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Abstract: The carotenoids lutein and zeaxanthin (LZ) are found throughout the central nervous 

system but reach their highest concentration within the macular region of the primate retina 

where they are commonly referred to as the macular pigments. Although LZ are a major integral 

feature of the central fovea, no information currently exists regarding the effects of variability in 

the concentration of these pigments on the developing retina. In particular, the long-term effects 

of very low levels of macular pigment are not known and potentially meaningful. Macular pig-

ment levels depend upon dietary intake since LZ cannot be synthesized de novo. Infants with 

low intake of LZ (eg, infants receiving unfortifi ed infant formula or breast milk from mothers 

with low carotenoid diets) would be expected to have considerably lower macular pigment 

compared with infants with high LZ intake (eg, breast-fed infants with mothers on carotenoid-

rich diets). In this paper we discuss possible implications of this difference and the available 

evidence suggesting that LZ could infl uence the developing visual system.
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Introduction
The human macula is known to contain three yellow carotenoids, 3R,3’R-zeaxanthin, 

3R,3’S (meso)-zeaxanthin, and 3R,3’R,6’R)-lutein (Bone et al 1993). These carot-

enoids are absorbed in the gut and ultimately deposited throughout the tissues of the 

eye. In the macula, for instance, the average concentration of lutein and zeaxanthin 

(LZ) is about 1 mM which is about three times higher than the average concentration 

of carotenoids in other tissues of the body (Landrum et al 1999). This accumulation 

is conspicuous in terms of amount and selectivity. Of the 30–40 carotenoids typically 

found in the blood with very similar molecular confi gurations, only LZ are normally 

absorbed within ocular tissues. Within the eye, LZ are found in iridial tissue, the retinal 

pigment epithelium, the epithelium of the crystalline lens, and subretinal fl uid (Chan 

et al 1998; Bernstein et al 2001). This predominance of LZ extends throughout most 

layers of the visual system. Craft and colleagues (2004) found that LZ are the domi-

nant carotenoids within the brain comprising some 66%–77% of the total carotenoid 

concentration. The ubiquitous and selective presence of LZ within the visual system 

has led many researchers to believe that LZ play a special role in visual function and 

protection against visual disease. Although a number of comprehensive reviews have 

been written regarding the role of LZ in preventing age-related eye disease (cataracts 

and macular degeneration), a possible role of LZ in the early development of the 

visual system has received minimal attention. In this paper, we highlight the available 

evidence regarding possible functions of LZ early, as opposed to later, in life. 

Lutein and zeaxanthin within food
Carotenoids are found in most fruits and vegetables with the exception of some root veg-

etables (Scott et al 1996). There exists over 500 different types of carotenoids in nature, 
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but only about 30–40 are found within human sera with lutein, 

lycopene, and betacarotene tending to be the most abundant 

depending on diet composition. Because humans do not 

synthesize carotenoids, all carotenoids found within tissue must 

originate from the diet (or related sources like human milk or 

supplements). The richest sources of LZ within the diet are dark 

green leafy vegetables like spinach and kale that can contain 

75–150 µg per gram of prepared food. Intermediate sources 

like broccoli, peas, maize, and lettuce can contain 10–30 µg per 

gram, and other sources like snap beans, carrots, and oranges tend 

to have less than 10 µg per gram (Holden et al 1999). Animal 

products like eggs and chicken skin can contain variable but 

signifi cant amounts of LZ especially when marigolds are added to 

chicken feed to improve yolk or skin coloration (NRC 1994). 

Lutein and zeaxanthin 
concentrations in breast milk 
and infant formula
The LZ content of breastmilk varies widely based on stage 

of lactation and individual diets (Table 1). The largest survey 

of breast milk carotenoids included 471 mothers from nine 

sites around the world (Canfi eld et al 2003). In this survey, 

individual LZ milk concentrations ranged from 3–232 µg/L. 

Mean concentrations at individual sites (Table 1) ranged from 

approximately 15 µg/L in Australia, Canada, UK, and USA to 

approximately 43 µg/L in China and Japan. The average LZ 

concentration across all of these sites was 25 ± 19 µg/L.

In contrast to breast milk, commercial infant formulas 

generally contain only the LZ innate to the formula components. 

Using an HPLC method similar to Canfi eld and colleagues 

(2003), Jewell and colleagues (2004) measured three samples 

each of six brands of infant formula (three term and three preterm) 

and found an average lutein concentration of 0.07 µg/L with a 

range from 0–0.13 µg/L of lutein. For zeaxanthin, the formulas 

contained an average concentration of 0.005 µg/L with a range 

from 0–0.022 µg/L of zeaxanthin. The HPLC method used by 

Jewell and colleagues (2004) includes a saponifi cation step that 

is known to reduce the recovery of LZ by approximately 40% 

(Liu et al 1998) and therefore it is likely that the true LZ content 

of both breast milk and formula is likely higher.

Differences in serum lutein and 
zeaxanthin between breastfed and 
formula-fed infants
A study of infant plasma carotenoid concentrations (Johnson 

et al 1995) showed that breastfed and formula-fed infants had 

similar plasma LZ concentrations at birth (48 ± 15 µg/L and 

49 ± 10 µg/L for breast and formula-fed, respectively). After 

one month, breastfed infant plasma LZ increased to 96 ± 64 

µg/L while formula-fed infant plasma LZ decreased below 

baseline to 33 ± 19 µg/L (Figure 1).

Similar trends have been observed for other infant plasma 

carotenoids, with plasma concentrations of betacarotene (Ostrea 

et al 1986; Sommerburg et al 2000), lycopene and cryptoxanthin 

Table 1 Published milk lutein concentrations

Location Days postpartum Lutein concentration (mcg/L)a Reference

Germany (n = 21) Day 4 and 19 93 ± 48 (day 4) (Schweigert et al 2004)
  50 ± 21 (day 19) 
Ireland (n = 13) 1 to 41 days 80 (7–193)b (Jewell et al 2004)
United Kingdom (n = 50) 1–12 months 15 ± 1 (Canfi eld et al 2003)
   
Brazil (n = 49) 30 to 120 days 3 ± 1 (Meneses and Trugo 2005)
United States (n = 12) < 6 months 11 ± 1 (Canfi eld et al 1997)
United States (n = 19) 4–32 days 146 ± 99 (day 4) (Gossage et al 2002)
  65 ± 36 (day 16) 
  58 ± 44 (day 31) 
Australia (n = 53) 1–12 months 15 ± 1  (Canfi eld et al 2003)
Canada (n = 55) 1–12 months 17 ± 1 (Canfi eld et al 2003)
Chile (n = 51) 1–12 months 32 ± 3 (Canfi eld et al 2003)
China (n = 52) 1–12 months 43 ± 5 (Canfi eld et al 2003)
Japan (n = 51) 1–12 months 44 ± 2 (Canfi eld et al 2003)
Mexico (n = 50) 1–12 months 25 ± 2 (Canfi eld et al 2003)
Philippines (n = 60) 1–12 months 20 ± 2 (Canfi eld et al 2003)
United States (n = 49) 1–12 months 15 ± 1 (Canfi eld et al 2003)

Notes: amean ± SEM unless noted otherwise; converted from published units into µg/L for consistency; shaded rows are European data; bmedian and range; converted from 
nmol/g lipid using estimated 34 g lipid/L average from Gossage et al 2002.
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(Sommerburg et al 2000) all increasing above newborn levels 

over time in breastfed infants and dropping below newborn 

levels in formula-fed infants. Although the amounts of data 

are limited, it seems clear that if breast milk contains higher 

average levels of LZ which results in higher serum levels of 

LZ, then higher retinal levels are sure to result.

Lutein and zeaxanthin intake and 
serum concentrations in toddlers
The 2005 Dietary Guidelines for Americans recommend that 

children ages 2–3 consume one cup of vegetables per day at 

a caloric intake of 1000 kcal/day (USDA 2005). Specifi cally, 

this recommended vegetable intake should include one cup per 

week of dark green vegetables—the richest sources of LZ in 

the diet. According to the 2002 Feeding Infants and Toddlers 

Study (FITS), a national sample of US children 12–24 months 

old, mean vegetable intake in this age group was 0.4 cups per 

day (Fox et al 2006) with only 3.1% of non-Hispanic children 

consuming any dark green vegetables between the ages of 6–11 

months increasing to 7.5% between the ages of 12–24 months 

(Mennella et al 2006). This low vegetable dietary intake pattern 

would seem to present the risk of inadequate LZ consumption 

among toddlers as well.

Possible roles of lutein and 
zeaxanthin within the developing 
visual system
Although LZ are found throughout the tissues of the eye, 

they are most highly concentrated within the inner layers 

of the fovea. The area around and including the fovea is 

Figure 1 Plasma lutein and zeaxanthin concentrations at birth and one month of age for breastfed and formula-fed infants. The bar graphs were derived from the original 
study data presented in Johnson and colleagues (1995).
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called the macula and is of special clinical and scientifi c 

interest because it is here that we experience our best acuity 

and damage to this area leads to legal blindness. The corti-

cal areas corresponding to the fovea are greatly magnifi ed 

(eg, about half of V1 is devoted to processing information 

from the macula) refl ecting the importance of this area for 

later information processing by the more anterior portions 

of the brain. The peripheral retina is essentially mature 

at birth but the fovea (ie, central 5 degrees) is so poorly 

developed as to be essentially nonfunctional (Abramov et al 

1982). Newborns can generally only discern vague shapes 

that are at a high contrast relative to their surroundings 

(Teller 1997). 

In adults, the macula has the highest concentration of 

lutein found in the eye with a predominance of zeaxanthin 

isomers over lutein at a ratio of 2.4:1 (Bone et al 1988). In 

contrast, infants (0–2 years) have an incompletely formed 

and diffuse macula with lutein predominant over zeaxanthin 

at a ratio of 1.49:1 (Bone et al 1988). At birth, the area that 

will become the macula contains both rod and cone photo-

receptors, and the photoreceptors themselves are short and 

immature (Hendrickson and Yuodelis 1984; Provis et al 

1998). The change in lutein: zeaxanthin ratio appears to be 

closely related to steps in anatomical development. 

Over the fi rst 16 weeks of life, cone cells gradually 

become predominant in the fovea with a cone cell density 

similar to that found in adults resulting in improved infant 

visual acuity (Teller 1997). During this time frame, the outer 

plexiform layer also becomes discernable within the layers of 

the retina (Provis et al 1998). The outer plexiform layer (also 

called the fi bers of Henle or receptor axon layer) is structur-

ally relevant in that it contains the highest concentration of 

LZ in the retina (Snodderly et al 1984). These changes in the 

anatomical structure of the fovea are consistent with the shift 

in lutein: zeaxanthin ratio over this time period from a still 

lutein dominant profi le (1.2–1.7:1) to a more adult profi le of 

approximately 0.7:1 (Bone et al 1988). By four years of age, 

the photoreceptors have lengthened to near-adult lengths and 

the outer plexiform layer is fully formed (Provis et al 1998). 

During this same time period, the child’s visual acuity also 

improves to near adult levels (Teller 1997).

Antioxidant functions of lutein 
and zeaxanthin
The retina is uniquely susceptible to oxidative damage com-

pared with other tissues. It is exposed to an intense energy 

source (ie, focused light from the lens) that can generate free 

radicals, high oxygen tension from the extensive vascula-

ture of the retina, photosensitizing compounds, and a high 

concentration of an easily oxidized substrate (eg, DHA-rich 

outer segments). Under these conditions, the singlet oxygen 

free radical can be readily generated (Hardy et al 2000). 

Singlet oxygen is electrophilic and preferentially reacts with 

molecules with a double bond (eg, DHA has six double 

bonds) in order to extract the hydrogen needed to return 

to ground state. When DHA loses a hydrogen atom from a 

double bond, it becomes a hydroperoxide free radical that 

can create more free radicals and begin a self-perpetuating 

chain reaction known as lipid peroxidation (Halliwell and 

Chirico 1993).

LZ are particularly well suited for protecting the retina 

from oxidative damage compared with other chain-breaking 

antioxidants in the eye like alpha-tocopherol (vitamin E). 

Lutein, for instance, can return singlet oxygen to ground 

state by temporarily becoming triplet state L and then dis-

sipating the energy as heat—a process that can be repeated 

over and over again since the lutein molecule remains intact 

after the energy transfer (Stahl and Sies 2002). Alpha-

tocopherol requires a donor antioxidant molecule to return 

to ground state after neutralizing singlet oxygen (Sies and 

Stahl 1995). Lutein is also a more effective antioxidant 

than alpha-tocopherol both in preventing lipid peroxidation 

(Fukuzawa et al 1998) and oxidation initiated by the retinal 

photosensitizer A2-PE (composed of two all-trans retinal 

molecules and a phosphatidyletanolamine molecule) (Kim 

et al 2006). This latter effect is signifi cant since A2E, the 

long-wavelength emitting fl ourophore of lipofuscin, is so 

cytotoxic to retinal pigment epithelium (RPE) cells and is 

thought to play an important role in the development of age-

related macular degeneration (Shaban and Richter 2002). 

Appropriately, LZ are found in signifi cant amounts within 

the DHA-rich photoreceptor outer segments where they 

can most effectively provide antioxidant protection (Rapp 

et al 2000). Additional evidence for antioxidant effi cacy 

comes from the fact that when LZ is exposed to more free 

radical energy than can be dissipated as heat, specifi c LZ 

oxidation products are formed. These specifi c oxidation 

products have been identifi ed in adult human eyes (Khachik 

et al 1997) providing indirect evidence that LZ are acting 

as an antioxidant in vivo.

Antioxidant protection of the eye may be particularly 

important in infants. Infants cannot down-regulate blood 

fl ow in the retinal and choroidal vasculature as well as adults; 

therefore, these vessels deliver excess oxygen to the retina 
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and favor the generation and proliferation of free radical 

peroxides (Hardy et al 2000). 

The role of lutein and zeaxanthin 
as an optical fi lter
Since light must pass through LZ (ie, macular pigment) 

before reaching the receptors, it screens the vulnerable, lipid-

rich outer retinal layers (eg, the receptoral outer segments 

and RPE) according to its spectral absorption profi le. As 

shown in Figure 2, the macular pigments selectively absorb 

the portion of the visible spectrum from about 400–520 nm. 

Empirical data has shown that light can damage the retina 

depending on the wavelength of light, intensity and the length 

of exposure (Ham 1983). Light between the wavelengths of 

700 nm (red) and 400 nm (blue) can pass through the cornea 

and lens and reach the retina effi ciently to cause damage 

while ultraviolet and infrared light do not generally reach 

the retina (Reme et al 1996). Exposure to high intensity red 

light for a long period of time can produce thermal lesions 

on the retina (characterized by raising the temperature of 

the tissue at least 10 °C). In contrast, exposure to two-fold 

lower intensity blue light can produce photochemical lesions 

on the retina in the same amount of time and without raising 

the temperature of the tissue (Ham et al 1979). Such data 

have been used to calculate the “blue light hazard function” 

which is commonly used to defi ne safe exposure limits to 

short-wave (ie, blue) light (ANSI 2005). These standards are 

particularly important for occupations that require increased 

exposure to light between 400–500 nm (such as dentists using 

blue lasers to quickly cure dental compound). By absorbing 

actinic short-wave light before it damages the outer retina, 

macular pigment (MP) would reduce this damage (as shown 

by the similarity in the photoxic action spectral of the blue 

light hazard related to the MP absorbance spectra shown in 

Figure 2). Given equivalent light histories, an individual 

with high MP, would be expected to suffer less light-initiated 

damage over many years when compared with an individual 

with low MP.

Figure 2 The absorbance spectra of macular pigment (MP) measured ex vivo (derived from tabular data in Hammond et al 2005) shown with the blue light hazard function 
(BHF) (derived from ANSI 2005).
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Quantifying the effects of long-term exposure to visible 

short-wave light is challenging. The epidemiology, which 

tends to be cross-sectional, is mixed (Margrain et al 2004). 

Of course, quantifying light damage over many years is very 

diffi cult, especially since, as noted later, so much of the damage 

could occur very early in life. Moreover, potentially moderat-

ing factors are often not considered. For example, there is no 

data that has considered the long-term effects of individual 

differences in MP levels. For this reason, laboratory studies 

using animal models are often used with the assumption that 

the effects are direct enough that they can be extrapolated to 

the chronic human situation. Nonhuman primates are the most 

appropriate models for eye research since they are the only 

animals that have maculas and accumulate MPs like humans. 

In a study where a blue light laser (476 nm) was used to induce 

photochemical lesions in monkey eyes, adult rhesus monkeys 

fed a LZ-defi cient diet throughout life had more damage to 

their retinas than age-matched controls fed a normal chow 

diet. When defi cient monkeys were then supplemented for 

22–28 weeks with lutein or zeaxanthin (3.9 µmol/kg/d or 

about 10–15 mg per animal per day), the retina damage was 

signifi cantly reduced compared with unsupplemented, carot-

enoid-defi cient monkeys (Barker et al 2005). Supplemented 

monkeys also showed some changes in age-related eye damage 

(drusen particles) compared with unsupplemented, carotenoid-

defi cient monkeys indicating that LZ may reduce age-related 

damage to the eyes (Leung et al 2006). In the quail model, 

zeaxanthin supplementation (36 µg/kg diet) of carotenoid-

defi cient quail prevented photoreceptor apoptosis induced 

by intermittent bright white light exposure (Thomson et al 

2002). In rats, feeding 1 gram per day of Lycium barbarum 

L. fruit (wolfberry) to normal Sprague Dawley rats reduced 

the amount of retina damage induced by bright light exposure 

when compared with rats fed a normal diet (Na et al 1995). L. 

barbarum is an extremely rich source of zeaxanthin containing 

82 mg zeaxanthin per 100 g weight (Weller and Breithaupt 

2003). These experimental models show that dietary LZ can 

protect the retina from light damage, especially damage due 

to short-wave light.

If MP does protect the receptors and RPE from actinic 

damage, it is probably meaningful that individuals vary so 

widely in the amount of MP they possess. As measured in 

vivo in adult subjects, individual differences in MP density 

tend to be large, ranging from a maximum in some individuals 

of 1.5 optical density units at 460 nm (3% transmission) 

to a minimum of near zero density (100% transmission) 

(Hammond et al 1997) (with an average density of about 

0.36, SD = 0.22; Mares et al 2006). MP density in infants and 

children also varies between individuals (Bone et al 1988; 

Bour et al 2002). As noted, formula-fed infants with lower 

intake of LZ would be expected to have lower retinal levels 

compared with infants fed with LZ-rich breast milk.

Lower MP levels in children may be particularly mean-

ingful since short wavelength (SW) light may pose a par-

ticular hazard to infants and young children. Infants are born 

with clear lenses that gradually yellow throughout life (due 

to color changes in proteins and other lens constituents). This 

yellowing progressively blocks the SW light passing through 

the lens as a linear function of age (Dillon et al 2004). For 

example, Werner (1982) obtained lens density data in sub-

jects from birth until 70 years of age using visually evoked 

cortical potentials as the criterion response. He found that 

lens density at 400 nm increased (~0.02 O.D. per year) by a 

factor of 22 when comparing the average one-month old with 

an average 70-year old. Expressed in relative terms, about 

70%–80% of the SW light passes through the lens in 0–2 year 

olds, 60%–70% in 2–10 year olds but only 20% of SW light 

is transmitted in 60–90 year olds. Data from various sources 

is summarized in Reme and colleagues (1996). 

Finally, fi ltering SW light may also have a number of 

meaningful optical effects as summarized by Nussbaum and 

colleagues (1981). These include: (1) reducing the effects of 

chromatic aberration; (2) decreasing glare discomfort and 

disability; (3) increasing visibility outdoors by absorbing 

“blue haze”; and (4) enhancing contrast (ie, by differential 

absorption of a background with shorter wavelengths than 

a target). Yellow fi lters like MP have also been shown to 

improve magnocellular function which could enhance read-

ing performance, motion sensitivity, accommodation, and 

convergence particularly in reading-impaired children (Ray 

et al 2005).

Other possible infl uences of lutein 
and zeaxathin on neural function 
within the visual system
All of the major hypotheses of MP function are based on 

just two fundamental characteristics of the pigments: their 

fi ltering and antioxidant properties. In addition to their fi lter-

ing and antioxidant properties, however, LZ have a number 

of other known characteristics that might have meaningful 

infl uences on the visual system. For example, although most 

highly accumulated in and around the foveal depression, LZ, 

unlike the many other carotenoids circulating in the blood, 

are found throughout the tissues of the eye (Yeum et al 1995; 
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Bernstein et al 2001) and at most layers of the visual system. 

Craft and colleagues (2004), for instance, found that LZ are 

the dominant carotenoids within the brain and comprise some 

66%–77% of the total carotenoid concentration. There, these 

pigments would be optimally placed to infl uence central 

visual processing (eg, they are concentrated in the gray matter 

of the occipital region). LZ are also known to associate with 

the microtubules of axons. During embyogenesis, axons grow 

over extended distances to reach their targets. Once these 

targets have been achieved, the microtubules, cylindrical 

protein lattices, form the cytoskeleton of visual neurons. 

The walls of microtubules are formed by subunit proteins 

including tubulin. Whereas traditionally microtubules have 

been regarded as purely structural in nature, more recent 

evidence (Glanz 1997; Maniotis 1997a, 1997b) has shown 

that they may serve mechanical signaling and communicative 

functions (eg, by infl uencing second-messenger systems). 

Bernstein and colleagues (1997) originally identifi ed tubulin 

as a possible binding protein for the macular carotenoids. 

Using molecular modeling, Crabtree and colleagues (2001) 

confi rmed tubulin as the most likely binding protein for reti-

nal LZ and suggested that a major function of the macular 

carotenoids, previously unconsidered, is to modulate the 

dynamic instability of microtubules. In any event, LZ are 

found in many locations outside of the inner layers of the 

fovea, albeit at relatively low concentrations. They are also 

found in many locations within the cell including the cell 

membrane and cytoskeleton. It is possible that the presence of 

the pigments is simply incidental and has no actual function. 

It is also possible, however, that the pigments infl uence the 

function of the neurons that they so closely and structurally 

associate with. 

The idea that the MP carotenoids might have an actual 

metabolic role is not new. Dartnall and Thomson (1949) orig-

inally suggested that LZ facilitate oxygen respiration within 

the fovea. The xanthophylls do often serve this function in 

hypoxic situations in other animals and plants (Karnaukhov 

1990). The inner layers of the foveal depression, where MP 

is most densely concentrated, are typically avascular and 

hypoxic. LZ would, according to this idea, be positively 

related to oxygen metabolism, particularly in the fovea. For 

example, MP might be expected to be related to aspects of 

foveal architecture that might be expected to infl uence oxy-

gen utilization (eg, the size of the avascular zone). Consistent 

with such a possibility, Aleman and colleagues (2001) and 

Liew and colleagues (2006) found that retinal thickness 

(which would, presumably, cause greater hypoxia in the 

inner foveal layers due to less oxygen diffusion from the 

more distant posterior choroid) was positively related to MP 

density. Dwyer and colleagues (2001) originally suggested 

that lutein could influence blood flow (most probably 

including retinal blood fl ow) by preventing atherosclerotic 

changes through inhibition of low density lipoprotein-

induced migration of plaque-forming monocytes to artery 

walls. As noted, Hardy and colleagues (2000) argued that it 

was the absence of autoregulation of choroidal blood fl ow 

in the infant that leads to increased oxidative stress in the 

newborn retina. 

Another possibly relevant feature of carotenoids is their 

ability to enhance gap junctional communication (Stahl and 

Sies 2001). Gap junctions increase intracellular communica-

tion between glial and neuronal cells. Acting as portals, they 

infl uence propagation of action potentials, second-messenger 

systems and the movement of metabolites and electrolytes. 

Within the retina, gap junctions are crucial to light processing via 

lateral connections (Cook and Becker 1995; Vaney et al 1998). 

Gap junctions may therefore be vital to the developing neural 

circuitry within the visual system (Roerig and Feller 2000). 

Evidence from such diverse sources suggests that, in 

addition to the classic hypotheses of MP function, LZ might 

play a facilitative role in neural processing. Gutherie and 

colleagues (2005) originally evaluated this possibility by 

measuring scotopic noise. It is generally thought that visual 

thresholds that depend primarily on receptoral processes are 

determined early in life. For example, most absolute thresh-

olds are thought to reach adult levels between about 2–4 

months (Brown 1990). Although intrinsic noise can arise at 

numerous levels of the visual system, noise associated with 

scotopic thresholds is thought to originate at the input stage 

(ie, at the level of the retina) (van Rossum and Smith 1998). 

When in a fully dark-adapted state (ie, scotopic), the visual 

system is maximally sensitive, making the effects of noise 

easily measurable. LZ are found within rod outer-segments 

and therefore a relation to rod function is feasible. As shown 

in Figure 3, intrinsic noise was signifi cantly related to MP 

optical density (MPOD). Such a relation is biologically 

plausible. As noted, LZ are found throughout the retina 

including within rod outer segments (Rapp et al 2000). It 

is likely that higher levels of LZ in the macula (ie, the MP 

values that were measured) correlate with LZ in the outer 

segments. Such a relation suggests that higher LZ levels in 

rod outer segments might help improve the effi ciency of rod 

functioning leading to less variability in threshold response 

(their measure of noise).



Clinical Opthalmology 2007:1(1)32

Zimmer and Hammond

Gutherie and Hammond’s data (2005) suggest that MP 

might be related to dynamic receptoral function. There is 

evidence also that MP might be related to post-receptoral 

processing. Hammond and Wooten (2005) found a mod-

erately strong relation between MP and critical flicker 

fusion thresholds (CFF) that was independent of age. CFF is 

largely regarded as a measure of temporal processing speed. 

Evidence suggests that the CFF (the average of descending 

fl icker and ascending fusion thresholds) is probably deter-

mined post-receptorally (Powell 1983; Curran 1990). This 

possibility is based on the observation that the retina (as mea-

sured by electroretinography) responds to fl icker even after 

a subject has reported fusion (Brown 1965) and correlates 

with measures of cortical arousal like electroencephalogram 

(Gortelmeyer and Wieman 1982; Grunberger et al 1982). 

Thus, diseases and drugs that infl uence central nervous 

system function often infl uence CFF thresholds in the same 

direction (Grunberger et al 1982; MacNab et al 1985; Curran 

1990). For example, barbituates decrease CFF thresholds and 

amphetamines increase CFF thresholds. In most situations, 

a lower threshold implies increased sensitivity (eg, a lower 

energy threshold for detection means a higher sensitivity). 

In the case of flicker, however, a higher threshold for 

fusion implies a higher fl icker sensitivity. Like the MP–noise 

relation, the MP–CFF relation reported by Hammond and 

colleagues (2005) was not age-dependent (ie, it is also evi-

dent for the younger subjects). CFF thresholds (reviewed by 

Teller 1997) reach adult levels in early infancy as opposed 

to some other spatial vision functions, like vernier acuity, 

that develop much later (~5–6 years of age) and appear not 

to be associated with MP (Engles et al in press). 

Conclusion
The question of how LZ infl uence the developing visual 

system is open. There is, however, convincing evidence 

that a lack of LZ from birth can produce distinct anatomi-

cal changes within the retina and RPE. For example, Leung 

and colleagues (2004) studied the effects of raising Rhesus 

monkeys on diets containing no LZ. Compared with mon-

keys raised on normal diets, these xanthophyll-free monkeys 

displayed changes in the anatomy of their RPE (eg, in the 

density and distribution of RPE cells) that could be largely 

Figure 3 The relation between macular pigment optical density (measured at 460 nm, 1-degree test) and intrinsic noise within the scotopic system (Y = 0.87 + –0.43X). r = 
–0.38; p < 0.01; and n = 39 (mean age = 40; SD = 8 years). Macular pigment was measured at 460 nm using a one-degree test stimulus and a psychophysical technique based 
on heterochromatic fl icker photometry. For details regarding the procedure and apparatus see Wooten et al 1999. Scotopic thresholds were assessed in Maxwellian view 
using a 1.85-deg, 510-nm circular test stimulus located at 10° eccentricity in the left visual fi eld using a two-alternative forced-choice paradigm (an average of 200 trials per 
participant was obtained). Individual trials were transformed into binomial data (the inverse of the normal probability integral) and then fi t with a weighted linear regression. 
We then defi ned “intrinsic noise” as the average deviation from this line (see Gutherie et al 2005).
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reversed by supplementing LZ (especially in conjunction 

with n-3 fatty acids, a precursor of DHA) later in life. Their 

results suggested that LZ might be important to the matura-

tion of the fovea based on metabolic effects not associated 

with protection. With respect to the latter, it is becoming 

increasingly clear that protection very early in life is critical 

to preventing degenerative disease later in life. Carotenoid-

defi cient monkeys also develop signs of premature aging and 

damage (drusen and transmission defects) in their maculas 

years earlier than these signs develop in normal chow-fed 

monkey (Neuringer et al 2003). 

One might argue that humans evolved in an environment 

where dietary intake of carotenoid-rich fruits and vegetables 

was high (ie, most food is gathered in hunter and gathering 

societies). Humans also were exclusively breast-fed until 

relatively recently in our evolutionary history. Although the 

effects of deviation from this “natural state” are not known, 

they could be meaningful. Of course, empirical study of 

this question in humans is diffi cult. Randomized, placebo-

controlled trials of infant formula with and without lutein 

could require many years of follow-up before changes in the 

retina and RPE are detectable. Until such data are available, 

there is reason to believe lutein may have long term benefi ts 

based both on animal data and by examining the mechanisms 

by which damage accumulates in the retina throughout life. 

For example, one mechanism through which early intake of 

LZ could have long-term health benefi ts is through reduc-

tion of cumulative eye damage. Over the course of life, a 

cellular waste product called lipofuscin accumulates in the 

RPE of the eye. Lipofuscin is a mass of oxidized proteins, 

lipids, and other compounds created through the incomplete 

digestion of photoreceptor outer segments in the lysosomes 

of RPE (Sparrow and Boulton 2005). Lipofuscin cannot be 

transported out of the cell, and the accumulation of lipofuscin 

in RPE is accelerated by increased oxygen (Wihlmark et al 

1996), light exposure (Ben-Shabat et al 2002) or the absence 

of macular pigment (Leung et al 2006). In vitro, LZ inhibit 

the formation of lipofuscin in cultured RPE (Sundelin and 

Nilsson 2001). The results of failing to forestall lipofuscin 

accumulation can be seen in vivo in that primates subjected 

to a life-long carotenoid defi ciency develop lipofuscin-related 

damage (drusen) much earlier than primates fed normal diets 

(Neuringer et al 2003).

Among the various components that make up lipofuscin is 

a retinal-derived compound called A2-PE (Lamb and Simon 

2004). A2-PE is a photosensitizing fl uorophore (a molecule 

that absorbs light energy and releases it as fl uorescence at 

a different wavelength) that creates oxygen free radicals 

when exposed to blue light. LZ are effi cient quenchers of the 

photochemical oxidation caused by A2-PE—more so than 

alpha-tocopherol, another biological antioxidant (Kim et al 

2006). Through this mechanism, LZ may help reduce the retina 

damage caused by lipofuscin in the RPE. As much as half of 

the lifetime accumulation of lipofuscin in RPE may occur in 

the fi rst fi ve years of life (Wing et al 1978; Feeney-Burns et al 

1984). Increasing MP earlier in life could theoretically slow the 

accumulation of lipofuscin as well as reduce the free radical 

oxidants that it produces. Given the low risk and clear potential 

benefi t, it would be prudent to increase lutein consumption 

earlier in life while further evidence of its benefi ts emerge.
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