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Abstract: Solar ultraviolet radiation (UVR) is the primary pathogenetic factor in skin photoaging. It can disrupt cellular homeostasis 
by damaging DNA, inducing an inflammatory cascade, immunosuppression, and extracellular matrix (ECM) remodeling, resulting in 
a variety of dermatologic conditions. The skin microbiome plays an important role in the homeostasis and maintenance of healthy skin. 
Emerging evidence has indicated that highly diverse gut microbiome may also have an impact on the skin health, referred to as the gut- 
skin axis (GSA). Oral and topical probiotics through modulating the skin microbiome and gut-skin microbial interactions could serve 
as potential management to prevent and treat the skin photoaging by multiple pathways including reducing oxidative stress, inhibiting 
ECM remodeling, inhibiting the inflammatory cascade reaction, and maintaining immune homeostasis. In this review, the effects of 
oral and topical probiotics in skin photoaging and related mechanisms are both described systematically and comprehensively. 
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Introduction
The skin, as one of the largest organs, is most easily damaged by ultraviolet radiation (UVR) after long-term exposure to 
solar radiation. Photoaging is defined as premature aging of the skin as a result of repeated exposure to solar UVR1–3 

Figure 1. The majority of age-related skin disorders are caused by photoaging. Clinical manifestations of skin photoaging 
include wrinkles, discoloration, telangiectasias, and dry and roughed appearance.4–7 These are associated with the 
pathophysiological changes of various cells and tissues in both the epidermis and dermis. For instance, wrinkles, as 
the most obvious clinical feature of photoaging, are mainly induced by a decrease in dermal fibroblasts, as well as slower 
collagen and elastin synthesis rate but a faster breakdown rate.8,9 Skin photoaging not only affects the esthetic appearance 
but also damages the normal skin barrier function, increasing the risk of skin inflammatory diseases and even 
malignancies.10–12

A stable and healthy skin microenvironment is significantly influenced by the skin microbiome, which is primarily 
composed of bacteria including Cutibacterium, Corynebacterium, Staphylococcus and Streptococcus.13 The skin microbiome, 
like the gut microbiome, plays an important role in protecting against external pathogens, regulating immune responses, and 
catabolite repression.14 Studies have shown that the skin microbiome is not static and unchanging, but is always influenced by 
age or physiological structure aging.15 Changes in metabolic capacity, oxidation resistance capacity (cofactor and vitamin 
metabolism), membrane integrity and cell signaling capacity (glycolipid metabolism), lipid metabolism capacity (glycolipid 
metabolism and fatty acid biosynthesis), and pathogen resistance (antibiotic biosynthesis) were all negatively correlated with 
the degree of photoaging.16–18 Additionally, UVR also acts as an important external factor in inducing skin microecological 
changes. Probiotics are active microorganisms that have beneficial effects on the host by altering the microbiota composition 
of a specific part of the host’s flora.19 Numerous studies have found a close relationship between the skin microbiome and skin 
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health and stability.20 The gut-skin axis indicates the relationship where the gut microbiome can also influence the skin health 
for its immunological properties. The positive regulation of the skin or gut microbiome by oral or topical probiotics has 
emerged as potential methods for preventing skin photoaging clinically. Oral probiotics are a group of living microorganisms 
that could change the gut microbiota that may induce a photoprotective effect on specific skin cells directly by modulating the 
immune response and inflammatory cytokines. Additionally, they can also increase serum levels of short chain fatty acid 
(SCFAs) and acetate, thereby inducing a series of immune and inflammatory response. Topical applications of probiotics have 
been studied as a means directly modifying the skin microbiome to prevent and treat the skin photoaging. Additionally, oral or 
topical probiotics are crucial in the management of other common cutaneous disorders such as atopic dermatitis,21 acne,22 

rosacea,23 and psoriasis24–26 through modulating the skin microbiome and gut-skin microbial interactions. The role of oral and 
topical probiotics in photoaging and related mechanisms are discussed in this article Figure 2.

The Pathogenesis of Photoaging Induced by UVR
UVR can be classified into three types based on wavelength: UVA (320–400 nm), UVB (280–320 nm), and UVC 
(280–320 nm).27,28 Among them, UVC is completely absorbed by the ozone layer, and both UVA and UVB are major 
contributors to skin disorders.29,30 There are obvious differences in the changes in skin structure and function caused 
by the different wavelengths of UV. UVA accounts for 90–95% of the total UV and has a high penetration ability. UVA 
can penetrate the dermal papillary layer and affect cell components in the dermis and even subcutaneous tissue areas, 
such as fibroblasts, vascular endothelial cells, and Langerhans cells, as well as activate the matrix metalloproteinases 
(MMPs), which promote the degradation of collagen (mainly type I and type III collagen) and elastic fibers, resulting 
in dermal structure disorder. This type of damage is difficult to repair and has long-term effects on dermal tissue, 
resulting in skin relaxation, sagging, abnormal increase in wrinkles, and other macroscopic photoaging damage.31,32

Cellular DNA, RNA, and Protein Damage
As the most abundant chromophore, DNA strongly absorbs UVR.33–35 When the skin epidermis absorbs UVR, 
pyrimidine bases in DNA combine with adjacent pyrimidines, resulting in the formation of cyclobutane-pyrimidine 
dimers and pyrimidine-pyrimidine (6–4) photoproducts. The latter causes mutations in functional base genes, seriously 

Figure 1 The mechanism of UV-induced skin photoaging.
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affecting the health of the epidermal system.33,36,37 Longwave and shortwave UVR can both cause DNA damage but in 
different ways. Shortwave UVB and UVC can directly cause pyrimidine dimerization, inhibit plasmid DNA replication, 
or induce mutations after error repair. Long-wave UVA generally does not directly cause DNA damage but causes gene 
mutations via the production of excessive reactive oxygen species (ROS).38,39 Additionally, UVR also damages cellular 
RNA. The mRNA would not be properly translated and transcribed, affecting signal transduction.40 UVR can also induce 
cellular amino acid mutations, affect protein synthesis and even lead to cell cycle arrest and apoptosis. These mutations 
can eliminate the apoptotic capacity of cells, promoting the occurrence and development of cutaneous malignancies.41

Abnormal Photooxidative Stress Pathway
The major regulatory pathways of photooxidative stress consist of mitogen-activated protein kinase (MAPK), nuclear 
factor-κB (NF-κB), Janus kinase (JAK), and nuclear respiratory factor-2 (Nrf-2). The MAPK signaling pathway activates 
the expression of MMPs by activating activator protein-1 (AP-1) via the receptor tyrosine kinase signaling pathway, 
which is regulated by extracellular signal kinase 1/2, c-Jun N-terminal Kinase (JNK), and p38 protein.42–44 JNK and p38 
signaling pathways play key roles in UVR-mediated increase in expression of AP-1 and cyclooxygenase-2 (COX-2), 
which are both targets for anti-skin photoaging and carcinogenesis therapy.45 Nrf-2 is a target of UV radiation. Nrf-2 
regulates the expression of endogenous antioxidants such as glucose-6-phosphate dehydrogenase, thioredoxin reductase, 
glutathione-S-transferase, and peroxidases.46 Oxidative stress also activates the NF-κB by activating the cytoplasmic 
inhibitor of NF-κB (I-κB) kinase, which phosphorylates and degrades I-κB. Activation of NF-κB is related to UVR- 
mediated oxidative modification of cell membrane components. NF-κB was released from its inhibitor I-κB, contributing 
to translocation of activated NF-κB to the nucleus and the activation of inflammatory cytokines and prostaglandins.47,48

UVR-Induced Mitochondrial Dysfunction
Mitochondria play an important role in oxidative reactions. UVR can induce mitochondrial DNA mutation, impair 
mitochondrial function, and decrease O2 consumption and ATP production, thereby affecting cell migration and 
division.49 UV-induced mitochondrial dysfunction and toxicity mechanisms include activation of cysteine-containing 
aspartate proteolytic enzyme, membrane depolarization, and cytochrome C release.50 Above all, mitochondrial 

Figure 2 The role of probiotics against skin photoaging through multiple pathways. 
Abbreviations: UVA, ultraviolet -A; UVB, ultraviolet -B; ROS, reactive oxygen species; NF-κB, nuclear factor-κB; ERK, extracellular regulated protein kinases; MAPK, 
mitogen-activated protein kinase; JAK, Janus kinase; AP-1, activator protein-1; MMP, matrix metalloproteinase; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; AGEs, 
advanced glycation end products; ECM, extracellular matrix.
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dysfunction not only affects activities required for cellular energy expenditure, such as DNA repair but also increases 
oxidative stress levels, causing the production of ROS. When mitochondria damage and ROS production exceed a certain 
threshold, cell senescence and even death may occur.51 Nrf-2 also plays a role in maintaining cellular redox balance by 
regulating mitochondrial respiration.52

Inflammatory Cascade Induction
UVR induces the expression of proinflammatory genes. Inflammatory mediators play an important role in skin 
photoaging.53 They are released from keratinocytes, fibroblasts, tumor cells, leukocytes, and vascular endothelial cells, 
including plasma mediators (bradykinin, plasmin, and fibrin), lipid mediators (prostaglandins, leukotrienes, and platelet- 
activating factors), and inflammatory cytokines (interleukin-1 [IL-1], IL-6, and tumor necrosis factor-α [TNF-α]).54,55 

ROS-activated COX-2 and prostaglandin E2 (PGE2) are involved in the activation of ornithine decarboxylase and 
regulate cell proliferation.56–58 UVR activates subcutaneous inflammatory cytokines, which trigger ROS and reactive 
nitrogen to produce peroxynitrite, leading to DNA deletion and recombination.59,60 UVR alters the expression of 
transforming growth factor-β (TGF-β), which causes extracellular matrix (ECM) remodeling by regulating MMPs and 
thus promotes skin photoaging.61

In vivo Immune Suppression
UVR primarily reduces cellular immunity but can also affect humoral immunity.62 UVR depletes epidermal Langerhans cells, 
which have been identified as important mediators of cellular immune response that are involved in antigen presentation.63 

UVR not only reduces the number of Langerhans cells but also disrupts their functions, such as lymphocyte migration and 
surface antigen expression. Long-term UVR reduces the expression of costimulatory molecules on the Langerhans cells, 
which inhibits the synthesis of membrane-associated antigens B7 (B7-1, B7-2).64 UVR causes Langerhans cell depletion, 
which increases macrophage levels in the epidermis, activates regulatory T cells (Tregs), dysregulates the immune balance of 
T helper 1/2 cells (Th1/ Th2), and polarizes the Th1/ Th2 response to Th2.65 The immunosuppressive effect of Th2 response 
polarization may be related to IL-12 because IL-12 depletion causes T cell activation in favor of Th2 and promotes Treg 
activation.66–68

Induction of ECM Remodeling
Collagen and elastin are both functional structural proteins of the ECM that promote angiogenesis and metastasis through 
remodeling. Damaged collagen and elastin are always the sensitizers of photooxidative stress. The specific properties of 
various collagens are dependent on the length of the triple helical segments, triple helical breaks, and amino acid 
modifications. Elastin fibers consist primarily of an elastin core (90%) surrounded by fibrillar microfibrils. The elastic fibers 
in the skin lose their normal structure and function when exposed to UVR. UVR also depletes the microfiber network in the 
epidermis-dermis and dermis, generating abnormal elastic fibers.69,70 During the process of ECM remodeling, ECM 
proteolytic enzymes (MMPs and elastase) are generated by epidermal keratinocytes and fibroblasts. Their basal levels rise 
with age and further increase due to environmental pollutants and UVR as a result of the breakdown of collagen and 
elastin.71–73 The transcription factor AP-1 is mainly activated by the MAPK signaling pathway, which can stimulate the 
transcription of a variety of MMPs, including MMP-1, MMP-2, MMP-9, and MMP-3, thereby degrading the ECM. 
Furthermore, AP-1 suppresses the transcription of the type I collagen gene.74,75 The enhanced degradation of ECM by 
MMPs and the decreased expression of ECM structural proteins further damage the ECM and tissue integrity. Tissue 
inhibitors of MMPs (TIMPs) inhibit the affinity of MMPs. The remodeling of collagen and elastin in angiogenesis, 
metastasis, and tissue destruction is mainly due to increased MMP expression and decreased TIMP expression.76,77

Mechanism of Probiotics in Photoaging
Positive Modulation of Gut-Skin Microbial Interaction by Oral Probiotics
Oral probiotics act directly on the gut microbiota and rapidly restore the homeostasis of gut microbiome, which play 
a vital role in the skin homeostasis. That depends on the important structural basis, gut-skin axis (GSA).78 The disrupted 
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GSA is associated with various dermatologic condition, including skin photoaging. Despite that the exact mechanism of 
gut-skin microbial interactions has not been clarified, it has been postulated that changes to the gut microbiota could 
trigger the systemic inflammation and abnormal immune response that disrupt the skin health.79 Gut microbiota or its 
metabolic products could migrate from gut into the circulation and accumulate in the skin owing to the increased 
intestinal permeability, which may damage the skin barrier and make its susceptible to inflammation.80 Thereby, oral 
probiotics could reverse these dermatologic conditions through the positive modulation of gut-skin microbial interaction.

Oxidative Stress Level Reduction
The pathophysiology of skin photoaging is closely associated with ROS-induced damage, including the activation of the 
MAPK and NF-kB signaling pathways, reduction in MMP synthesis, and production of collagen, thereby leading to skin 
photoaging. Shin et al81 demonstrated that topical fermentation of Agastache rugosa-fermented extract (ARE-F) with 
a probiotic Lactobacillus enhances UVB-induced levels of total glutathione and superoxide dismutase activity while 
decreasing UVB-induced ROS, MMP-2, and MMP-9 levels in UV-B-irradiated Hacat keratinocytes. Im et al82 found that 
topical Lactobacillus acidophilus IDCC 3302 protected against UVB-induced photodamage to epidermal cells by enhancing 
the activity of skin antioxidant enzymes, hydration factors and suppressing the MMP levels through the inhibition of MAPK 
signaling pathway. Lim et al83 found that topical Lactobacillus acidophilus KCCM12625 has a good antioxidant effect, and 
can significantly reduce the elevated ROS level in HaCaT cells following UVB irradiation, and alleviate skin photoaging 
caused by oxidative damage. Ishii et al84 proposed that oral administration of Bifidobacterium breve Yakult could prevent ROS 
production and attenuate UV-induced skin barrier damage and oxidative stress in animal experiments. Kang et al85 demon-
strated that a topical plant extract fermented with Lactobacillus buchneri alleviated the effect of ROS in a UVB-induced 
photoaging in vitro model by increasing the synthesis of type I procollagen, inhibiting elastase activity, and increasing the 
expression of UVB-induced MMPs on HaCaT keratinocytes and dermal fibroblasts. Chen et al86 found that topical 
Limosilactobacillus fermentum XJC60 was able to stabilize mitochondrial function, reduce ROS production in UVB- 
injured skin cells, and thereby maintain the skin health. Additionally, recent studies have demonstrated oxidation resistance 
as the major mechanism by which Lacticaseibacillus rhamnosus GG (ATCC 53103, LGG)87 and Lacticaseibacillus casei 
strain Shirota attenuate skin photoaging.88

Inflammatory Cascade Inhibition
Increased skin inflammatory factors cause destruction of the barrier function, transepidermal water loss (TEWL), 
increased epidermal permeability, and accelerated skin photoaging. Satoh et al demonstrated that oral administration 
of Bifidobacterium breve B-3 in UV-irradiated mice effectively reduced UV-induced IL-1β production in the skin. 
Resultantly, TEWL, skin hydration, and epidermal thickening were suppressed.89,90 Besides the antioxidant properties, 
topical Lactobacillus acidophilus IDCC3302 can also inhibit the production of pro-inflammatory cytokines mediated by 
the MAPK signaling pathway and reduce skin inflammation induced by UVB radiation.82 To manage skin photoaging, 
Khmaladze et al found that topical Lactobacillus reuteri DSM 1793891 had anti-inflammatory activity against the IL-6 
and IL-8 induced by UVR. Keshari et al92 found that butyric acid from a new generation of topical probiotic 
Staphylococcus epidermidis could down-regulate the UV-induced pro-inflammatory IL-6 cytokine via short-chain fatty 
acid receptor. Hong et al93 demonstrated that orally administered oligosaccharides modulate inflammatory immune 
responses induced by UVR to reduce the TEWL and sunburn erythema, thereby preventing skin photoaging.

Maintaining the Immune Homeostasis
Some specific probiotics like Lactobacillus paracasei promote immune responses to eliminate pathogens.94 Additionally, 
they can suppress unnecessary immune responses to maintain immune balance against chronic inflammatory conditions. 
This could be attributed to the regulation of the number of Tregs by probiotics. The Tregs play a significant role in the 
immunosuppression resulting from skin photoaging. Lactobacillus johnsonii prevents UVR-induced reduction in the 
density of epidermal Langerhans cells and accelerates the restoration of cutaneous immune homeostasis after UV-induced 
immunosuppression. Additionally, probiotics play different roles in different immune conditions. Under physiological 
conditions, probiotics can reduce chemotaxis of cytotoxic T cells to attacked skin, increase Treg recruitment, increase 
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Treg differentiation, induce functional impairment of CD8+ T cells, and quiescent dendritic cell activation, all of which 
regulate the activation and function of T cell subsets. Gauthier et al95 conducted three clinical trials to assess the effect of 
a dietary supplement (DS) containing Lactobacillus johnsonii and nutritional carotenoids on early UVR-induced skin 
damage. The findings reveal that DS intake has a beneficial effect on the long-term and repeated effects of UV exposure, 
and is more targeted on photoaging. Kim et al96 found that dietary supplements containing Bifidobacterium. Longum and 
galacto-oligosaccharide protected the skin from UVB-induced photoaging due to their anti-inflammatory and antioxidant 
properties. Additionally, they increased serum levels of short chain fatty acid (SCFAs) and acetate, which have been 
proven to increase and activate skin-resident Tregs that are dependent on histone acetylation.

ECM Remodeling Inhibition
ROS levels increase following UVR exposure, resulting in elevated levels of MMPs, degradation of skin collagen and 
elastin, as well as skin roughness, sagging, and wrinkling. In addition to directly reducing ROS levels, probiotics can 
indirectly modulate MMP expression in skin cells, reducing collagen and elastin degradation after UVR exposure.97 

Topical Lactobacillus acidophilus KCCM12625 can also reduce the mRNA expression of MMP-1 and MMP-9 during 
skin photoaging by disrupting the AP-1 signaling pathway of skin cells while increasing procollagen expression and 
reducing dermal collagen protein loss.83 Kim et al98 also demonstrated that oral Lactobacillus plantarum HY7714 
reduced the excessive MMP-13 transcription level and the activities of MMP-2 and MMP-9 in UVB-damaged cells by 
inhibiting the activation of the JNK/AP-1 signaling pathway. You et al99 found that oral Lactobacillus sakei can inhibit 
the expression of AP-1 by blocking the MAPK signaling pathway to increase collagen in dermal fibroblasts and delay 
skin photoaging. Shirzad et al100 found that extracellular Lactobacilli exopolysaccharides (LEPS) can downregulate the 
expression levels of MMP-1, MMP-2, MMP-3, MMP-9, and MMP-10, and upregulate TIMPs. It was found that LEPS of 
B9-1 from L. casei can enhance the anti-collagenase and anti-elastase activities in skin cells, and effectively reduce the 
degradation of collagen after UVR exposure. Kang et al85 found that topical extracts obtained from Lactobacillus brucei- 
fermented plants in kimchi could effectively inhibit UVB-induced elastase activity and expression of MMPs, and 
promote the synthesis of type I procollagen. Negari et al101 demonstrated that the metabolites from the topical probiotic 
Staphylococcus epidermidis of Cetearyl isononanoate (CIN) as a potential carbon source could repair impaired collagen 
and induced the synthesis of collagen through phosphorylated extracellular signal regulated kinase (p-ERK) activation, 
thereby preventing the skin photoaging.

Conclusion
Above all, UVR can induce skin photoaging in various ways. It can directly damage the cellular DNA, RNA, and 
proteins, disrupting skin homeostasis and health. UVR can also induce the production of intracellular ROS, further 
damaging the DNA. Additionally, UVR can induce the abnormal expression of the photooxidative stress pathway, 
mitochondrial dysfunction, inflammatory cascade, and immune suppression in vivo. These factors together promote kin 
photoaging. Oral and topical probiotics have been proven to be effective in protecting the skin from UV damage and 
might emerge as an excellent potential treatment option for skin photoaging. The associated mechanisms mainly include 
positive modulation of gut-skin microbial interaction, reduction of oxidative stress level, inhibition of the inflammatory 
cascade, maintenance of immune homeostasis, and inhibition of ECM remodeling. With the advancement of scientific 
research, a growing amount of evidence will confirm the significance of oral and topical probiotics in skin photoaging. 
Based on the current study, there is a need to further explore the role of probiotics in skin photoaging from multiple 
perspectives, including probiotic categories, application method, application conditions, and anti-photoaging molecular 
mechanisms to develop more novel and effective microecological strategies to protect UVR-irradiated skin and delay 
photoaging.
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