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Abstract: Bruton’s tyrosine kinase (BTK) is a central signaling node in B cells. BTK inhibition has witnessed great success in the 
treatment of B-cell malignancies. Additionally, in the immune system, BTK is also a prominent component linking a wide variety of 
immune-related pathways. Therefore, more and more studies attempting to dissect the role of BTK in autoimmune and inflammation 
progression have emerged in recent years. In particular, BTK expression was also found to be elevated within the central nervous 
system (CNS) during neuroinflammation. BTK inhibitors are capable of crossing the blood–brain barrier rapidly to modulate B cell 
functions, attenuate microglial activities and affect NLRP3 inflammasome pathways within the CNS to improve the outcome of 
diseases. Thus, BTK inhibition appears to be a promising approach to modulate dysregulated inflammation in the CNS and alleviate 
destruction caused by excessive inflammatory responses. This review will summarize the immunomodulatory mechanisms in which 
BTK is involved in the development of neurological diseases and discuss the therapeutic potential of BTK inhibition for the treatment 
of neuroinflammatory pathology. 
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Introduction
Bruton’s tyrosine kinase (BTK), encoded by the BTK gene, is a cytoplasmic non-receptor tyrosine kinase of the Tec 
kinase family. As an integral part of BCR signaling, BTK plays vital roles in governing B cell development, proliferation 
and function. Its name originates from Ogden Bruton, who first described the disease X-linked agammaglobulinemia 
(XLA) in 19521. This condition was characterized by recurrent bacterial infection because of the absence of antibodies in 
the serum. Further studies revealed an arrest of B cell development and differentiation in XLA patients and X-linked 
immunodeficiency (xid) mice.2,3 Later, the mutation of BTK was identified as the culprit causing this humoral immunity 
deficiency in xid mice and XLA patients.2,4 Due to the central role of BTK in B-cell maturation and function, various 
types of BTK inhibitors have been discovered and finally approved for the therapeutics of hematogenic malignancies, 
especially those related to B cells, such as chronic lymphocytic leukemia (CLL), Waldenstrom’s macroglobulinemia 
(WM) and mantle cell lymphoma, etc.5

BTK-related signaling also participates in the cascade of autoimmunity and inflammation. In addition to B cells. 
BTK is also expressed in other immune cells including neutrophils, macrophages, mast cells and dendritic cells.6,7 

Microglia and astrocytes also exhibited elevated BTK activity during inflammatory response.8,9 Except for BCR 
signaling, BTK also plays important roles cell-specifically in other immunological pathways, such as FcR signaling 
and TLR signaling.10 Furthermore, a series of BTK inhibitors have been tested and/or applied for the treatment of 
inflammatory and autoimmune diseases, including rheumatoid arthritis (RA), Sjogren’s syndrome (SS), multiple 
sclerosis (MS), systemic lupus erythematosus (SLE), urticaria, pemphigus, idiopathic thrombocytopenic purpura 
(ITP), IgG4-related disease (RD), etc.11
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Neuroinflammation is considered to be the driver of a broad spectrum of neurological disorders, including auto-
immune, neurodegenerative and cerebral ischemic disorders.12,13 Thus, modulating neuroinflammation was regarded as 
an effective way to alleviate disease progression. Therefore, more and more studies have emerged to test the possibility 
of BTK inhibition as a therapeutic approach to regulate neuroinflammatory responses and improve the outcome of 
diseases.

The Structure of BTK and BTK Inhibitors
BTK is a 659 amino acid protein and, as a member of the Tec family, is characterized by five domains: pleckstrin 
homology domain (PH) in N-terminal, TEC homology domain (TH), two Src homology domains 2 (SH2) and 3 (SH3), 
and the catalytic kinase C-terminal domain. The activation of BTK in BCR signaling involves several steps. Upon 
recruitment to membrane enabled by the PH domain through PIP3, Y551 in the catalytic kinase domain is phosphorylated 
by SYK, resulting in subsequent autophosphorylation in Y233, which improves the catalytic activity of BTK and initiates 
downstream pathways (Figure 1).14–16 Particularly, the site C481 in the kinase domain is the binding site of covalent 
BTK inhibitors including Ibrutinib, Acalabrutinib and Zanubrutinib, etc.17

BTK inhibitors (BTKis) are small molecules binding covalently or non-covalently to BTK to inhibit its activation. 
BTKis can cross the blood–brain barrier and penetrate into the CNS. A preclinical study demonstrated that Ibrutinib 
could rapidly enter the brain within an average of 0.29h and mainly accumulated in the ventricle area of the brain.18 This 
result gives the opportunities that BTKis can exert functions locally within the CNS.

Covalent BTKis refer to BTK inhibitors that bind covalently and irreversibly to BTK C481 site.19 At present, five 
covalent BTK inhibitors have been approved in the market, including Ibrutinib, Acalabrutinib, Zanubrutinib, Tirabrutinib 
and Orelabrutinib.

Ibrutinib was the first FDA-approved BTKi, which has been utilized for the treatment of chronic lymphocytic 
leukemia (CLL), small lymphocytic lymphoma (SLL), Waldenstrom’s macroglobulinemia, relapsed or refractory (R/R) 
marginal zone lymphoma (MZL), and chronic graft versus host disease.20 Although Ibrutinib showed efficacy and safety 
in many diseases, the issue of resistance and off-target effect preceded. The mutation of C481 residue, which is the 
binding site of Ibrutinib, and PLCγ2, the protein involved in BTK signaling, was identified in Ibrutinib-resistant patients, 
leading to reversible binding of Ibrutinib to BTK and auto-active of BCR signaling.21 Additionally, an in vitro study 
demonstrated that CLL cells with del17p/TP53-mutation are less sensitive to Ibrutinib-induced apoptosis.22 Ibrutinib also 
interacts with other kinases including epidermal growth factor receptor (EGFR)23 and interleukin 2-inducible T cell 
kinase (ITK)24 and C-terminal Src kinase (Csk),25 causing a series of adverse effects including rash, diarrhea, bleeding 
and atrial fibrillation.20,25 Optimizing the dose of Ibrutinib may be an effective way to reduce these side effects.26

Figure 1 The structure of BTK. BTK consists of five protein domains from N to C terminal: a pleckstrin homology (PH) domain, a TEC homology (TH) domain, SRC 
homology (SH) domains SH2 and SH3, and a catalytic kinase domain. PIP3 interacts with the PH domain to recruit BTK to cell membrane. Next, SYK phosphorylates Y551 
in the kinase domain, leading to autophosphorylation in Y233 in the SH3 domain to improve the catalytic activity of BTK. C481 is the binding site of covalent BTK inhibitors.
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The second generation of BTKis, Acalabrutinib and Zanubrutinib, were approved by FDA in 2017 and 2019, 
respectively. Both drugs showed higher selectivity and safety and less toxicity in clinical trials compared with 
Ibrutinib.27–29 Acalabrutinib is characterized by its reactive butynamide group binding covalently to C481 of BTK. 
This unique structure contributes to decreased off-targeted side effects compared with Ibrutinib. For instance, 
Acalabrutinib does not inhibit epidermal growth factor receptor (EGFR) and ITK.27 Similarly, ITK is also not inhibited 
by Zanubrutinib.

Tirabrutinib was approved in Japan in 2020 for the treatment of recurrent or refractory primary central nervous 
system lymphoma. Compared with Ibrutinib, Tirabrutinib exhibited higher selectivity. Of note, the bone loss in mice 
induced by RANKL could be attenuated by ibrutinib, indicating that Tirabrutinib had potential therapeutic implications 
for osteoporosis and rheumatoid arthritis.30

Orelabrutinib, which was approved in China in 2020 for the treatment of MCL or CLL/SLL, is a highly selective, 
irreversible BTK inhibitor. A KINOMEscan assay demonstrated that BTK was the only target of Orelabrutinib (with >90% 
inhibition).31 Off-target side effects were uncommon in patients receiving Orelabrutinib.32

Non-covalent BTK inhibitors do not bind to Cysteine 481 site on BTK, and their binding is reversible.19 Instead, 
these molecules interact with a specific pocket located in the SH3 domain of BTK through reversible interactions, such as 
hydrogen bonds and hydrophobic interactions.33 Therefore, they can be used as alternatives for patients acquiring 
resistance to covalent BTK inhibitors, especially those with BTK C481 mutations. Besides, they tend to exhibit fewer 
off-target effects. Non-covalent BTK inhibitors in clinical trials currently include Vecabrutinib, Fenebrutinib, ARQ 531, 
and LOXO-305, etc.15

Remarkable advances have been made in the therapy of malignant diseases targeting BTK.15 Considering its 
central role in the signaling of B cells and other types of immune cells, the interest in BTK inhibition reasonably 
expanded to autoimmune diseases. Fenebrutinib is a non-covalent BTK inhibitor, and its efficacy and safety were 
tested in a Phase II, multicenter, randomized, placebo-controlled study in moderate-to-severe SLE patients. Although 
the treatment of Fenebrutinib reduced the level of auto-antibodies in the serum with acceptable adverse effects, the 
primary endpoint failed to be met.34 Rilzabrutinib, an oral covalent BTK inhibitor, was investigated recently in an 
adaptive, dose-finding, open-label, Phase 1–2 clinical trial in immune thrombocytopenia patients. Rilzabrutinib 
showed rapid and long-term activity with a low level of toxicity. 400mg twice daily was identified as the optimal 
dosage.35

In conclusion, therapeutic approaches utilizing BTK as a target in many malignant diseases have achieved impressive 
success in recent decades.15 Studies about the application of BTK inhibitors in autoimmunity are also gaining 
momentum.

BTK in Immunological Signaling Pathways
BCR Signaling Pathway
B cells are the main contributors to adaptive humoral immune reaction, playing vital roles in the human immune system. 
BTK is a prominent component of the BCR signaling pathway. BCR consists of IgM and a heterodimer of the Igα/β 
(CD79A/B). Upon antigen engagement on IgM, the immunoreceptor tyrosine-based activation motif (ITAM) on the tail 
of Igα/β is phosphorylated by the Src family, such as LYN, enabling the docking and activation of SYK protein.36 

Simultaneously, the cytoplasmic tail of co-receptor CD19 is phosphorylated by LYN and SYK, which subsequently 
recruits and activates PI3K. PI3K generates the second messenger PIP3, which is responsible for localizing BTK to 
membrane through interaction with PH domain.37 After being recruited to the membrane, BTK activation initiates with 
transphosphorylation at position Y551 by SYK and LYN, which contributes to BTK autophosphorylation at position 
Y223 in the SH3 domain.7,14 The substrate of BTK includes PLCγ2. The activation of PLCγ2 generates two second 
messengers: diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 initiates Ca2+ mobilization and subse-
quently activates NFAT pathway. DAG mediates the activation of protein kinase Cβ (PKCβ), which activates the MAPK 
pathway and nuclear factor-κB (NF-κB) pathway.11,14,16 These pathways are crucial for B-cell development, maturation 
and function.
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Beyond BCR Signaling Pathway
Toll-like receptors (TLRs) were the first protein family identified in pattern recognition receptor (PRR) superfamily. 
TLRs recognize pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns 
(DAMPs) to mediate innate immunity.38 BTK participates in the recruitment of myeloid differentiation primary response 
88 (MyD88) and MyD88 adaptor-like (MAL), which are downstream proteins in TLR pathway.39 The interaction 
between TLRs and BTK has been seen in various immune cell types, including B cells,40,41 macrophages,42–45 dendritic 
cells,46,47 neutrophils48 and mast cells.49 BTK is indispensable in TLR pathway to induce B-cell proliferation and 
differentiation.10 The phagocytosis of macrophages to attack cancer cells could be enhanced by TLR-BTK activation.45 

Additionally, BTK regulated TLR4-mediated IL-10 production and TLR-7/8-mediated TNF production in 
macrophages.43,44 However, the role of BTK in TLRs signaling in different subtypes of macrophages could be conflict. 
Although the lack of BTK and Tec in bone marrow-derived and thioglycolate-elicited peritoneal macrophages led to 
elevated expression of pro-inflammatory cytokines, the decreased secretion of pro-inflammatory cytokines in primary 
resident peritoneal macrophages was observed in the same context.42 The pathogenetic activation of BCR signaling and 
TLR signaling synergistically promote the proliferation and survival of CLL cells.50 Targeting BTK, a critical component 
of BCR signaling, has emerged as a promising therapeutic approach against CLL. Although BTK is also involved in TLR 
pathway, the single use of BTK inhibitors only partly dampened the activation of TLR pathway in CLL cells, which 
accounted for the low complete remission rate for CLL patients who received BTK inhibition treatment. The combinative 
use of Ibrutinib and TLR pathway inhibitor, IRAK1/4 inhibitor, was more effective than the usage of a single agent, 
which implicated that dual targeting of BCR signaling and TLR signaling had the potential to be a more effective 
strategy.51

Fc receptors, which harbor five variants (FcαRs, FcδRs, FcγRs, FcεRs, FcμRs), bind to the fragment crystallizable 
(Fc) domain of different isotypes of antibodies to initiate immune regulatory functions.52 The activation of FcR pathway 
is dependent on BTK in myeloid cells.53 As a part of FcεR pathway, BTK was involved in mast cell degranulation and 
BTK inhibition dampened the IgE-mediated histamine release in basophils.10,54 BTK in FcR signaling is a promising 
therapeutic target for rheumatoid arthritis.55 BTK inhibitors have exhibited efficacy in RA preclinical models.56,57 

However, off-target effects are likely to arise from BTK inhibition in FcR pathway. For example, Ibrutinib interfered 
with FcγRIIA pathway in platelets and impaired platelet activation against bacteria, increasing infection risk in CLL 
patients.58

BTK is also known as a component of chemokine receptor pathway. BTK and PLCγ2 synergistically regulate chemokine- 
mediated B cell migration and trafficking.59 BTK inhibition by Evobrutinib impaired the ability of CXCR3+B cells to penetrate 
through human brain endothelial layers.60

The Immune-Related Mechanisms of BTK Inhibition in the Central 
Nervous System
Targeting B Cell
As mentioned above, BTK is a vital component of BCR signaling regulating B-cell functions. Targeting BTK has been 
widely studied and applied in the treatment of multiple sclerosis (MS).61–63 Traditionally considered as a T cell-driven 
disease, MS has experienced a paradigm shift due to the success of anti-CD20 B cell-depleting therapy, which was 
regarded as a hallmark revealing the unneglectable role of B cells in MS pathogenesis.64,65 Various B-cell-related 
mechanisms have been reported to contribute to MS development, including antigen presentation, antibody production, 
and cytokine secretion.66,67 However, B-cell-depleting therapy has its limitations. As B cells are important functional 
immune cells in the human body, long-term pan-B-cell depletion alleviates the acute symptoms of MS at the cost of 
humoral deficiency.68 In contrast to antibody-based therapy, BTK inhibition does not cause lasting damage to humoral 
immunity.68,69 In addition, B cells are also present in meningeal inflammation areas, causing pathological changes in 
brain cortex.70,71 BTK inhibition, but not anti-CD20 B-cell depletion, succeeded to eliminate B cells in the meningeal 
inflammation.71 Therefore, BTK inhibition, with its selectivity and reversibility, is promising to serve as an alternative 
MS therapy. Furthermore, using B-cell depletion and BTK inhibition in sequence is likely to be an effective approach to 
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achieve rapid control of MS symptoms and avoid long-term compromising humoral immunity.61,62,68 Although the 
increased expression level of BTK was observed in MS patients,60,69 the exact mechanisms in which BTK involves in the 
development of MS remain to be further illustrated. Therefore, several studies have emerged in an attempt to address this 
question.

Weber et al68 demonstrated that BTK inhibition could diminish the B-cell capacity as antigen-presenting cells 
(APCs). In EAE, BTK inhibition reduced the B-cell expression of MHC-II and costimulatory molecule CD86. B cells 
from Evobrutinib-treated mice exhibited a diminished ability to induce the differentiation of encephalitogenic T cells. 
Additionally, the B-cell function as antibody-secreting cells (ASCs) also implicates BTK involvement beyond BCR 
signaling. BTK was reported to be involved in CXCR3+ memory B cell differentiation. Evobrutinib could suppress the 
class-switching of B cells induced by INF-γ and TLR9 signaling pathway with TFH-like stimulus (CD40L and IL-21). 
Evobrutinib also prevented memory B cell migration across the brain endothelial layer and maturation into ASCs, which 
can be considered a promising therapeutic approach to attenuate local antibody production in MS patients.60

A recent study shed new light on the regulatory function of BTKi on B cells in MS. Li et al69 reported that the 
treatment of BTKi could inhibit mitochondrial respiration in human B cells in vitro, resulting in an anti-inflammatory 
shift in B cell properties. The expression of costimulatory molecules is reduced in B cells, limiting their function as 
antigen-presenting cells to activate pathogenic T cells. Notably, the result was further confirmed and complemented by 
using the samples from a Phase I clinical trial of a selective oral BTKi (BIIB091),53 where health volunteers displayed 
diminished B cell activation and decreased proportion of memory B cell. This result supplemented the study in the EAE 
model and established the immunometabolic regulatory aspect of BTKi, which could be considered as a promising target 
for immune-related diseases.

Neuromyelitis Optica spectrum disorder (NMOSD) is an autoimmune demyelinating disease characterized by 
disturbed humoral immunity.72 Auto-reactive B cells secret autoantigen to attack water channel protein aquaporin-4 
(AQP4-IgG) on astrocytes foot processes and lead to CNS pathology.73 BTK/NF-κB pathway was found to be activated 
in NMOSD patients in the acute phase, but not in the remission phase, compared with healthy controls.70 This provided 
the preliminary evidence that BTK inhibition could be a potential therapy to ameliorate the pathological progression of 
NMOSDs. However, the precise mechanisms of BTK involvement are needed to be further confirmed.

Targeting Microglia
Microglia are resident macrophages in the CNS, which critically involve in the early development, homeostasis, and 
neuroprotection in the CNS.74 Microglia serve as the front-line defense in clearing myelin debris and exogenous 
pathogens and preventing the accumulation of amyloid. However, in the duration of neuroinflammation, the dysregula-
tion of “eat-me” and “Don’t eat me” signals could lead to synapse loss due to microglia-mediated engulfment.75

BTK was reported to participate in the CCL5-induced pathway and increase the Ca2+ concentration in the microglia, 
potentially implicating the BTK involvement in controlling inflammatory phenotypes in microglia.76 Recently, BTK in 
the FcR signaling in microglia was established using a novel and elegantly designed mice model. Fc-receptors (FcR) bind 
to antibodies to induce antibody-dependent cell cytotoxicity (ADCC) and phagocytosis (ADCP). Therefore, to specifi-
cally and efficiently engage FcRs in microglia in the CNS, mice were peripherally, not intracerebellarily, injected with 
anti-MOG antibodies. The reason to choose peripheral injection but not invasive central injection is that the latter would 
lead to the recruitment of platelets and complements, which is likely to interfere with the experiment results. As MOG is 
a well-known antigen that expresses abundantly in the CNS, the anti-MOG antibodies were detected throughout the mice 
brain. Rapid microglial proliferation response was observed in the brain and spinal cord. The microglial response 
enhanced in the BTKE41K knock-in mice and was abrogated by BTK inhibitor.77 All evidence converged to prove the 
importance of BTK in microglial activity. Thus, targeting BTK could be a feasible way to modulate the phenotypes and 
functions of microglia.

The positive effects of BTK inhibition to modulate microglial activity and alleviate inflammation damage have been 
demonstrated in many animal models. In 5xFAD mice, which is an animal model of Alzheimer’s Disease, BTK inhibition 
diminished the phagocytic capacity of microglia and affected migration and cytokine secretion functions. The improved 
cognition was observed in mice treated with BTK inhibitors.9 Ibrutinib, a BTK inhibitor, reduced proinflammatory 
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cytokine levels in BV2 microglia and primary microglia through TLR4 pathway in LPS-induced neuroinflammation 
model. This process partially involved ATK/STAT3 signaling pathway.78 In addition, Ibrutinib attenuated the microglial 
and astrocyte activity in a traumatic spinal cord injury (SCI) mice model, which was associated with an improvement of 
motor functions.8 The level of BTK was elevated majorly in microglia and partially in astrocytes in a demyelination 
model. Although BTK inhibition facilitated remyelination, the study could not completely exclude the effect from 
astrocytes.79

Recently, Tolebrutinib, a BTK inhibitor potently inhibiting microglial BTK activity, was evaluated in a phase 2b, 
randomized, double-blind, placebo-controlled, dose-finding trial in relapsing multiple sclerosis patients. Tolebrutinib 
dose-dependently attenuated new gadolinium-enhancing lesions in a 12-week treatment and 60mg was identified as the 
optimal dosage. The most common adverse effect during Tolebrutinib treatment was headache. It can be expected that in 
the future, more BTK inhibitors focusing on microglial modulation will advance into clinical trials. Notably, a potential 
limitation of the present studies on BTK and microglia is that most of these studies cannot distinguish accurately between 
microglia and CNS-associated macrophages (CAMs) in in vivo experiments. CAMs refer to macrophages located in CNS 
interface, including perivascular macrophages, meningeal macrophages, and choroid plexus macrophages, while micro-
glia are located in brain parenchyma.80 These two cell subsets share many common cell markers, making it challenging 
to target microglia accurately in in vivo studies. Therefore, the role of BTK inhibitors on microglia/CNS macrophages is 
required to be further dissected in future studies in combination with more specific cell markers.

Targeting NLRP3 Inflammasome
The NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome is a multiple protein complex, 
consisting of NLRP3 protein as a sensor, apoptosis-associated speck-like protein (ASC) as an adaptor and caspase-1 as an 
effector.81

Typically, the assembly of NLRP3 inflammasome requires a priming stage and activation. The priming of the 
formation of NLRP3 inflammasome needs upstream signals as the first signal from the engagement of pathogen- 
associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) with TLR, NOD2, IL-1R, 
or tumor necrosis factor receptor (TNFR), which subsequently triggers the upregulation of NLRP3 and pro-inflammatory 
cytokines: pro-interleukin (IL)-1β and pro-IL-18 via NF-κB pathway. Before subsequent activation, NLRP3 protein 
exists as a monomer. After receiving stimuli as the second signal, NLRP3 oligomerizes and the NACHT domain of 
NLRP3 is activated by ATP and NEK7 binding.81,82 Next, the PYD domain recruits the adaptor ASC through PYD-PYD 
interaction. The caspase recruitment domain (CARD) of ASC binds to pro-caspase-1 via CARD–CARD interaction, 
converting pro-caspase-1 to caspase-1, which finally forms the NLRP3–ASC–caspase-1 protein complex, known as 
NLRP3 inflammasome. The downstream effects include the maturation and release of pro-inflammatory cytokines IL-1β 
and IL-18. However, there are alternative pathways of NLRP3 inflammasome activation, such as caspase-11-dependent 
pathway.83 In the central nervous system, NLRP3 inflammasome is expressed in microglia, astrocytes and neurons. As 
mentioned above, NLRP3 inflammasome response can be primed by DAMPs. DAMPs can be released from brain cells 
damaged by mechanical or immune injury, subsequently triggering NLRP3 inflammasome response, which exacerbates 
inflammatory destruction to the brain.84,85 In fact, several studies have demonstrated the role of NLRP3 inflammasome in 
many CNS diseases, including MS, traumatic brain injury, stroke and neurodegenerative diseases (Alzheimer’s Disease 
and Parkinson’s Disease).82 All these studies converged to highlight that neuroinflammation is a key part of the 
pathogenesis of various CNS conditions.

Numerous studies proved that BTK was a component of NLRP3 inflammasome pathway. A molecular study revealed 
that BTK directly phosphorylated four conserved tyrosine residues in the NLRP3 polybasic linker motif and NLRP3 
inflammasome oligomerization, ASC association, and IL-1β expression could be promoted by BTK, which provided 
strong evidence about BTK regulation of NLRP3 inflammasome.86 The association between BTK and NLRP3 inflam-
masome was also established within the CNS by a series of animal experiments concerning brain ischemia. Post-ischemic 
inflammation is the main contributor to ischemic stroke injury, where NLRP3 inflammasome appears to be one of the 
drivers.87,88 BTK inhibition suppressed NLRP3 inflammasome activity in infiltrating macrophages and neutrophils and 
attenuated infarct volume growth in the transient middle cerebral artery occlusion (tMACO) mice model.89 This result 
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was complemented by another study where NLRP3 expression in ischemic hemisphere neurons elevated in the early 
phase of cerebral ischemia and pharmacological blocking utilizing inflammasome inhibitors was able to reduce infarct 
volumes and immune cell infiltration. The inhibition of NLPR3 inflammasome exhibits neuroprotection function against 
ischemic inflammatory response. However, there are no NLRP3 inhibitors approved for clinical therapy. In contrast, 
many types of BTK inhibitors have been approved by FDA. Thus, BTK appeared to be a promising and druggable target 
for ischemia-related inflammation.87

In conclusion, BTK inhibition links different pathways to regulate immune responses and inflammation reactions in 
the scope of neurological diseases (Figure 2).

BTK Inhibition in Primary Central Nervous System Lymphoma
Primary central nervous system lymphoma (PCNSL) is a rare but aggressive subtype of diffuse large B cell lymphoma 
(DLBCL). The invasion of PCNSL confines to the central nervous system including brain, eyes, cerebrospinal fluid 
(CSF), or spinal cord.90 PCNSL is highly associated with mutations of the BCR subunit CD79B (CD79B) and the Toll- 
like receptor adaptor protein MYD88 (MYD88). Moreover, both CD79B and MYD88 L265P mutations were observed 
much more frequently in PCNSL than in systemic DLBCL.91 These mutations lead to chronic activation of NF-κB 
signaling pathway, promoting malignant proliferation of B cells.92 BTK is a critical signaling node linking BCR and TCR 
pathways, and BTK inhibitors process excellent pharmacokinetics in terms of brain distribution.18,93 Therefore, it is 
reasonable to hypothesize that PCNSL is sensitive to BTK inhibition. BTK inhibition has been considered as a promising 
therapeutic approach for PCNSL, as proposed by Zhai et al.94 Currently, except for malignant B cells, Ibrutinib, in 
combination with XPO1 inhibitor selinexor, also converted the phenotype of tumor-associated macrophages (TAMs), 
resulting in diminished expression of two regulatory checkpoint receptors on TAMs, PD-1 and SIRPα, which enhanced 
the anti-tumoral activity of TAMs.95

Ibrutinib was the first BTK inhibitor evaluated in the trials of PCNSL. In vitro and in vivo studies demonstrated that 
Ibrutinib was more effective than Zanubrutinib and Tirabrutinib for the treatment of PCNSL with an ideal pharmaco-
kinetic property in brain distribution.96 Ibrutinib monotherapy exhibits impressive clinical activity and safety with the 

Figure 2 The overview of immunomodulatory mechanisms of BTK inhibition within CNS. In B cells, BTK inhibition dampens the capacity of antigen presentation, antibody 
secretion and pro-inflammatory cytokines production through BCR, TLR pathway and regulation of mitochondrial respiration. The M1 polarization toward a more pro- 
inflammatory profile, migration and pro-inflammatory cytokines production of microglia can be diminished by BTK inhibition. The activation of NLRP3 inflammasome in 
neurons and infiltrating macrophages/neutrophils can be inhibited by BTK inhibition, leading to decreased IL-1β production and neuroprotection.
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ORR reaching 77% in a phase I clinical trial.97 Similar positive results were obtained in another phase I trial.93 In 
a multicenter, Phase II study, Ibrutinib achieved an ORR of 52% after two 28-day treatments. The relatively decreased 
ORR may be related to lower Ibrutinib dosage (560mg/day).98 Furthermore, the tolerability and efficacy of Ibrutinib were 
further validated by a meta-analysis including eight clinical studies.99 However, Ibrutinib resistance was also observed 
due to mutations in CARD11 and CD79B.97 Therefore, combinative therapy seemed to be a more feasible way. The 
combination of ibrutinib with high-dose methotrexate (HD-MTX) and rituximab reached an 80% clinical response rate 
without dose-limiting toxicity.100 A retrospective study of rituximab/lenalidomide/ibrutinib combination demonstrated 
complete response in 4 of 14 and partial response in 4/14 relapsed/refractory (R/R) primary CNS lymphoma (PCNSL) 
patients, and toxicity was acceptable.101 The usage of Ibrutinib combined with radiotherapy also generated promising 
outcomes, achieving the highest response rate for PCNSL and secondary central nervous system lymphoma (SCNSL) 
patients (2/3 for PCNSL, 3/3 for SCNSL).102

In addition to Ibrutinib, other BTK inhibitors were also under investigation in clinical trials. Particularly, Tirabrutinib, 
an oral, covalent BTK inhibitor, has been approved in Japan for the clinical therapy of recurrent or refractory primary 
central nervous system lymphoma.30 Compared with Ibrutinib, Tirabrutinib is more specific with higher safety and 
tolerability.103 The pathological evidence of the efficacy of Tirabrutinib was provided by a recent post-mortem autopsy 
report, demonstrating that tumor cells were completely eliminated by Tirabrutinib in the brain of the patients, who died 
because of suspected pneumocystis pneumonia in the duration of Tirabrutinib treatment.104 The efficacy of the BTK 
inhibitor, Orelabrutinib, combined with rituximab, methotrexate, temozolomide and lenalidomide was analyzed in 
a retrospective study. Among fifteen patients, the overall response rate (ORR), disease control rate (DCR) and complete 
remission (CR) rate were 86.7%, 73.3% and 93.3%, respectively.105

Conclusion
BTK critically participates in the signaling pathways not only in B cells but also in other immune cells. Currently, BTK 
inhibitors have been widely accepted in the therapeutics of malignant diseases, especially B-cell malignancies. Besides, 
the application of BTK inhibitors in inflammatory and autoimmune diseases is also gaining momentum. Specifically, 
BTK is involved in the innate immunity (such as microglia) and adaptive immunity (such as B cells) and affects the 
production of inflammation mediators (NLRP3 inflammasome, etc.) in the central nervous system. Neuroinflammation is 
the main player in neuroimmune diseases and also a driver in other neurological diseases including neurodegenerative 
diseases and ischemic cerebral diseases, etc. BTK inhibition has been demonstrated as an effective way to alleviate 
dysregulated inflammation within the CNS to improve outcomes of neurological diseases. Although many BTK-related 
mechanisms and pathways have been illustrated in a wide range of neurological diseases, it has to be emphasized that 
these mechanisms are not independent of each other but form a complex network of modulation and interaction system to 
control the inflammation progression and disease development. There is no doubt that the application of BTK inhibition 
in the CNS will advance along with the evolving understanding of the relationship between neuroinflammation and 
neurological diseases.
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