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Abstract: Atopic dermatitis (AD) is one of the most common skin conditions in humans. AD affects up to 20% of children 
worldwide and results in morbidity for both patients and their caregivers. The basis of AD is an interplay between genetics and the 
environment characterized by immune dysregulation. A myriad of mutations that compromise the skin barrier and/or immune 
function have been linked to AD. Of these, filaggrin gene (FLG) mutations are the most evidenced. Many other mutations have 
been implicated in isolated studies that are often unreplicated, creating an archive of genes with potential but unconfirmed 
relevance to AD. Harnessing big data, polygenic risk scores (PRSs) and genome-wide association studies (GWAS) may provide 
a more practical strategy for identifying the genetic signatures of AD. Epigenetics may also play a role. Staphylococcus aureus is 
the most evidenced microbial contributor to AD. Cutaneous dysbiosis may result in over-colonization by pathogenic strains and 
aberrant skin immunity and inflammation. Aeroallergens, air pollution, and climate are other key environmental contributors 
to AD. The right climate and/or commensals may improve AD for some patients. 
Keywords: atopic dermatitis, genetics, environment, pollution

Introduction
AD is one of the most common skin conditions, affecting up to 20% of children worldwide.1 It is characterized by 
a chronic relapsing pruritic rash appearing in an age-dependent distribution and is often associated with elevated 
immunoglobulin (Ig)E, peripheral eosinophilia, and other allergic diseases.2 AD results in significant impact on 
children’s quality of life due to itching, scratching, emotional distress, and sleep disturbance.3 The median annual out- 
of-pocket expense for AD in the United States (US) is 600 US dollars (USD) and may be 1000 USD or greater for over 
40% of patients and families.4

Children with AD may suffer a wide range of allergic, psychological, and infectious comorbidities. 
Classically, AD has been linked to asthma and allergic rhinitis (AR) in the “atopic march”, a hypothesized progres-
sion of diseases from AD to respiratory allergies.5 However, while atopic diseases do commonly co-occur, most do 
not follow this temporality.5,6 The Childhood Origin of ASThma study, a high-risk birth cohort study, has shown that 
the early/recurrent phenotype of AD (presents early and persists through childhood) is associated with food allergy 
and both the early/recurrent phenotype and late–onset phenotype (AD starting at four- to six-years-old) are associated 
with asthma in children.7 Notably, atopic comorbidity may be a feature of pediatric AD and less common in adult- 
onset AD.8,9 Besides allergic comorbidities, children with AD show increased risks of having anxiety and attention- 
deficit hyperactivity disorder as well as certain bacterial and viral infections.10,11 The consequences of AD extend to 
caregivers, who suffer mental and physical health effects tied to the quality of life of these children.3,12,13
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AD is a disease of defective genetics in an unfavorable environment. Its underlying mechanisms are largely based in 
immune dysregulation. Notably, there may be pathophysiological differences between AD in children and adults. 
Regarding the skin barrier, pediatric AD has more FLG loss-of-function (LoF) variants and lipid-barrier defects, while 
adult AD shows more epidermal differentiation and cornification defects.6 Regarding immune dysregulation, 
pediatric AD shows the highest skin eosinophil and neutrophil counts and greater induction of T-helper (Th)2, Th9, 
Th17, interleukin (IL)31, IL33, and innate immune markers; meanwhile, adult AD is skewed towards Th1 
activation.6,9,14,15 In both children and adults, AD skin is likely predisposed to pathogen colonization, which may 
contribute to disease progression.16 Pediatric AD not only predisposes to skin infections but also increases allergen 
sensitization, including to food and aeroallergens.17 Taken together, in pediatric AD, microbes, aeroallergens, and 
pollutants may penetrate the inherently defective skin barrier to trigger dysregulation of the immune system (which 
may itself be predisposed by genetic defects), causing further skin damage, chronic inflammation, and itch; notably, the 
right climate and/or commensals may improve some AD18,19 [Figure 1]. This paper summarizes the current under-
standing of how genetics, environment, and immune system dysregulation drive AD in children.

Genetic Contributions
Skin Barrier Defects
AD skin shows decreased keratinocyte (KC) differentiation in the epidermis and is deficient in stratum corneum components 
including proteins (filaggrin, loricrin, involucrin, claudins) and lipids (ceramide, cholesterol, fatty acids).20 Compared to healthy 
skin, AD skin shows reduced hydration and increased water loss as measured by trans-epidermal water loss (TEWL)21 [Figure 1]. 
This holds true even when AD skin is normal-appearing. Supporting the role of a defective skin barrier in AD, TEWL is positively 
correlated with AD severity and may predict AD development.22,23 The epidermal differentiation complex (EDC) is a 2 Mb region 
of human chromosome 1q21 that is the site of key genes for establishing the skin barrier (ie, FLG).24 The EDC also controls 
epithelial tissue development and repair by regulating the terminal differentiation program of KC.25 The EDC includes three gene 
families including the cornified envelope precursor family, the S100 protein family, and the S100 fused type proteins (SFTP).26

FLG is the most studied and implicated gene in AD and is a member of the SFTP family on the EDC. A FLG LoF 
mutation reduces skin hydration12 [Figure 1]. Given that TEWL is increased in unaffected FLG mutation carriers, skin 
barrier impairment likely precedes clinical eczema.27 FLG mutations occur in up to 50% of children with moderate to 

Figure 1 The interplay of genetic and environmental contributors in modulating the immune dysregulation of AD.
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severe eczema, and the presence of FLG LoF variants in AD is significantly greater than in healthy controls.26,28 The 
genetic configuration is likely a combination of common variants and rare LoF variants.28 FLG LoF status appears to 
control the disease course of AD. Carrying a FLG LoF variant is associated with earlier disease onset among AD patients 
and increases the odds of onset before age 5- and 20-years-old by 7.8 and 8.9 times, respectively.26 Certain FLG LoF 
mutations are associated with AD patients with a history of recurrent skin infections.29 FLG mutations cause both barrier 
defects as well as altered hydration and pH of the stratum corneum, which may modulate the growth of S. aureus.20,30 

The FLG LoF mutation may also predispose to increased allergic sensitization31 due to increased ability of allergens to 
penetrate into deeper skin layers. In addition to direct FLG mutations, Th2 cytokines IL4, IL13, and IL31 can suppress 
FLG expression and/or interfere with KC differentiation.32–35

While FLG has received the most attention, other EDC genes may be relevant in AD [Table 1]. A whole genome sequencing 
study showed enrichment of rare LoF variants of FLG2, HRNR, LCE2C, LCE4A, LCE5A, RPTN, S100A3, S100A16, SPRR3, 
SPRR4, TCHH, and TCHHL1 in AD patients.26 Expression of FLG2 and HRNR are significantly reduced in both lesional and non- 
lesional skin of patients with AD compared with healthy subjects.36 Upregulation of S100A7 and S100A8 and downregulation of 
FLG and the loricrin gene (LOR) has also been observed in AD and may represent abnormal epidermal differentiation and 
defective defenses favoring the alternative keratinization pathway.37 Single nucleotide polymorphisms (SNPs) in CLDN1 in AD 
may compromise tight junctions.38 In fact, CLDN1 is involved in the susceptibility to AD in the Ethiopian population.39 Missense 
mutations in the Transmembrane Protein 79 (or Mattrin) gene (Tmem79/matt) may also predispose humans to AD.40 In mice, 
mutations in the gene produce a dermatitis phenotype likely by disrupting the lamellar granule secretory system and altering 
stratum corneum barrier function.41 Tmem79/matt has limited sequence homology to microsomal glutathione transferases and 
protects against reactive oxygen species.29 Interestingly, mice with specific Tmem79/matt mutations developed IL17A-dependent 

Table 1 Potential Genetic Contributors to AD

Skin Barrier

Epidermal 
differentiation complex

FLG, FLG2, HRNR, LCE2C, LCE4A, LCE5A, RPTN, 
S100A3, S100A7, S100A8, S100A16, SPRR3, SPRR4, 
TCHH, TCHHL1, CLDN1, Tmem79/matt, LELP1

SP and SP inhibition SERPINB7, KLK7

Desmosome 
component

DSC1

Epigenetics KIF3A methylation, PPARδ upregulation, EMSY 
upregulation

Immune 
System

Innate immunity TLR2, TLR4, TLR9, NOD1, NOD2, DEFβ1, IFNγ, 
IFNγR, IRF2, SIDT2, RBBP8NL

Cytokine-related IL4/4R, IL5, IL7R, IL9, IL10, IL12, IL13, IL18,  
IL31, TSLP, STAT6

Antigen receptor 

signaling

CARD14, LRRC32

IgE-related FcεRIβ, ADAMTSL4

Leukotriene-related CYSLTR1

Epigenetics AHR upregulation, reduced IL13 methylation,  

reduced AcH3K9 acetylation

Note: Gene names are italicized.
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dermatitis and were refractory to S. aureus infection.42 Certain genetic variants of LELP1 have been associated with elevated IgE 
levels, early-onset, house dust mite (HDM) sensitization, and disease severity in AD.43

Beyond the EDC, aberrant epidermal serum protease (SP) activity and desmosome instability may contribute to the 
skin barrier defects of AD [Table 1]. SERPINB7 and DSC1 code for a SP inhibitor and desmosome component, 
respectively, and missense mutations of these genes have been linked to AD via GWAS.44 Meanwhile, AACC insertion 
in the SP gene KLK7 has also been associated with AD,45 introducing the potential relevance of direct SP mutations.

Epigenetics may contribute to the defective skin barrier of AD [Table 1]. For example, highly methylated KIF3A SNPs are 
associated with a decreased expression of KIF3A barrier protein in epithelial cells, leading to an increase in TEWL and risk 
of AD.46 Meanwhile, transcription factor PPARδ, which regulates inflammation and promotes KC proliferation and differentia-
tion, is upregulated in lesional AD skin versus non-lesional skin.45,47,48 FABP5, a fatty acid-binding protein expressed in the 
epidermis, delivers ligands to PPARδ in keratocyte nuclei to enhance transcription.49 Supporting this mechanism, PPARδ and 
FABP5 expressions parallel each other in AD.45,50 Recently, GWAS has implicated EMSY, a transcriptional regulator supporting 
skin barrier formation.51

Immune System Defects and Dysregulation
Regarding the innate immune system, stimulated KCs from AD patients produce diminished levels of antimicrobial peptides 
(AMPs) versus healthy subjects and those with psoriasis,52 another chronic skin condition with barrier defects. Pattern recognition 
receptor (PRR) defects may mediate this phenomenon. For example, genetic polymorphisms in toll-like-receptors (TLRs) 
make AD skin vulnerable to infections.35 TLR2 is a key PRR for S. aureus, and TLR2 polymorphisms are linked to severe AD 
with recurrent skin infections.53,54 Overall, AD patients show diminished responses upon TLR2 stimulation including reduced 
IL6, IL8, CCL20 and MMP9 production, which may predispose to infections.55 However, monocytes with TLR2 heterozygous 
R753Q polymorphism showed higher production of IL6 and IL12 versus those with non-mutated TLR2. This mutation is found 
more frequently in Italian children with severe AD but not in Turkish AD children.55–57 TLR2 mutations are especially interesting, 
as TLR2 may mediate transformation of acute to chronic AD via IL4-mediated suppression of IL10.58 Other PRR mutations have 
also been linked to AD. The TLR4 896G mutation may be associated with a severe AD course, while TLR9 promoter 
polymorphisms have been associated with impaired immunity in some cases of AD.59,60 NOD1 and NOD2 encode PRRs for 
sensing viral/parasitic infections and perceiving perturbations of cellular processes such as regulation of the actin cytoskeleton and 
maintenance of endoplasmic reticulum homeostasis;61 variants in these genes have been associated with AD.62,63

Besides PRRs, other components of innate immunity may be involved45,64 [Table 1]. Human beta defensins (hβDs) provide 
antimicrobial and immunomodulatory benefits and are relevant to the genetics of AD.65 hβD2 and hβD3 are produced at low 
levels in lesional skin of patients with AD relative to patients with psoriasis.66,67 Furthermore, patients with AD complicated by 
eczema herpeticum (EH) have reduced hβD2 and hβD3 in lesional skin relative to patients with AD or psoriasis.68 DEFβ1 SNPs 
are significantly associated with susceptibility to AD in Koreans.69 However, they are not associated with AD in children and 
adolescents from northeast Brazil.70 IFN and IFN receptor gene (IFNR) variants are associated with AD patients with a history of 
EH; transcripts for IFNγ and IFNRs (α, β, ω, γ) are downregulated in these patients.20,71,72 Specifically, mutations in IFNγ and the 
IFNγR may occur in AD patients with EH history versus those without EH history.20 IRF2 blocks the IFNγ-mediated pathway, and 
different variants of IRF2 are associated with Caucasian American and African American AD patients with a history of EH.73 

Recently, whole genome sequencing has identified SIDT2 and RBBP8NL variants in AD; these genes participate in defense 
against herpes simplex virus (HSV)1.74

Classically, AD lesions are characterized by an increased expression of Th2 cytokines, which have been implicated in tissue 
repair.75 Indeed, cytokine-related genes represent a sizeable group of potential offender genes whose variants have been associated 
with AD35,64,76,77 [Table 1]. As a result of inherent barrier defects such as FLG mutations or lipid deficiencies, there is an 
overproduction of Th2 cytokines (classically IL4, IL13, and IL31) in the skin lesions of predisposed individuals [Figure 1]. IL4 
activation of signal transducers and activators of transcription (STAT)6 results in Th2-deviated T cell differentiation, IgE 
production in B cells, and the production of Th2 chemokines such as CCL17 and CCL22 by dendritic cells (DCs). Th2 cytokines 
may in turn downregulate FLG, LOR, and involucrin gene (IVL) expression and reduce AMP production, further compromising 
the skin barrier and increasing susceptibility to pathogens.78 590T and 589T alleles of IL4 may be associated with high serum IL4 
levels, which appear to increase the risk of AD in children.79 IL13 Arg130Gln polymorphism and haplotypes consisting of IL13 

https://doi.org/10.2147/JAA.S293900                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Journal of Asthma and Allergy 2022:15 1684

Chong et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Arg130Gln and IL4 −589C/T are linked to development of atopy and AD.80 IL31 causes pruritus, and IL31 variants are associated 
with AD and its severity.81,82 Janus kinase (JAK)1 and JAK2 are tyrosine kinases involved in the JAK-STAT pathway that direct 
inflammation via cytokines (including IL4, IL13, IL31) and IFN signal transduction.76,83 Thymic stromal lymphopoietin (TSLP) 
activates dermal DCs to recruit Th2 cells that release IL4 and IL13.84–87 TSLP also activates type 2 innate lymphoid cells, which 
express IL4, IL5, and IL13. Furthermore, TSLP may cause pruritus by activating cutaneous sensory neurons. SNPs in TSLP and 
its receptor component IL7R may modulate AD persistence.88,89 TSLP SNPs are also associated with EH.90 Interestingly, while 
STAT6 mediates IL4/IL13 activation of Type 2 inflammation,91 it may also work with another transcription factor T-bet to suppress 
skin inflammation by inhibiting TSLP-dependent IL9 production in CD4+ T cells of mice.92 STAT6 genetic variants are associated 
with AD patients with a history of EH and are known to increase viral replication in the skin of these patients.93

Several other categories of immune genes have been implicated in AD including antigen receptor signaling (CARD14, 
LRRC32), IgE-related (FcεRIβ, ADAMTSL4), and leukotriene-related (CYSLTR1) genes76,94,95 [Table 1]. CARD14 mediates 
production of proinflammatory genes and AMPs via activation of the nuclear factor-κB (NF-κB) pathway.96,97 Interestingly, while 
a dominant gain-of-function (GoF) mutation in CARD14 occurs in psoriasis, a LoF mutation in this gene accompanies 
severe AD.98 LRRC32 (also known as GARP) encodes GARP, a cell surface receptor on Treg cells, platelets, and certain cancer 
cells.99 GARP may inhibit Treg immunosuppressive activity.100 Recently, polymorphisms in LRRC32 have also been linked to 
AR.101 IgE-mediated inflammation may also contribute to AD.102 FcεRIβ encodes a subunit of the high-affinity IgE receptor 
FcεRI and mediates trafficking and signaling of this receptor.103 Meanwhile, ADAMTSL4 encodes a potential IgE-binding self- 
antigen in AD and has been linked to eosinophil counts, which are known to be elevated in AD.104–106 Finally, CYSLTR1 encodes 
a receptor for cysteinyl leukotrienes; variants may predispose children to asthma and AD.107

Epigenetics may modulate the immune response of AD [Table 1]. There are significant differences in the DNA methylation 
levels between the skin-homing CD4+CLA+ T cells of AD patients compared to healthy controls.108 Reduced methylation levels 
in the IL13 gene in CD4+CLA+ T cells of AD patients are associated with an increased expression of IL13 mRNA in these 
cells.108 The transcription factor aryl hydrocarbon receptor gene (AHR) is upregulated in AD lesional skin versus normal skin in 
healthy controls.109 Chronic AHR activation is immunotoxic110 and results in expression of neurotrophic factor artemin, 
alloknesis, epidermal hyper-innervation, and inflammation.111 In mice, constitutive activation of AHR increases artemin and 
produces an AD phenotype including erosive facial and back eczema with frequent scratching.110–112 AD epigenetics may also be 
modulated by microbial metabolites including butyric acid (BA), a fermentation product of Staphylococcus epidermidis that 
inhibits S. aureus growth.113,114 In response to BA derivative BA–NH–NH–BA, human KCs increase acetylation of AcH3K9, 
which is accompanied by reduced S. aureus-induced production of proinflammatory IL6 and S. aureus colonization in murine 
skin,115 suggesting modulation of S. aureus pathogenicity through epigenetic mechanisms.

Genetic Disorders with AD-Like Lesions
There are a number of genetic disorders including immunodeficiency, autoimmunity, and non-immune abnormalities that 
feature AD-like lesions. These conditions and their known culprit genes include Hyper IgE syndrome (STAT3, DOCK8), 
CARMIL2 deficiency (CARMIL2), Omenn syndrome (RAG1, RAG2), Netherton syndrome (SPINK5), Wiskott-Aldrich syn-
drome (WAS), adenosine deaminase severe combined immunodeficiency (ADA-SCID) (ADA), immune dysregulation, poly-
endocrinopathy, enteropathy, X-linked (IPEX) syndrome (FOXP3), CARD11-associated atopy with dominant interference of 
NF-κB signaling (CADINS) disease (CARD11), congenital disorders of glycosylation (PGM3), prolidase deficiency (PEPD), 
severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome (DSG1, DSP), and growth hormone insensitivity 
(GHI) syndrome with immunodeficiency (STAT5B).116–129 Recently, GoF STAT6 variants have been associated with a novel 
autosomal dominant allergic disorder featuring early-onset allergic immune dysregulation with widespread refractory AD, 
hypereosinophilia with eosinophilic esophagitis, high serum IgE, food allergies, and brain vascular anomalies.130 Although 
rare, these genetic disorders should be considered in the differential diagnosis of AD, especially in patients where the constellation 
of findings exceeds atopy. These findings include unresponsiveness to conventional AD treatments, unusual opportunistic 
infections, or symptoms of autoimmunity.131 Understanding the basis of these genetic disorders may also provide insights into 
the mechanisms of AD.

The culprit genes for such conditions fall under several categories: cytokine-related (STAT3, STAT5B, STAT6, 
FOXP3), antigen receptor signaling (CARD11, CARMIL2, ADA, RAG1, RAG2), actin polymerization (DOCK8, WAS, 
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CARMIL2), cellular metabolism (PGM3), collagen metabolism (PEPD), SP inhibition (SPINK5), and desmosome 
components (DSG1, DSP) [Table 2]. STAT3 participates in Th2 differentiation132 and KC STAT3 may mediate 
histaminergic itch.133 STAT5B and STAT6 also mediate Type 2 inflammation and STAT5B additionally mediates growth 
hormone signaling.91,134 FOXP3 suppresses the immune system through its influence on transcription factors including 

Table 2 Genetic Disorders with AD-Like Lesions and Their Implicated 
Genes

Hyper-IgE syndrome

Cytokine-related STAT3

Actin polymerization DOCK8

CARMIL2 deficiency

Antigen receptor signaling, 

actin polymerization

CARMIL2

Omenn syndrome

Antigen receptor signaling RAG1, RAG2

Netherton syndrome

SP inhibition SPINK5

Wiskott-Aldrich syndrome

Actin polymerization WAS

ADA-SCID

Antigen receptor signaling ADA

IPEX syndrome

Cytokine-related FOXP3

CADINS disease

Antigen receptor signaling CARD11

Congenital disorders of 
glycosylation

Cellular metabolism PGM3

Prolidase deficiency

Collagen metabolism PEPD

SAM syndrome

Desmosome components DSG1, DSP

GHI syndrome with 

immunodeficiency

Cytokine-related STAT5B

Novel autosomal dominant 
allergic disorder

Cytokine-related STAT6

Note: Gene names are italicized.
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NF-κB.135 CARMIL2 mediates NF-κB signaling and regulates actin polymerization in T cells; besides immunodefi-
ciency, genetic variants have also been associated with inflammatory bowel disease in children.136 ADA is part of the 
purine salvage pathway and plays a key role in B and T cell development; defects may cause mild AD.137,138 RAG1 and 
RAG2 enable V(D)J recombination to produce diverse T and B cell receptors.139 DOCK8 controls lymphocyte migration, 
survival, and effector functions through CDC42-mediated actin polymerization.140,141 DOCK8 deficiency may cause Th2 
polarization away from the Th1 and Th17 types, resulting in atopic disease and compromised immunity against viruses 
and fungi; the AA genotype of DOCK8 is linked to elevated total IgE levels.98,142 WAS mediates actin cytoskeleton 
remodeling to enable immune functions including signal transduction, adhesion, movement, proliferation, and 
phagocytosis.143 PGM3 is a phosphoglucomutase that metabolizes glycans, and deficiencies may impair cell–cell 
recognition and immune signaling.144 PEPD encodes prolidase, which metabolizes proline-containing proteins including 
collagen.124 SPINK5 encodes the SP inhibitor LEKTI, thereby modulating skin desquamation.145,146 Finally, DSG1 and 
DSP encode desmosome components that contribute to epidermal structure and integrity.147

Polygenic Risk Scores and Genome-Wide Association Studies
While a genetic basis to AD is clear, confirming the clinical relevance of specific genes in AD has proven challenging. 
The FLG LoF mutation is a special case, where mutations in a specific gene are known to compromise the AD skin 
barrier. The tendency is for studies to highlight one gene or another without reproduction in most cases. For example, no 
particular gene has been confirmed in the dysregulated immune response of AD. To bridge the gap between research and 
clinical utility, PRSs have been introduced and show promise for predicting AD. The PRS is a prediction of an 
individual’s phenotype based on the individual’s particular genetic variants weighted by their disease-specific effect 
sizes; disease-specific effect sizes are determined from external, independent GWAS. Recently, Arehart et al showed 
that AD PRSs track phenotypic outcome and correlate with AD severity.148 Furthermore, incorporating genetic determi-
nants across atopic phenotypes and FLG LoF variants into PRSs increased their predictive capacity, and this model was 
able to distinguish individuals with severe AD from control subjects with an odds ratio of 3.86 (95% CI, 2.77–5.36). The 
predictive potential of PRSs is expected to increase with larger, higher-quality GWAS databases and inclusion of non- 
genetic covariates into these models, as the environment is a key driver of AD.149

GWAS has identified two highly significant loci for AD representing the EDC (chromosome 1q21.3) and a region 
including IL4 and IL13 (chromosome 5q13.1).150 Chromosome 11q13.5 is another locus that has been strongly linked 
to AD in GWAS among different ethnicities and suggests LRRC32 and EMSY as possible players in AD.51,150 Among 
Caucasian patients, Sliz et al identified 30 AD-associated loci including five novel loci.44 Missense variants in DSC1 and 
SERPINB7 were identified at two of these new loci; these genes have key roles in epidermal strength and stability.44 

Recently, a GWAS meta-analysis identified 271 AD-associated genes including seven with strong evidence of association 
(ADAMTSL4, FKBPL, SIPA1, PPT2, C1orf68, SLC2ARG, and TDRKH).151 Notably, AD has polygenic architecture and 
shares biology with asthma.44,151 GWAS may also be used to identify relationships between AD and other diseases or 
lifestyle factors via comparative analysis or Mendelian randomization.150,151 For example, opposing genetic mechanisms 
have been identified in AD versus psoriasis152 and BMI has been shown to have a small causal effect on AD.153 Current 
GWAS only account for less than 20% of AD heritability.154 Future GWAS should include greater ethnic diversity and 
functional assessment of candidate genes.154 Furthermore, gene-environment interaction studies for AD are currently 
scant.155

Environmental Contributions
Bacteria
Bacteria have a role in modulating AD and the evidence implicating S. aureus is strongest [Figure 1, Table 3]. In a meta- 
analysis of 95 observational studies, Totte et al found that S. aureus is present on 70% of AD lesions compared to 
statistically lower presence on non-lesional or healthy control skin.156 The authors also noted that in lesional skin, disease 
severity is associated with increased prevalence of S. aureus. Meanwhile, Tauber et al showed an association between 
S. aureus density and AD presence and disease course severity in lesional and non-lesional skin.157 Biofilm-generating 
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S. aureus strains from anterior nares and lesional skin in AD patients have been associated with more severe AD and 
extent of biofilm formation positively correlates with lesional intensity.158–160 Allen et al reported that biofilm formation 
plays a major role in the occlusion of eccrine sweat ducts, which leads to inflammation and pruritus. Patients with 
severe AD were colonized by strong biofilm producing S. aureus strains.161 Biofilms enhance bacterial adhesion, 
providing immune evasion and protection from competitor microbial species.161,162 MRSA may colonize 18.3–25% of 
pediatric AD patients and is more prevalent in moderate to severe AD versus mild AD.163–165 Colonization of AD skin 
with MRSA predisposes to increased skin and soft tissue infections (SSTIs) compared to colonization with MSSA.166

Staphylococcal enterotoxins (superantigens) are the most-studied bacterial virulence factors in AD. They include 
classical (SEA, SEB, SEB, SED, TSST-1) and non-classical (SEE, SEG, SEQ) superantigens.20 More than 80% S. aureus 
in AD produce these superantigens.167 Superantigen-activated DCs stimulate Th2 cells to produce IL4, IL5, IL13, and 
IL31, leading to skin barrier disruption including decreased FLG production, suppressed AMP production, impaired KC 
differentiation, and pruritus.168,169 Moreover, specific IgE (sIgE) directed at superantigens leads to basophil histamine 
release.6 MRSA produces more superantigen than MSSA170 and superantigens may cause corticosteroid resistance in AD 
flares associated with MRSA skin infections.171 S. aureus also produces alpha toxin that causes KC cytotoxicity, 
lymphocyte apoptosis, and alters E-cadherin integrity.168,172,173 FLG deficiency and expression of IL4 and IL13 in AD 
enhance cytotoxicity of alpha toxin to KCs.174,175 Delta toxin increases mast cell degranulation via MRGPRX2; notably, 
MRGPRX2 is also found on KCs.176,177 Staphylococcal protein A blocks formation of IgG hexamers and downstream 

Table 3 Potential Environmental Contributors to AD

Microbes

Bacteria S. aureus

Viruses Herpes simplex virus, molluscum contagiosum virus, 
coxsackie virus, vaccinia virus

Fungi Malassezia spp.

Aeroallergens

Indoor allergens House dust mite, pet dander, fur, cockroach, mold

Outdoor allergens Tree pollens, grass pollens, weed pollens

Air Pollution

Particulate matter PM2.5, PM10

Gaseous pollutants Sulfur dioxide, nitrogen dioxide, carbon monoxide

Climate

Humidity Low or very high humidity

UV index Low UV index

Temperature Low or very high temperature, high indoor heating 

days

Precipitation High precipitation

Food

Rare occurrence Cow’s milk, hen’s egg

Birch  
pollen-related

Apple, carrot, celery, hazelnut

Note: Bacterial and fungal genera and species are italicized.
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activation of complement.178 Finally, lipoteichoic acid (LTA) is a staphylococcal virulence factor that may activate TLR2 
to convert acute AD into chronic AD.58

Cutaneous dysbiosis may be a key driver of AD. Microbiome diversity decreases in lesional AD skin with specific 
reduction in Streptococcus, Corynebacterium, Propionibacterium, and favoring Staphylococcus.114 The microbiome 
composition returns to normal diversity after treatment, suggesting that treating AD supports the re-establishment of 
a normal microbiome. Commensals may counter S. aureus and support a healthy skin barrier and immunity [Figure 1]. 
For example, coagulase-negative Staphylococci (CoNS) (S. epidermidis, S. hominis, and S. lugdunensis) can produce 
AMPs that inhibit S. aureus growth.179–181 CoNS strains with antimicrobial activity are deficient in AD versus healthy 
skin and reintroducing these strains may decrease S. aureus burden.180 Indeed, S. hominis transplantation may improve 
local eczema severity by killing S. aureus.19 Other commensals such as Roseomonas, Corynebacterium, and 
Propionibacterium have also been shown to affect S. aureus growth and virulence.182–185 Normal microflora may 
promote healthy skin in diverse ways. S. epidermidis may shape cutaneous T cell populations to promote tolerance of 
commensals, immunogenicity against pathogens, and cutaneous wound repair.186,187 Independent of T cells, LTA in the 
S. epidermidis cell wall may temper inflammatory responses to injury via TLR2.188 Finally, S. epidermidis may curb skin 
inflammation through BA-mediated epigenetic mechanisms.115,189

Viruses
Viral diseases including EH, molluscum contagiosum (MC), eczema coxsackium (EC), and eczema vaccinatum (EV) 
may afflict AD patients, yet whether viral infections lead to worsening of AD requires further study [Figure 1, 
Table 3]. AD patients are at increased risk of EH, which is caused by HSV.11 Nearly a third of pediatric hospitalizations 
for AD infectious complications are related to EH.190 Interestingly, EH is associated with AD flares and is more often 
a reactivation of HSV as opposed to a primary infection.191,192 In AD patients, a history of skin infections with S. aureus 
is a risk factor for development of EH, and alpha toxin increases HSV load in KCs.72,193 Meanwhile, downregulation of 
IFNs and their receptors also contribute to EH susceptibility as discussed previously. MC spreads by autoinoculation 
in AD patients due to scratching. FLG mutations have been linked to increased risk of sustained MC skin infection.194 

Furthermore, a history of AD has been reported in over a third of cases of MC in pediatric dermatology and appears to 
intensify the course of MC.195 EC may appear similar to EH, and a lesional polymerase chain reaction for enterovirus 
may help differentiate between the two etiologies. Unlike EH, EC is not typically life-threatening and can be managed 
with skin hydration, moisturization, and topical corticosteroids (TCS).196 EV is caused by vaccinia virus (VV) in 
smallpox vaccines and presents as a rapidly developing, generalized vesiculopustular rash that is life-threatening.197 

Given the recent monkeypox outbreaks across the globe, smallpox vaccines have seen renewed use as they provide some 
cross-protection for monkeypox.198,199 Susceptibility to EV may be mediated by defects in IFNγ or its receptor and 
increases in IL4, IL13, and IL17.200–202 Clinicians should be advised that the ACAM2000 (replication-competent VV) is 
contraindicated in AD patients due to the risk of EV, but the Jynneos (replication-deficient Modified vaccinia Ankara) 
vaccine is safe for AD patients including those with human immunodeficiency virus.203

Fungi
Further research is needed to evaluate fungi as potential contributors to AD [Figure 1]. Malassezia spp. are common 
commensals on human skin that may contribute to AD [Table 3]. While not life-threatening, Malassezia spp. are thought 
to enhance AD skin inflammation by eliciting IgE production and activating auto-reactive T cells.204 The relative 
cutaneous abundance of Malassezia spp. differ by AD severity; for example, M. restricta predominates over 
M. globosa in mild or moderate AD while these species are more equally represented in severe disease.205,206 AD 
appears to increase sensitization to Malassezia spp., yet sensitization occurs preferentially in adults.204 Specifically, 
Malassezia spp. sIgE are found in 5–27% of pediatric and 29–65% of adult AD patients,204 although testing for 
Malassezia spp. sIgE is not standard practice. Interestingly, non-Malassezia yeast are more diverse in AD patients 
versus healthy individuals.207 While topical ketoconazole has been observed to improve head and neck AD in some 
patients, a placebo-controlled trial found no difference between topical miconazole-hydrocortisone cream and ketoco-
nazole shampoo versus hydrocortisone alone for head and neck AD.208
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Aeroallergens
Aeroallergens are recently established triggers of AD and produce cutaneous reactions likely through direct skin 
contact209,210 [Figure 1]. Triggers include indoor aeroallergens (ie, HDM, pet dander, fur, cockroach, and mold) and 
outdoor aeroallergens (ie, tree, grass, and weed pollens) [Table 3]. Sensitization to HDM is particularly common in 
pediatric AD patients (48.9%) and children with a strong skin prick test (SPT) reaction to HDM have greater AD 
severity.211 Upon penetrating the defective skin barrier, allergens may be presented in an IgE-facilitated or IgE- 
independent manner to T cells with subsequent release of Th2 cytokines IL4, IL13, and IL31 and downstream effects 
of B cell maturation to plasma cells and pruritus.210 Alternatively, allergens may directly trigger neurons to release 
substance P and degranulate skin mast cells via the MRGPRX2 receptor.212,213 Recently, propyl-paraben exposure has 
been linked with aeroallergen sensitization and AD severity.214 Notably, sensitization to specific aeroallergens such as 
birch pollen may mediate late eczematous reactions to related foods.215 A late reaction to melons in ragweed pollen 
sensitization has also been observed.216

Epicutaneous skin testing (ie, SPT) or serum sIgE testing may diagnose aeroallergen sensitivities. sIgE testing is an 
option for patients with dermatographia or widespread AD. While guidelines do not recommend routine testing for 
aeroallergens in AD, testing should be considered in patients in whom aeroallergen triggers are suspected.217 Currently, 
management centers on avoidance and maintenance of the skin barrier.210 Avoidance includes removing pets or keeping 
them in another room, implementing dust mite-proof pillow or mattress encasings, and wearing occlusive clothing 
outdoors. Skin moisturization and TCS for flares are recommended to restore and maintain the skin barrier. Subcutaneous 
immunotherapy (SCIT) has been shown to improve AD in patients sensitized to HDM and decreases the need for topical 
corticosteroids.218 Meanwhile, sublingual immunotherapy (SLIT) to HDM has been shown to improve mild, moderate, 
and severe AD.219,220 While SCIT and SLIT have shown promise, they are not yet indicated for the management of AD 
at this time.

Air Pollution
Air pollution is an increasingly recognized contributor to AD [Figure 1, Table 3]. A recent study found that short-term 
exposure to air pollution secondary to a California wildfire was associated with increased health-care use for patients 
with AD and itch.221 Increases were seen in pediatric appointments for both AD and itch. Specifically, a 10-μg/m3 
increase in weekly mean particulate matter ≤2.5 μm in diameter (PM2.5) concentration was associated with a 7.7% 
increase in weekly pediatric itch clinic visits. Meanwhile, long-term exposure to air pollutants has been shown to increase 
the development of AD.222 These pollutants include PM2.5, particulate matter ≤10 μm in diameter (PM10), sulfur 
dioxide, nitrogen dioxide, and carbon monoxide. Notably, younger AD patients (age zero- to seven-years-old) may be 
most susceptible to air pollutants.223 In a systematic review and meta-analysis, pediatric AD was also associated with 
active and passive smoking, with odds ratios of 2.19 (1.34–3.57) and 1.15 (1.01–1.30), respectively.224 However, smoke 
exposure may not trigger AD since cohort studies showed a lack of association between AD and passive smoking or 
maternal smoking during pregnancy.224 Regarding a mechanism for air pollution-induced AD, PM contains polycyclic 
hydrocarbons (PAHs) that may activate AHR.225 In fact, treatment of human skin equivalents and murine skin with 
PM2.5 inhibits FLG protein expression via PM2.5-induced TNF-α and is AHR-dependent.226 As discussed above, AHR 
activation may also increase artemin expression and itch. Finally, PM10 exposure has been shown to induce/aggravate 
dermatitis in an AD mouse-model via the differential expression of genes controlling skin barrier integrity and the 
immune response.227

Climate
Climate including humidity, UV index, temperature, and precipitation influences the prevalence of pediatric AD 
[Table 3]. Higher humidity, UV index, and temperature are associated with decreased AD prevalence.228 However, 
overly high humidity or temperatures can cause perspiration, which may trigger AD in some patients.229 Higher indoor 
heating days (a measure of the coldness of weather experienced) and precipitation are associated with increased AD 
prevalence.228 Humidity may improve AD by compensating for increased TEWL.229 Meanwhile, sub-thermogenic UV 
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light has been shown to reduce skin inflammation and may also reduce pruritus by direct or indirect effects on cutaneous 
sensory nerve fibers.230 It is possible that a subset of mild AD patients may benefit from the right amount of humidity and 
UV exposure at the right (moderate) temperature [Figure 1]. While cohort studies of children in Europe have observed 
FLG LoF mutation frequencies of 15.1–20.9% and 5.8–13.0% in AD and non-AD groups, respectively,231–236 Sasaki 
et al found no difference in FLG LoF mutation frequency between children with and without AD on a subtropical 
Ishigaki Island where humidity (monthly average, 60.8–78.7%) and temperature (monthly average, 18.5–29.4 °C) are 
elevated throughout the year.18 While this is an interesting suggestion that a genetic predisposition to AD may be 
abrogated by a beneficial environment in some patients, future randomized controlled trials are required to further assess 
the potential benefits of climate on AD.

Food
Ingestion of certain foods may exacerbate AD in select patients. Although rarely the cause, cow’s milk and hen’s egg are 
the most reported food triggers for AD in younger children.217 Pollen-related food allergies may be considered in older 
children and adults.215,217 Notably, avoidance of food is not indicated in management of most AD.237 It is not uncommon 
that patients or providers incorrectly suspect diet as the cause of AD and inaccurately assign food allergies; this not only 
results in inappropriate testing and dietary changes but may also result in neglect of established AD treatments and 
possibly even development of IgE-mediated food allergy.237,238 However, it is important for clinicians to be aware that 
the prevalence of food allergy is significantly higher in children with AD, as compared to healthy children. Therefore, 
timely prevention and proper diagnosis of food allergy in this population is warranted. While breastfeeding undoubtedly 
confers multiple physiological and psychological benefits to both mothers and children, the protective effect of 
breastfeeding against development of AD remains uncertain.239

Conclusion
The pathogenesis of AD involves genetic and environmental triggers and is marked by immune dysregulation. From 
a genetics standpoint, mutations result in skin barrier defects (ie, EDC, SP/SP inhibition, desmosome component 
variants) and immune system defects (ie, innate immunity, cytokine-related, antigen receptor signaling, IgE-related, 
and leukotriene-related variants) and dysregulation. Epigenetics may modulate the immune disarray. As the vast 
complexity of AD genetics is now apparent, we look to PRSs and GWAS for more comprehensive genetic signatures 
of AD. From an environmental standpoint, microbes (ie, S. aureus), aeroallergens (ie, HDM and pollens), air pollution 
(ie, PM2.5), and climate (ie, humidity, temperature, UV index, precipitation) are key contributors. Cutaneous dysbiosis 
may modulate AD by increasing susceptibility to S. aureus and fostering abnormal skin immunity and inflammation. 
Meanwhile, the right climate and/or commensals may improve AD for some patients. While food may trigger AD in 
a small subset of patients, we caution against excessive dietary avoidance and recommend prioritization of AD manage-
ment fundamentals.

Identification of AD offender genes and research into the dysregulated immune pathways has enabled the rapid 
expansion of precision medicine-based therapies.77 Dupilumab is an anti-IL4 receptor antibody that interferes with IL4 
and IL13 signaling and is approved for AD.240 It may also improve AD related to IL4/4R, IL13, DOCK8, CARD11, 
STAT3, SPINK5, ERBB2IP, and ZNF341 dysregulation.241–248 Tralokinumab targets IL13 and is approved for moderate to 
severe AD in adults.77 Topical ruxolitinib and oral upadacitinib, abrocitinib, and baricitinib (approved in Europe and 
Japan) are JAK inhibitors indicated for AD.249,250 Topical PDE4 inhibitor crisaborole is also approved for AD patients 
down to three months of age.76 Other biologics under study in the US include lebrikizumab, nemolizumab, and 
tezepelumab, which block IL13, IL31 receptor, and TSLP, respectively.76,251–253 At the epigenetic level, topical tapinarof 
is approved for psoriasis and is being studied for use in AD. Tapinarof may outcompete toxigenic ligands for AHR 
binding, resulting in downregulation of proinflammatory cytokines and normalization of the skin barrier.225,254,255 

Meanwhile, increasing recognition of the role of the microbiome in AD may lead to new therapies to re-balance 
pathogens and commensals on the skin. Cutaneous microbial transplantation and vaccines against S. aureus are two 
nascent strategies.256,257 Randomized controlled trials are also needed to evaluate climate as a modulator of AD.
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Explaining the genetic basis of AD to patients and families may improve compliance with moisturizers and topical 
anti-inflammatory medications based on their understanding that AD patients are inherently predisposed to skin barrier 
defects and cutaneous inflammation. Meanwhile, minimizing environmental triggers may lead to optimization of topical 
anti-inflammatory treatments and prevent the need for systemic therapy. Further studies in genetics and environmental 
triggers may lead to better AD treatments and possibly prevention of AD.
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