunohistochemical detection threshold, but may be boosted and brought above 
detection threshold by chronic opiate administration. Translationally, this finding has potentially wide implications not 
only for addiction to drugs and its interaction with insomnia, but also for the therapy of NT1.

Substantial evidence links orexin signaling with the acute stress response, the body’s physiological reaction to threats 
and unpredictable occurrences that increases arousal and helps coping and survival.79 In rats, intracerebroventricular 
orexin administration increases circulating adrenocorticotropic hormone (ACTH) levels, indicating activation of the 
hypothalamo-pituitary-adrenocortical axis,80 whereas removal of circulating glucocorticoids with adrenalectomy 
decreases orexin mRNA levels, with rescue by peripheral glucocorticoid treatment.81 There is also evidence that orexin 
signaling is required for the full manifestation of autonomic and respiratory correlates and stress-induced analgesia.82 On 
the other hand, the effects of chronic stress on the orexin system are variable.79 To reconcile the roles of orexins in stress 
and reward, it has been proposed that orexin neurons coactivate motivation and aversion to orchestrate stress-countering 
responses, with orexin neuron stimulation being perceived as rewarding or aversive depending on whether baseline 
orexin neuron activity is low or high, respectively.83

Figure 1 shows, schematically, the neurochemistry and neuroanatomy of orexin neuron signaling.

Insomnia
Epidemiology, Diagnosis, and Clinical Spectrum
A diagnosis of insomnia disorder does not simply imply sleep disturbance. According to the International Classification 
of Sleep Disorders 3rd edition criteria,84 chronic insomnia is characterized by difficulty in falling asleep or in maintaining 
sleep or by early awakening, with a negative impact on daily performance, which can manifest itself with fatigue, EDS, 
difficulty concentrating and paying attention. Nocturnal symptoms of sleep disturbance are present for at least 3 times 
a week and a duration of at least 3 months, not attributable to other sleep disorders or medical or pharmacological 
conditions. Insomnia at all ages can present variable phenotype characteristics. In particular, in early childhood, insomnia 
can present with motor restlessness, without difficulty falling asleep but with long-lasting morning awakenings, or with 
multiple nocturnal awakenings and difficulty falling asleep.85

Insomnia has a high prevalence in the general population, from 6% to 33%,86,87 with increased risk of comorbidity 
and health care costs.88 Its prevalence varies among the studies, depending on the definition used and the setting. For 
example, it is a very frequently encountered disorder in general practice, in which about 40% of patients report 
significant sleep disturbances.89 In adults, the prevalence is higher among women than among men,89 and is often 
related to psychiatric disorders90 or comorbidity with other motor or respiratory sleep disorders. In particular, an 
association has emerged between insomnia and sleep apnea syndrome (COMISA), with an estimated prevalence between 
40% and 60%.91 The need to identify different disease phenotypes has been suggested for a personalized therapeutic 
approach.4,87 Insomnia is not a homogeneous disorder and its clinical characteristics can vary over time and within the 
same patient.
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The family history of insomnia is an important factor to consider in the medical history because it can predispose to 
the onset of the disorder.92 A genetic predisposition to insomnia is recognized, with the involvement of several genes and 
the presence of pleiotropism. There is an overlap with the genetic factors common to anxiety and depression, consistent 
with links between insomnia, stress, and emotions.4 Higher arousability predisposition, poorer self-rated general health, 
and higher bodily pain have also been found as predisposing factors associated with a new onset of insomnia.93 

Pregnancy may be associated with a significant prevalence of insomnia symptoms, particularly in the third trimester, 
which may not be explained by symptoms of depression.94

Current Therapeutic Options
Early diagnosis and treatment of insomnia disorder comorbidities, such as COMISA and psychiatric disorders, is key. 
Persistence of insomnia despite effective comorbidity treatment strengthens the rationale for treating insomnia per se. 
According to current guidelines, CBT-I is the first approach to consider in the management of the disorder.4,86,95 With or 
without pharmacotherapy, changes to lifestyle and diet are often essential.

Benzodiazepines, novel benzodiazepine receptor agonists (“Z compounds”), and sedating antidepressants are effec-
tive in the short-term treatment of insomnia (≤ 4 weeks; weak recommendation, moderate quality evidence); antihista-
mines, antipsychotics, melatonin and herbal medicines are not recommended for the treatment of insomnia (strong to 
weak recommendations, low to very low quality tests).86 Light therapy and exercise need to be further evaluated to judge 
their usefulness in the treatment of insomnia, and so do non-invasive brain stimulation techniques (eg, repetitive 
transcranial magnetic stimulation,96–98 transcranial direct current stimulation)99–101 and complementary and alternative 
treatments (eg homeopathy, acupuncture, acupressure).86,102 The 2017 European Sleep Research Society guidelines did 
not generally recommend long-term treatment of insomnia with benzodiazepines, benzodiazepine receptor agonists, or 
sedating antidepressants.86 On the other hand, the guidelines of the American Academy of Sleep Medicine, also 
published in 2017, issued weak recommendations to use a range of drugs for the treatment of chronic insomnia, 
including a double orexin receptor antagonist (suvorexant), benzodiazepines (triazolam, temazepam), Z compounds 
(eszopiclone, zaleplon, zolpidem), a melatonin receptor agonist (ramelteon), and a tricyclic antidepresSant (doxepin). 
Discontinuation of modern hypnotic agents, such as selective benzodiazepine receptor agonists, melatonin agonists, 
sleep-promoting antidepressants, or orexin receptor antagonists, does not show withdrawal symptoms similar to older 
types of hypnotics or rebound effects on insomnia (ie, an exacerbation of insomnia to a level worse than baseline), even 
after sudden interruption of treatment.86

The Role of Orexins in Disease
Narcolepsy and Other Sleep Disorders
NT1, formerly named narcolepsy with cataplexy, with low or undetectable cerebrospinal fluid (CSF) levels of orexin A, 
is characterized by EDS, cataplexy, sleep paralysis, hypnagogic/hypnopompic hallucinations, and disrupted nocturnal 
sleep.84 Narcolepsy type 2 (NT2), with normal CSF orexin-A levels, shares most clinical features with NT1, except 
cataplexy, but is more heterogeneous and currently less well defined.23 Post-mortem studies identified a selective loss of 
orexin cells in the hypothalamus in the brain of narcoleptic patients with cataplexy.17,103 Animal model studies indicate 
that a near-complete decrease in functional orexin neuron number and in CSF orexin-A levels is required to elicit 
cataplexy, whereas the extent of orexin neuron loss required to elicit other NT1 symptoms and signs is smaller but still 
largely undetermined.104 Although the exact pathogenic underlying process remains unclear, there is evidence that NT1 
is an autoimmune disease:105 some environmental triggers, such as viral infections, in subjects with a genetic predis-
position, may lead to immune activation resulting in orexin-A cell loss.23

Obstructive sleep apnea syndrome (OSAS) is a multifactorial disease with a complex pathophysiology. A role of 
orexins in the pathophysiology of OSAS has been hypothesized.106 Extracellular pH and CO2/H+-sensitive neurons in the 
brain are fundamental for regulating breathing and behavioral arousal. As previously discussed, studies have suggested 
that orexin neurons are highly CO2/H+-sensitive,13 and orexin neurons are also activated by CO2 in vivo.60 As a result, it 
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is reasonable that repeated intermittent hypoxia or hypercapnia caused by OSAS might activate orexin neurons, 
eventually leading to arousal and sleep fragmentation.106

In restless legs syndrome (RLS), orexin-A levels were found to be increased in evening CSF samples, especially in 
early-onset disease,107 although a subsequent study did not confirm these results and showed no correlation with 
symptom severity and polysomnographic measures.108 Nevertheless, the circadian variation of orexin A may be 
dysregulated in early onset RLS, with elevated nocturnal levels.109

The complex interconnection between cancer, narcolepsy, and neurodegenerative diseases has recently been proposed 
as a possible case of orexin-dependent inverse comorbidity.110 Orexin signaling has been linked to neuroinflammation in 
mouse models and to cancer in cell lines.110,111 Moreover, the expression of the orexin-A receptor in various tumors, 
including colon, pancreas, and prostate cancers, and its ability to induce a proapoptotic activity in tumor cells,112 

suggested that orexin signaling through OX1R might have a promising therapeutic role also in cancer-related sleep 
disorders.

Other Disorders
Headache
A role of orexins in pain conditions, such as primary headache113 and cluster headache114 has been proposed.113,115,116 

This is in agreement with the fact that the hypothalamus is involved in the regulation of homeostatic mechanisms and 
migraine-related trigeminal nociception. Nevertheless, further work is required to better understand the underlying 
pathophysiological mechanisms and develop more targeted and effective therapies.117

Alcohol Withdrawal
The orexin system also plays a role in the emotional dysregulation that occurs during withdrawal from alcohol use and in 
alcohol-seeking behaviors. Indeed, symptoms of post-acute alcohol withdrawal syndrome typically include sleep 
disturbances. A recent systematic review associated these symptoms also with orexin levels, along with neuroadaptation 
changes in the nucleus accumbens and in the prefrontal cortex.118 Therefore, the use of orexin receptor antagonists has 
been proposed to treat insomnia in alcohol-dependent individuals during and after alcohol withdrawal.119

Epilepsy
Sleep disorders are common in epilepsy, and their early recognition and treatment can improve seizure frequency. 
Additionally, epilepsy is associated with cyclic patterns, which has led to new treatment approaches, including orexin 
receptor antagonists.120 Specifically, the loss of orexinergic activity has been associated with REM sleep onset,29,32 and 
REM sleep is generally protective against seizures. As such, a dynamic modulation of seizure threshold by orexin 
(through a so-called “orexi-cortical axis”) has been postulated, in which orexinergic activity regulates sleep-wake states 
to modify ascending subcortical influences on cortical synchronization, with subsequent effects on seizure threshold.121

Pain
Very recently, among potential therapeutic targets for the treatment of opioid abuse and pain,122 orexin-A receptor 
antagonists and mixed nociceptin/μ-opioid peptide partial agonists have shown promising results in animal models.123 

A contribution of the orexin system has also been found in the sleep-wake and arousal dysfunctions of post-traumatic 
stress disorder (PTSD).124 Orexin receptors have a prominent role in the neural circuit underlying PTSD, and orexin 
activation of an infralimbic-amygdala circuit impedes fear extinction, while treatment with orexin receptor antagonists 
enhances it.125 In PTSD with sleep disturbances (eg, increased sleep latency and more transitions to wakefulness), 
increased orexinergic activity impairs sleep by promoting wakefulness and reducing total sleep time (TST), whereas 
treatment with orexin receptor antagonists improves sleep onset and maintenance.124

Neurodegenerative Disorders
Orexin is a key modulator of the sleep-wake cycle, which is commonly dysregulated in AD. Increased orexin in the CSF 
is associated with decreased sleep efficiency and REM sleep, as well as cognitive impairment in patients with 
Alzheimer’s disease (AD). The orexin system has profuse projections to brain regions that are implicated in arousal 
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and cognition and has been found to participate in the progression of AD pathology.126 Conversely, orexin receptor 
antagonists are able to consolidate sleep and might even slow down the progression of AD pathology.127 Several lines of 
evidence suggest that the orexin system is involved also in Parkinson’s disease (PD), especially in its non-motor 
symptoms (mostly, sleep disorders). PD has been associated with pathological changes in the lateral hypothalamus, 
loss of orexin neurons, and fluctuations of orexin CSF level.128 Recently, some studies have revealed the protective 
actions and potential therapeutic applications of orexin receptor agonists in both cellular and animal models of PD,129 

whereas orexin receptor antagonists may improve the abnormal sleep pattern observed in PD.130

The orexin system is also involved in the pathogenesis of Huntington’s disease (HD). A significant reduction of 
orexin neurons in the hypothalamus was observed in patients with HD, compared to controls.131,132 Interestingly, the 
administration of a OX1R or OX2R antagonist significantly reduced sleep/wake rhythm deficiency and efficiently 
improved the behavioral performance in HD mice.133 Additionally, orexin A increased the surface levels of a-amino- 
3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor in the dorsal striatum (the main affected brain structure 
in HD, in which both OX1R and OX2R have been detected134), leading to functional changes in the striatal circuits.135 

This suggests that the orexin system may be involved in HD pathology by regulating the activity of striatal circuits, and 
that the modulation of the orexin system in striatal circuits may be a potential therapeutic target for HD.136

Sleep disturbance is a trigger of relapse in multiple sclerosis (MS),137 indicating a potential role of the orexin 
system.138 Given the complexity and variety of the pathological courses of MS, further investigation is necessary.139 

Nevertheless, preclinical studies indicate that the orexin system may exert neuroprotection in MS by inhibiting 
neuroinflammation.140

Binge Eating Disorder
The orexin system has recently been proposed as a potential link between compulsive eating and sleep dysregulation in 
binge eating disorder (BED).141 Based on the evidence that the orexin system exhibits significant plasticity in response to 
drugs of abuse, it has been hypothesized that chronic palatable food consumption may likewise increase orexin system 
activity, eventually resulting in dysregulated sleep/wake patterns.142 Poor sleep, in turn, exacerbates BED, contributing to 
a vicious cycle of uncontrolled food consumption.141 Translationally, pharmacotherapies normalizing orexin signaling, 
which are currently being trialed for the treatment of substance use disorders, might also have utility in the management 
of eating disorders.

Prader-Willi Syndrome
Prader-Willi syndrome (PWS) is a complex genetic disorder with multiple cognitive, behavioral, and endocrine 
dysfunctions and with different sleep disorders, such as sleep-disordered breathing and central disorders of hypersom-
nolence, frequently occurring either isolated or in comorbidity.143 A recent meta-analysis of CSF orexin levels showed 
significantly lower levels in PWS compared to controls, although the levels in PWS were significantly higher than those 
in NT1. This may support, at least in part, the role of hypothalamic dysfunction in the metabolic, respiratory, and sleep/ 
wake characteristics of patients with PWS.144

Clinical Trials with Orexin Receptor Antagonists for Insomnia
Rationale
The discovery of the anatomical interconnection of the orexin system with sleep/wake regulatory circuits and with wider 
motivation and reward circuits has played a crucial role, over the past decade, in the development of antagonists of the 
orexin receptors for the treatment of insomnia.76 As previously discussed, the orexin system seems to be a promising 
therapeutic target given its regulatory action on sleep, on the mechanisms of drug addiction, and on the regulation of 
stress and emotions, energy balance and the arousal system.145 Drug addiction might also lead to an increase in the 
production of orexins, with a feedback mechanism or “vicious cycle” that eventually leads to a worsening of insomnia.

The findings on the orexin system and the mechanisms of action of DORAs and SORAs in the last decade have 
triggered multiple trials on these innovative drugs, with the aim to provide further therapeutic options for insomnia short- 
term and long-term treatment with fewer side effects than other hypnotic drugs (hangover, dependence and tolerance, 
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rebound insomnia, muscle atonia, inhibition of the respiratory system, cognitive dysfunctions, and increased anxiety).6 

Studies conducted on the assessment of sleep architecture in patients treated with DORAs and SORAs have shown that 
DORAs increase the total sleep time mainly by promoting REM sleep, without affecting, or even decreasing, non-REM 
sleep.7 Conversely, there are still too few studies on SORAs to be able to draw definite conclusions on them.7 Regarding 
their efficacy and safety profile, DORAs showed an excellent profile, although there are only a few systematic 
comparisons among these drugs.146

Suvorexant
Suvorexant belongs to the DORA class.147 It was the first of this class of drugs to be approved in 2014148 for the 
treatment of insomnia due to difficulty in initiating and/or maintaining sleep149 in the USA and Japan.95,150

A systematic review published in 2017 suggested that suvorexant was associated with significant improvements in 
subjective time to sleep onset, subjective TST, and subjective quality of sleep at 1 month and 3 months in patients with 
primary insomnia, with somnolence, fatigue, and abnormal dreams as the most common adverse effects.151 According to 
a recent suvorexant trial in both young and older patients with insomnia, dosing for three months of 20/15 mg and 40/30 mg 
improved sleep to a greater extent than placebo, as shown by the Insomnia Severity Index.152 A good therapeutic efficacy was 
also demonstrated with objective sleep measures, such as polysomnography (PSG)-derived indexes, with improvement of 
sleep latency, sleep efficiency, and sleep maintenance, both after the first night of administration and after 4 weeks, with a dose 
dependent effect,153,154 in a 50-to-100 mg study.155 Relative to placebo, suvorexant was found to decrease substantially the 
time spent in long wake bouts (> 2 minutes) and to increase slightly the time spent in short wake bouts (≤ 2 minutes) in patients 
with insomnia.154 This fits well with preclinical evidence that in mice, progressive loss of the orexin neurons dramatically 
reduced the ability to maintain long wake bouts, but it also favored brief wake bouts, increasing the risk of awakening at sleep 
onset and reducing the likelihood of falling back asleep.156

An EEG spectral analysis study showed that suvorexant, at clinically effective doses, had limited effects on EEG 
power spectral density compared to placebo in healthy subjects and patients with insomnia, suggesting that suvorexant 
induces both subjective and objective sleep quality improvement, without major changes in cortico-thalamic 
neurophysiology.157 A different work showed that the EEG power spectral density profile after suvorexant administration 
in healthy subjects is closer to the physiological profile after placebo than to that obtained with zolpidem treatment.158 

Suvorexant may improve sleep while preserving the ability to awaken to auditory stimuli during the night.159

A neuroimaging study by magnetic resonance spectroscopy was recently conducted to evaluate the relationship 
between functional changes in the VTA, which also plays an important role in regulating the sleep-wake cycle,160 and 
suvorexant treatment. The authors concluded that the changes in choline/creatine and phosphorylcreatine ratios in VTA 
might be used to distinguish suvorexant responders from non-responders before starting treatment, allowing a more 
appropriate selection of patients in clinical practice.161

Since suvorexant is primarily metabolized by cytochrome P450 3A (CYP3A) and its pharmacokinetics may be 
affected by CYP3A modulators, caution should be used when administering CYP3A activators or inhibitors.162 Several 
studies have shown that suvorexant is well tolerated and effective in both men and women.163,164 Suvorexant may be an 
excellent therapeutic option in menopause, a period in which insomnia, especially associated with vasomotor symptoms, 
is frequent.165,166 Suvorexant 20 mg also improved sleep time in women with fibromyalgia, reducing next-day pain 
sensitivity.167

Suvorexant has also been evaluated in older people showing good efficacy, also in subjects with probable Alzheimer’s 
disease dementia with insomnia,168 and fair tolerance profile with few side effects, among which the most common was 
somnolence,169 and with unremarkable residual effects.170 On the other hand, although a study on younger healthy 
volunteers found no clinically meaningful residual effect of 20 mg or 40 mg suvorexant on next-morning driving, some 
individuals did experience next-day effects.171 Suvorexant was evaluated also in adolescence, with the occurrence of 
abnormal dreams being the most commonly reported adverse event.172 However, recent evidence suggests that initiation 
of suvorexant treatment after switching from other insomnia medications requires careful monitoring for insomnia- 
related adverse reactions, which could be due to the abrupt discontinuation of previous drugs.173 Although it has been 

Nature and Science of Sleep 2023:15                                                                                               https://doi.org/10.2147/NSS.S201994                                                                                                                                                                                                                       

DovePress                                                                                                                          
25

Dovepress                                                                                                                                                       Mogavero et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


shown that this agent is safe and well tolerated for up to one year, a sudden discontinuation of the treatment is associated 
with an increased likelihood of symptom return.174

Suvorexant improved sleep quality and obesity-associated parameters, including glycemic control, in patients with 
type 2 diabetes,175,176 which fits well with preclinical data obtained with suvorexant on db/db diabetic mice.177 In treated 
patients with hypertension and insomnia, suvorexant 20 mg had no overall effect on daytime, nighttime, or morning 
blood pressure.178 In light of the well-known association that often occurs between insomnia and sleep apnea 
(COMISA),91 it is very interesting to note that suvorexant does not have clinically important respiratory effects during 
sleep at doses above the maximum recommended dose for the treatment of insomnia in the USA and Japan, correspond-
ing to 20 mg.179 Similar results were obtained in patients with OSAS of mild-to-moderate degree180 or with chronic 
obstructive pulmonary disorders,181 at a dosage of 40 mg.

Lastly, suvorexant was recently found to ameliorate sleep disturbance, opioid withdrawal, and craving during 
a buprenorphine taper, suggesting that it might be a promising treatment for sleep and opioid withdrawal.182 On the 
other hand, drug abuse, which encompasses the use of prescription drugs for purposes other than those for which they are 
meant to be used or in excessive amounts (www.cancer.gov, last accessed on December 4, 2022), may be an issue with 
suvorexant. In particular, a study in healthy recreational polydrug users revealed abuse potential for suvorexant, although 
the overall abuse liability of suvorexant was similar to, and possibly lower than, that of zolpidem.183

Lemborexant
Lemborexant184 is a DORA approved in December 2019 in the USA and in January 2020 also in Japan for the treatment 
of adult insomnia characterized by difficulties in falling asleep or maintaining sleep.185 Lemborexant represents 
a promising therapeutic option for the treatment of insomnia,186 although better efficacy than suvorexant or other 
hypnotics has not been demonstrated.187

Studies on PSG parameters have shown an improvement in sleep efficiency and latency, as well as a reduction in 
wakefulness after sleep onset (WASO), even in the second part of the night, with a minimal tolerance at 5–10 mg, both 
after one month of treatment188 and in the long term after one year of therapy.189 No rebound effect was observed in case 
of discontinuous intake or discontinuation of treatment, and adverse effects such as headache and drowsiness and upper 
respiratory airway infections were rare.190–193 A good safety profile of lemborexant has also been demonstrated on 
respiratory parameters, such as the apnea-hypopnea index and the nocturnal oxygen saturation,194 and on cardiac 
parameters, such as the QT interval.195 Several trials with lemborexant have also shown little or no impairment of 
daily activities, such as cognitive performance, driving vehicles, and subjective sleepiness.196 Overall, it has been 
suggested that lemborexant at doses up to 25 mg provides a pharmacokinetic, pharmacodynamic, and overall safety 
profile suitable for both obtaining the target pharmacological effect on insomnia and minimizing the residual effects 
during wakefulness.197,198 Lemborexant has been found effective also in older adults on insomnia disorder188 and in 
subjects with Alzheimer’s disease dementia.199 On the other hand, a study on healthy nondependent recreational sedative 
users revealed that lemborexant has abuse potential relative to placebo to an extent similar to that of suvorexant and 
zolpidem.200

Daridorexant
Daridorexant201 is a DORA that was approved in March 2022 in the USA for the treatment of insomnia in adults due to 
difficulty in falling asleep or maintaining sleep. The expected effect duration is approximately 8 hours, at a dose of 
25 mg, with a half-life intended to minimize residual effects that could impair daytime functioning. Daridorexant is 
mainly metabolized by CYP3A4 and excreted mostly via feces (~57%) and urine (~28%).202 Daridorexant can be safely 
co-administered with citalopram, a widely used antidepressant medication203 and in patients with liver cirrhosis.204

Potential central nervous system (CNS) depressive effects and diurnal impairment have been described, especially 
with concomitant intake of other CNS depressant drugs, including ethanol.205 These effects include depression or suicidal 
ideation, sleep paralysis, hypnagogic/hypnopompic hallucinations, symptoms similar to cataplexy, and sleepwalking. The 
effects on respiratory function are also worthy of investigation.202 In this respect, daridorexant was found not to impair 
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nighttime respiratory function in patients with moderate chronic obstructive pulmonary disease206 or with mild or 
moderate OSAS.207 Moreover, daridorexant does not alter cardiac indexes, such as the QT interval.208

Some studies have also evaluated objective PSG parameters with daridorexant. One study has shown that at a dosage 
of 5, 10, 25, or 50 mg for a month, it induces a reduction in the time spent awake, with minimal tolerance.209 Another 
trial evaluated the effects at three months, showing that daridorexant 25 mg and 50 mg improved sleep parameters (ie, 
sleep latency and WASO) and, even after a single month of treatment at a dosage of 50 mg, also subjective daytime 
performance, with a favorable safety profile.210 Daridorexant was well tolerated and effective also in elderly subjects 
with insomnia disorder.211 However, daridorexant showed potential for drug abuse, with dose-related drug-liking among 
recreational sedative drug users with lower effects at the highest phase-3 dose, and similar effects at higher doses 
compared to supratherapeutic doses of suvorexant and zolpidem.212

Other Trials on DORAs and SORAs
Preclinical results have been published for other DORAs, such as ORN0829213 and YNT-185.214 The DORA TS-142, at the 
dosage of 5, 10, and 30 mg, administered in a single dose, demonstrated an objective improvement of PSG and clinical 
parameters, as well as minimal tolerance.215 Among SORAs antagonizing OX2R, JNJ-48816274, at a dosage of 20 and 50 mg, 
was associated with increases in TST, REM sleep duration, and sleep efficiency, with a reduction in sleep latency, and with 
improvement in the perceived sleep quality. Conversely, the spectral power density of the EEG in non-REM sleep and REM 
sleep was not affected by either dosage.216 The OX2R SORA JNJ-42847922 (seltorexant) has been shown to exert clinically 
meaningful reductions in depressive symptoms217 and to improve sleep218 in patients with major depressive disorder, with 
improved sleep efficiency, TST, and latency to persistent sleep. However, seltorexant did not change sleep architecture and 
particularly did not increase the percentage of time spent in N3,218 which is commonly reduced in these patients.90 This may 
represent an unmet therapeutic issue with seltorexant and possibly other SORAs in patients with major depression. The 
OX2R-selective SORA danavorexton (TAK-925) was recently shown to elicit marked improvements in sleep latency in 
individuals with NT1 or with NT2 after intravenous administration.47 Other OX2R-selective SORAs have been subjected to 
preclinical development.214,219,220 Recently, OX1R-selective SORAs221–225 have been developed, but their effects on sleep 
are minor225 or still unclear.221–224

A recent review compared the effects of orexin receptor antagonists to those of benzodiazepines and Z-drugs, in the 
short and long term.226 The authors concluded that zopiclone caused more dropouts than eszopiclone, daridorexant, and 
suvorexant; moreover, benzodiazepines, eszopiclone, zolpidem and zopiclone caused more side effects than placebo, 
doxepin, seltorexant and zaleplon. For long-term treatment, eszopiclone and lemborexant were more effective than 
placebo, while lemborexant and eszopiclone were more effective than ramelteon and zolpidem.226 Overall, this review 
did not clarify the benefits of only targeting OX2R with SORAs compared with targeting both OX2R and OX1R with 
DORAs. This critical question thus awaits clarification.

Table 1 summarizes the profiles of the main orexin receptor antagonists discussed in this review.

Discussion
Insomnia has a high prevalence in the general population and is an important cause of disability, very often associated 
with other medical diseases.87,88 It is a chronic disease which, therefore, frequently requires long-lasting CBT-I and drug 
therapy, often with occurrence of habituation and side effects, especially when the therapeutic approaches and the drug 
dosage used are not optimal. In this scenario, in the last decade, many trials have been conducted with orexin receptor 
antagonists, which represent an innovative and valid therapeutic option based on the multiple mechanisms of action of 
orexins on different biological circuits, both centrally and peripherally, and on their role in a wide range of medical 
conditions often associated with insomnia. A very interesting aspect of this new category of drugs is that they have 
limited abuse liability and their discontinuation may not be associated with significant rebound effects.4

Orexin receptor antagonists currently marketed in various countries, mainly USA and Japan, are DORAs with action 
on OXR1 and OXR2, while SORAs with a selective action on OXR2 are under development. DORAs have shown good 
efficacy and tolerance profile, even in the long term. Most of the studies have been conducted on suvorexant, also with 
objective methods (PSG), and on large series of patients, showing a remarkable efficacy of this drug in the treatment of 
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insomnia. This effect was seen in both sexes, and suvorexant is currently the only DORA for which the efficacy has also 
been evaluated in menopause,166 in older people,169 and in adolescence.172 Another very important property of 
suvorexant is the apparent absence of side effects on respiratory parameters during sleep.179–181 Finally, suvorexant is 
the only DORA for which neuroimaging has been performed, reporting changes in glial function in VTA, which might be 
used to distinguish suvorexant responders from non-responders before starting the treatment, thus allowing a more 
appropriate selection of patients in clinical practice.161

Studies on lemborexant are less numerous than those on suvorexant. Although lemborexant represents a promising 
therapeutic option for the treatment of insomnia, better efficacy than that of suvorexant or other hypnotics has not been 
conclusively demonstrated.187 Nevertheless, an improvement in both subjective and objective (PSG) sleep parameters has 
been reported also for lemborexant, with a good tolerance profile even in long-term treatment, absence of rebound effects 
in case of suspension,190–193 and lack of changes of sleep cardio-respiratory parameters.194,195

Finally, there are even fewer studies on daridorexant, which agree in demonstrating good efficacy on both subjective 
and objective sleep parameters. However, further studies are needed to evaluate the impact of daridorexant on 
cardiorespiratory parameters. Potential CNS depressant effects of daridorexant have also been described, as well as 
diurnal impairment, especially when associated with other CNS depressant drugs. Therefore, these aspects should also be 
further investigated.202

Taken together, the multiple biological roles of orexins indicate that orexin receptor antagonists can exert effects on 
different functions and ameliorate or worsen comorbid pathologies. Insomnia is often associated with other medical 
conditions and shows a considerable individual variability4 in terms of clinical characteristics, sleep architecture, and 
comorbidities.33,227,228 The orexin receptor antagonists have also been shown to afford an improvement in PSG 
parameters, sleepiness, and sleep quality, with differences related to the patient characteristics: some DORAs seem to 
have a good efficacy in the older subject or adolescent population169,172 or in postmenopausal women,166 whereas 
SORAs have been found effective in psychiatric patients.218,229,230 Therefore, these drugs offer interesting perspectives 
for a targeted and personalized approach.

As mentioned before, a close association of insomnia with OSAS has recently emerged (COMISA),91 even in 
children.231 The use of orexin receptor antagonists provides interesting implications for the treatment of this clinical 
association, also because of lack of effects on respiratory parameters, as reported with some DORAs, although further 
clinical trials are desirable to evaluate this aspect systematically. Furthermore, it would be interesting to evaluate the 
possible effects of DORAs on somnolence in patients with COMISA.

There is a close interconnection between insomnia and headache.232 In light of the recently proposed role of orexins 
in pain modulation,113 DORAs might be very useful in the treatment of patients with insomnia and headache, who may 

Table 1 Brief Profiles of the Main Orexin Receptor Antagonists Reported Above

Drug Type Half-Life, 
Hours

Side Effects* Approved WASO TST Sleep 
Latency

Suvorexant DORA 12 Somnolence, headache USA, Japan ↓ ↑ ↓
Lemborexant DORA 17–19 Somnolence, fatigue, headache, 

abnormal dreams

USA, Canada, 

Australia, Japan

↓ ↑ ↓

Daridorexant DORA 8 Headache, somnolence, fatigue USA, EU ↓ ↑ ↓
Vornorexant (TS-142) DORA 1.3–3.3 Under development/ 

evaluation

↓ ↑ ↓

JNJ-48816274 OX2R 

SORA

1 Somnolence, abnormal dreams Under development/ 

evaluation

↓ ↑ ↓

Seltorexant (JNJ-42847922) OX2R 
SORA

2–3 Somnolence, fatigue, 
dizziness, headache, abdominal 

discomfort, and nightmares

Under development/ 
evaluation

↓ ↑ ↓

Note: *Possible narcoleptic-like symptoms, potentially for all agents, at high doses. 
Abbreviations: SORA, selective orexin receptor antagonist; DORA, dual orexin receptor antagonist; WASO, wakefulness after sleep onset; TST, total sleep time; OX2R, 
orexin receptor 2; ↓, decreased; ↑, increased.
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be prone to drug abuse or abrupt suspension of drug therapies or who may require drug detoxification. The same goes for 
psychiatric patients suffering from insomnia, in whom the abuse of drug therapies for insomnia and the consequent need 
for detoxification sometimes is a crucial problem in clinical practice. The use of SORAs seems to be promising in this 
type of patients.218,229,230

Preserving good sleep quality and adequate sleep architecture is very important also in patients with epilepsy,120 as 
this may ensure a good control of epileptic seizures as well. Thus, the use of drugs such as orexin receptor antagonists 
can be helpful in these patients, also considering the role of orexins in the control of REM sleep, which is relevant to 
patients with epilepsy.121

Another intriguing aspect to consider is the evaluation of the use of DORAs and SORAs in the treatment of insomnia 
in patients with neurodegenerative diseases, in whom alterations in circadian rhythm and alertness are often associated 
and sometimes difficult to manage with traditional drugs because of patient age, cardio-pulmonary comorbidities and 
drug interactions. Orexins seem to affect also neurodegeneration,111 and most DORAs have shown good efficacy and 
tolerance profiles in these patients, mostly older subjects, along with the absence of QT interval alterations.169,195,208

Lastly, insomnia is very common in patients with cancer, including children.233,234 As expected, the treatment of 
comorbid insomnia in patients with cancer is often very difficult, due to concomitant depressive complaints, risk of 
interactions due to polytherapy, radio- and chemotherapy, and disease complications and/or comorbidities. In this 
complex scenario, DORAs and SORAs have shown a good tolerance profile and few side effects, even at low doses, 
with limited drug interactions. Therefore, they could represent an innovative and promising therapeutic option in these 
patients, also based on evidence that orexin signaling may be of therapeutic relevance for some types of cancer.111

Box 1 * summarizes recommendations for the clinical practice based on the findings discussed above.

Future Perspectives and Recommendations
Insomnia is not a homogeneous disorder, and its clinical characteristics can vary over time and within the same patient. 
There is an ongoing discussion about different insomnia phenotypes, considering for example insomnia with vs without 
objective short sleep or sleep-onset vs sleep-maintenance insomnia. However, robustly subtyping insomnia disorder 
remains challenging at present.5 In perspective, insomnia subtyping, together with careful evaluation of insomnia 
comorbidity, may be key to therapeutic success with a personalized precision medicine approach and to prediction of 
treatment responses with single or sequential treatment approaches.

Further studies on the efficacy of DORAs, and particularly of newer molecules such as lemborexant and daridorexant, 
are required, especially on children and adolescents and in particular conditions, such as menopause. The effects of 
daridorexant on sleep cardiorespiratory parameters also need to be more precisely assessed. Finally, which DORAs are 
most suitable for each patient based on comorbidities and/or concomitant treatments should be the focus of further 

Box 1 Clinical Practice Recommendations

● CBT-I represents the first approach to consider in the management of insomnia; with or without pharmacotherapy, changes to lifestyle and diet 
may be essential.

● Considering that one of the major critical issues in the treatment of patients with insomnia is drug resistance, the orexin receptor antagonists 

seem to open up important therapeutic perspectives, as they have limited abuse liability and their discontinuation does not seem associated with 
significant rebound effects.

● DORAs showed good tolerance profile, even in the long term, which may be important for the treatment of a chronic disorder such as insomnia, 

often associated with other comorbid conditions.
● Some orexin receptor antagonists have shown good efficacy and tolerance profiles in both sexes, in adults, older subjects, and adolescents, an 

important fact in consideration of the groups and categories of patients most affected by the disorder and the fragility of some of them.
● An important aspect in the management of patients with insomnia is the consideration of the different phenotypes of the disease; for example, 

DORAs do not seem to exert a negative impact on respiratory parameters, which is of value in patients with COMISA, and some DORAs have 

been shown to be particularly effective in women after menopause.

CBT-I: Cognitive and Behavioral Therapy for Insomnia. DORA: dual orexin receptor antagonist. COMISA: comorbid insomnia and sleep apnea.
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careful analyses, in order to use this class of drugs in accordance with the principles of personalized and precision 
medicine.

On the other hand, studies on SORAs are still at an early stage and, therefore, do not allow to draw definite 
conclusions. Data on seltorexant suggest that OX2R-selective SORAs may be appropriate also in patients with major 
depression,218 although limited effect on slow-wave sleep may be a therapeutic issue in these patients. In perspective, it is 
important to focus attention on the role of DORAs and SORAs in patients with psychiatric comorbidity and especially in 
patients with depression. The potential application of these drugs to treat insomnia during pregnancy also deserves 
investigation. More generally, the question of the benefits of only targeting OX2R with SORAs compared with targeting 
both OX2R and OX1R with DORAs is a critical one that awaits clarification.

Box 2 * reports a series of topics and suggestions for future research aimed at clarifying some of the most important 
areas that need further insight and emerged in the analysis of the literature reported in this review.
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