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Background: The immune system plays a fundamental role in the pathophysiology of sepsis, and autophagy and autophagy-related 
molecules are crucial in innate and adaptive immune responses; however, the potential roles of autophagy-related genes (ARGs) in 
sepsis are not comprehensively understood.
Methods: A systematic search was conducted in ArrayExpress and Gene Expression Omnibus (GEO) cohorts from July 2005 to 
May 2022. Machine learning approaches, including modified Lasso penalized regression, support vector machine, and artificial neural 
network, were applied to identify hub ARGs, thereby developing a prediction model termed ARG classifier. Diagnostic and prognostic 
performance of the model was comprehensively analyzed using multi-transcriptome data. Subsequently, we systematically correlated 
the ARG classifier/hub ARGs with immunological characteristics of multiple aspects, including immune cell infiltration, immune and 
molecular pathways, cytokine levels, and immune-related genes. Further, we collected clinical specimens to preliminarily investigate 
ARG expression levels and to assess the diagnostic performance of ARG classifier.
Results: A total of ten GEO and three ArrayExpress datasets were included in this study. Based on machine learning algorithms, eight 
key ARGs (ATG4C, BAX, BIRC5, ERBB2, FKBP1B, HIF1A, NCKAP1, and NFKB1) were integrated to establish ARG classifier. 
The model exhibited excellent diagnostic values (AUC > 0.85) in multiple datasets and multiple points in time and superiorly 
distinguished sepsis from other critical illnesses. ARG classifier showed significant correlations with clinical characteristics or 
endotypes and performed better in predicting mortality (AUC = 0.70) than other clinical characteristics. Additionally, the identified 
hub ARGs were significantly associated with immune cell infiltration (B, T, NK, dendritic, T regulatory, and myeloid-derived 
suppressor cells), immune and molecular pathways (inflammation-promoting pathways, HLA, cytolytic activity, apoptosis, type-II 
IFN response, complement and coagulation cascades), levels of several cytokines (PDGFRB, IL-10, IFNG, and TNF), which indicated 
that ARG classifier/hub ARGs adequately reflected the immune microenvironment during sepsis. Finally, using clinical specimens, the 
expression levels of key ARGs in patients with sepsis were found to differ significantly from those of control patients, and ARG 
classifier exhibited superior diagnostic performance, compared to procalcitonin and C-reactive protein.
Conclusion: Collectively, a diagnostic and prognostic model (ARG classifier) based on eight ARGs was developed which may assist 
clinicians in diagnosis of sepsis and recognizing patient at high risk to guide personalized treatment. Additionally, the ARG classifier 
effectively reflected the immune microenvironment diversity of sepsis and may facilitate personalized counseling for specific therapy.
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Introduction
Sepsis, a life-threatening end-organ dysfunction characterized by a dysregulated host-response to infection, is a leading 
cause of death of patients in intensive care units.1 The prognosis of patients with sepsis has improved to some extent in 
the past decade; however, according to the recommendations of the Surviving Sepsis Campaign, the current mortality rate 
(25–50%) remains very high.2 Rapid diagnosis and timely intervention are critical to reducing the mortality of sepsis, 
which increases with each hour of treatment delay.3 Additionally, the classification and identification of high-risk sepsis 
patients may aid physicians to screen individuals who could benefit from additional monitoring and treatment or to detect 
immune states which are most likely to benefit from targeted immunomodulatory agents, and thus ultimately improve 
outcomes.4 Thus, enabling clinicians to diagnose sepsis victims, forecast their survival, and classify sepsis in a timely 
manner is important for achieving a favorable outcome.

As sepsis is a highly complex disease and its clinical assessment is frequently challenging, additional use of 
biomarkers for rapid diagnosis and identification of high-risk patients is a promising strategy. So far, no circulating 
blood biomarkers, clinical scoring systems, or immune response signatures can detect sepsis or recognize high-risk 
patients with acceptable certainty, which was attributed to the intricate pathophysiology and heterogeneity of sepsis.5 

Therefore, there is an extremely urgent need to establish new biomarkers or algorithms for early diagnosis, risk 
stratification, prognostication, and recognition of immune status during sepsis.

Autophagy is a highly evolutionarily conserved process for the recycling and degradation of cytoplasmic constituents, 
which includes the formation of the autophagosome, lysosomal fusion of autophagosomes, and degradation of products.6 

Autophagy is indispensable for maintaining cellular homeostasis and is involved in the pathophysiology of multiple 
diseases. In the early stage of sepsis, autophagy is activated by various cellular stressors (pathogen infection and 
organelle damage) and occurs in various organs, as manifested by enhanced accumulation of autophagic vacuoles and 
increased expression of autophagy-related molecules.7 Innate and adaptive immune mechanisms are central to the 
pathophysiology of sepsis. The immune process involves interactions of various immune cells, and any dysfunction 
may result in the inhibition of immune functioning. Neutrophil autophagy induction primes neutrophil extracellular trap 
(NET) formation and vice versa.8 Augmentation of autophagy improved survival through a NET-dependent mechanism 
in a mouse model of sepsis, and mice with lymphocyte-specific ATG5 deletion or ATG5 knockout show increased 
production of interleukin-10 and apoptosis of CD4+ T cells and down-regulated antigen presentation molecules in 
immune cells, leading to the occurrence of immunosuppression, or even death.9,10 Thus, autophagy and autophagy- 
related molecules play an important role in innate and adaptive immune responses during sepsis. Autophagy is a complex 
process involving multiple signaling pathways, and the various signaling pathways exert various functions during 
diseases. Currently, the role of most autophagy-related molecules during sepsis remains largely elusive. Therefore, in- 
depth understanding of the potential roles of autophagy-related molecules during sepsis is crucial for earlier diagnosis, 
evaluation of the prognosis, and for guiding immunostimulatory therapy.

The availability of a large number of transcriptomic profiling databases provides an unprecedented opportunity for 
comprehensive characterization of autophagy-related genes (ARGs). We hypothesized that the identification of key 
ARGs may help identify sepsis before the onset of clinical signs, estimate the prognosis and reflect immune micro-
environment of septic patients. To test this, we used machine learning approaches to identify hub ARGs and constructed 
an algorithm termed ARG classifier. We then comprehensively evaluated the diagnostic and prognostic performance of 
ARG classifier, and we systematically investigated the relationship between ARG classifier/hub ARGs and the immune 
microenvironment. Finally, we preliminarily validated the key ARGs expression level and diagnostic value of ARG 
classifier from clinical specimens.

Materials and Methods
Sample Selection and Dataset Collection and Processing
We conducted a search using the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo) and ArrayExpress 
(http://www.ncbi.nlm.nih.gov/geo) databases with a range from July 2005 to May 2022 to identify relevant transcrip-
tomic profiling datasets. Datasets that met the following criteria were included: 1) organism: Homo sapiens; 2) 
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expression profiling by array or high throughput sequencing; 3) adult patients (≥18 years old); 4) sample size ≥50. In 
total, ten GEO and three ArrayExpress cohorts were included for qualitative and quantitative analyses. Dataset details are 
shown in Table 1. Additionally, 222 ARGs were retrieved from the Human Autophagy Database (http://autophagy.lu/)).11 

All data were preprocessed, including background correction, quantile normalization, and summarization, through robust 
multi-array average analysis.12

Clinical Specimens
Forty adult patients in our hospital, including 20 septic patients who were diagnosed with sepsis according to the Third 
International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)1 and 20 non-septic patients (13 postoperative 
patients and 7 cardiovascular patients), were included. All procedures involving human participants were approved by the 
institutional review board (Ethics Committee) of the Shunde Hospital, Southern Medical University (SRSP2021010). 
Peripheral blood samples and corresponding clinical data were collected at admission. Peripheral blood mononuclear 
cells (PBMCs) were isolated within 4 h after collection.

Identification of Differentially Expressed ARGs and Functional Enrichment Analysis
Differential analysis of five transcriptome datasets (GSE57065, GSE65682, GSE69528, GSE69063, and GSE95233) was 
conducted using the NetworkAnalyst online-Gene Expression Table (https://www.networkanalyst.ca/). Adjusted p-values 
<0.05, and |log2 FC (fold-change)| >1 were used as thresholds for screening differentially expressed genes (DEGs). The case 
groups comprised septic patients, according to Sepsis-2 or Sepsis-3,1 and control groups included healthy population or non- 
sepsis patients, as defined by the different databases. The overlapping differentially expressed ARGs (DEARGs) were visualized 
using R software with the package UpSetR. Subsequently, principal component analysis (PCA) based on DEARG expression 
levels was performed on multi-transcriptome data, and we extracted principal components 1 and 2 which acted as X-axis and 
Y-axis, respectively. Finally, DEARGs were subject to gene ontology (GO) enrichment analysis, including molecular functions, 
cellular components, and biological processes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.

Identification of Hub ARGs and Construction of the ARG Classifier Algorithm
To select reliable hub ARGs, machine learning approaches with 10-fold cross-validation, including modified least absolute 
shrinkage and selection operator (Lasso) penalized regression and support vector machine (SVM), were applied to select 
feature variables from DEARGs. The hub ARGs were retained from the intersection of the result of Lasso and SVM.

Table 1 Dataset Included in the Study

Accession Cohort Description Timing of Gene Expression 
Profiling

Country Normal/ 
Control Sample

Mortality/ 
Sepsis Sample

GSE54514 Sepsis Day1/2/3/4/5 of ICU admission Australia 36 31/127

GSE57065 Septic shock 0h/24h/48h of ICU admission France 25 –/82

GSE63042 Sepsis/SIRS Day of enrollment upon 
presentation to the ED

United States 23 28/106

GSE65682 Sepsis due to CAP and 

HAP +AS

On ICU admission Netherlands 

and UK

42 48/231

GSE69063 Sepsis 0h/1h/3h of ICU admission Australia 33 –/57

GSE69528 Sepsis due to CAP On ICU admission USA 55 -/83

GSE95233 Septic shock Day1/3 of ICU admission France 22 34/102
GSE106878 Septic shock 0h/24h of ICU admission Germany – 26/94

GSE131761 Septic shock On ICU admission Spain 15 –/114

GSE154918 Septic shock Day 1 of ICU admission Germany 40 –/53
E-MTAB-4421 Septic shock On ICU admission UK – 56/265

E-MTAB-4451 Sepsis due to CAP On ICU admission UK – 57/114

E-MTAB-7581 Septic shock At enrollment UK – 48/176

Abbreviations: CAP, community-acquired pneumonia; HAP, hospital-acquired pneumonia; AS, abdominal sepsis; SIRS, systemic inflammatory response syndrome; ICU, 
intensive care medicine; ED, emergency room.
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We then built and trained artificial neural network (ANN; input layer, hidden layer, and output layer) models. In each 
hidden node, we used ReLU (rectified linear unit) as an activation function. In the output layer, we created two nodes (O1 
and O2, for survivor and death, respectively). We applied a softmax function to each node and designated y2 (probability 
of death/sepsis; that is, the O2 node) as Y. We applied cross-entropy error as a loss function (E) and optimized the value 
of each weight with the Adam method (learning rate 0.001; 1000 epochs).13 After training, we utilized the weights of the 
nodes (“NeuralNetworkWeight”) to calculate the ARG score according to the following equation: 
NeuralSepsis ¼ ∑ GeneExpression� NeuralNetworkWeightð Þ. Based on the median value of the ARG score, patients 
were categorized into low ARG and high ARG subgroups.

Diagnostic, Risk Stratification, and Prognostic Performance of ARG Classifier
The diagnostic performance of the ARG classifier was evaluated in multiple datasets and at multiple points in time. 
Additionally, PCA was used to assess the discrimination ability (sepsis vs other critical illnesses (such as head trauma, 
SIRS, uninfected control in ICU)).

We explored the correlation of ARG classifier with clinical characteristics (such as age, APACHEII) or phenotypes 
and compared the ARG score in different sepsis subgroups.

Univariate and multivariate logistic regression analyses were performed to determine whether the predictive power of 
ARG classifier remained independent of other clinical characteristics.

Clinical Applicability of ARG Classifier
Multiple receiver operating characteristic (ROC) analysis was carried out to compare the prognostic performance of 
ARG classifier against age, sepsis response signature (SRS), Molecular Diagnosis and Risk Stratification of Sepsis 
(MARS), and APACHE II. A decision curve analysis (DCA) was applied to evaluate the clinical applicability of ARG 
classifier.

Immune Cell Infiltration
To improve statistical power in immune microenvironment analysis, we integrated GEO and ArrayExpress datasets for 
subsequent analysis. Batch effects were adjusted for different datasets using the ComBat function of the “sva” R package.

The relative abundance of infiltrating immune cells was inferred using the CIBERSORTx tool and the ssGSEA 
algorithm. We investigated the differential composition of immune cells between different ARG subgroups. Spearman 
correlation analyses were performed to analyze the relationships of ARG classifier/hub ARGs with immune cells.

Immune and Molecular Pathways
Gene set variation analysis (GSVA) of a given dataset was applied to evaluate the enrichment degree of pre-specified 
biological processes (immune/inflammation-related pathways, apoptosis; Supplementary Table 1). We explored differ-
ences in biological processes among different ARG patterns, and we conducted a correlation analysis to further elucidate 
the association between ARG classifier/hub ARGs and several selected related biological pathways.

Cytokines
A panel of 18 inflammatory cytokines was compiled according to a previous review.14 We compared cytokine expression 
levels among different ARG subtypes. Additionally, we examined the correlation between ARG classifier/hub ARGs and 
pivotal cytokines using Spearman correlation analyses.

Correlation Between Hub ARGs, Immune-Related Genes and HLA-Related Genes
To initially illustrate the biological function of hub ARGs in the occurrence and development of sepsis, we tested 
correlations between hub ARGs, previously published eight immune-related genes15 and 5 HLA-related genes.14 

Additionally, we used Cytoscape software to visualize network regulation relations among these genes.
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RNA Isolation and Reverse-Transcription Quantitative Polymerase Chain Reaction 
(RT-qPCR)
Expression of hub ARGs in PBMCs was measured using RT-qPCR. Total RNA was isolated from PBMCs with Trizol reagent 
(Invitrogen, Carlsbad, CA, USA) and was reverse-transcribed to cDNA using Maxima First Strand cDNA Synthesis Kit 
(Thermo Fisher Scientific, Waltham, MA, USA). RT-qPCR was conducted using the CFX96TM Real-Time system (Bio-Rad, 
Hercules, CA, USA). The results were standardized with GAPDH. PCR primers are shown in Supplementary Table 2.

Statistical Analyses
R software (version 4.0.4) and SPSS 22 were used to perform statistical analyses. Student’s t-tests, Wilcoxon tests, Chi- 
squared tests, and one-way ANOVA were used to test differences. Diagnostic and prognostic ability was evaluated using 
an ROC curve to assess the area under the curve (AUC). Statistical significance is reported at p < 0.05 (two-sided).

Results
Identification of DEARGs and Functional Enrichment Analysis
A flow diagram of the research design is shown in Figure 1. Using the NetworkAnalyst online-Gene Expression Table, 
we identified 845 DEGs in GSE57065 datasets, 1194 DEGs in GSE65682 datasets, 1233 DEGs in GSE69528 datasets, 
1044 DEGs in GSE69528 datasets, and 949 DEGs in GSE95233. After identifying the overlap of the results of the above 
datasets and ARG cohorts, we obtained 41 DEARGs shared by ≥5 results (Figure 2A). PCA showed that the expression 
of these DEARGs completely distinguished sepsis samples from healthy control, uninfected control, and control patient 
samples (Figure 2B–L). Additionally, the GO term enrichment analysis of DEARGs produced the top 15 significant 
clusters of enriched sets (Figure 2J), including macroautophagy, autophagy of mitochondria, autophagosome, and 
autophagosome membrane. Regarding the KEGG enrichment analysis of DEARGs, they were mainly involved in 
autophagy – animal, autophagy – other, mitophagy – animal, HIF-1 signaling pathways (Figure 2K). The above analyses 
indicated a crucial role regarding the imbalance of ARGs expression (autophagy) in the development of sepsis.

Identification of Hub ARGs and Construction of ARG Classifier
To identify prognosis-related genes (sepsis-specific genes), we used the expression data of 41 DEARGs as input for 
a machine learning model. Modified Lasso penalized regression was used to shrink and select out candidate ARGs in 
multi-transcriptome cohorts, as shown in Figure 3A (GSE54514 dataset), Figure 3B (GSE63042 dataset), Figure 3C 

Figure 1 The illustrations for this study. The overall protocol utilized in the current study to comprehensively characterize of costimulatory molecule gene for diagnosis, 
prognosis and recognition of immune microenvironment features in sepsis. 
Abbreviations: ARGs, autophagy-related genes; DEARGs, differentially expressed autophagy-related genes.
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Figure 2 Identification of differentially expressed ARGs in sepsis and Functional enrichment analysis. (A) An UpSet diagram exhibited the interactions result of GEO 
datasets difference analysis and ARG cohorts. (B–I) Principal component analysis for the expression profiles of DEARGs to distinguish sepsis patients from healthy control/ 
uninfected control/control patients in multi-transcriptome cohorts. (B) GSE54514 datasets; (C) GSE57065 datasets; (D) GSE65682 datasets; (E) GSE69063 datasets; (F) 
GSE69528 datasets; (G) GSE95233 datasets; (H) GSE131761 datasets; (I) GSE154918 datasets. (J and K) Bubble plots illustrating functional enrichment analysis using 
DEARGs. (J) The top 15 significant terms of Gene Ontology (GO), including the molecular function (MF), cellular component (CC), and biological process (BP). (K) The top 
15 significant pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched.
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(GSE65682 dataset), and Figure 3D (GSE95233 dataset). SVM was also established to identify candidate ARGs based on 
minimum root mean square error (Figure 3E–H).

After combining the ARGs selected by Lasso and SVM, we obtained eight hub ARGs (ATG4C, BAX, BIRC5, 
ERBB2, FKBP1B, HIF1A, NCKAP1, and NFKB1) shared by ≥7 results (Figure 3I). Based on the eight key ARGs, we 
constructed a prognostic and diagnostic model, termed ARG classifier.

ANN analysis was performed to optimize the weight of each gene based on the expression transformation of eight 
hub ARGs (sepsis-specific genes). The ANN model contained eight input layers, four hidden layers, and two output 
layers (Figure 3J). The sepsis-specific scoring model (ARG score) was calculated by the summation of 
“GeneExpression” × “NeuralNetworkWeight” for all eight hub ARGs, with the potential value ranging from 0 to 1. 
Detailed information on ARG scores is shown in Supplementary Table 3.

Diagnostic, Risk Stratification, and Prognostic Performance of ARG Classifier
ARG classifier exhibits excellent diagnostic performance (AUC > 0.85) in multiple datasets and at multiple points in time 
(Figure 4A–H) and accurately distinguishes sepsis samples from healthy controls, uninfected control, and control patient 
samples, based on PCA (Supplementary Figure 1). Additionally, the ARG score of sepsis was significantly higher than that of 
system inflammatory reaction syndrome (SIRS; Figure 4I), uninfected control (Figure 4J), anaphylaxis (Figure 4K), and head 

Figure 3 Identification of prognosis-related ARGs (sepsis-specific ARGs) and construction of a ARG classifier based on machine learning algorithms (including Lasso, SVM, 
ANN). (A–D) Modified Lasso was used to identify candidate ARGs with 10-fold cross-validation in multi-transcriptome datasets. The Y-axis shows mean-square error and 
the X-axis is Log (λ). Dotted vertical lines represent minimum and 1 standard error values of λ. The genes selected at minimum standard error values of λ were finally used 
for further analysis. (A) GSE54514 datasets (N=20); (B) GSE63042 datasets (N=18); (C) GSE65682 datasets (N=12); (D) GSE95233 datasets (N=24). (E–H) Modified Lasso 
was used to identify candidate ARGs with 10-fold cross-validation in multi-transcriptome datasets. SVM algorithm was applied to screen candidate ARGs. The red dots 
indicated the lowest error rate and the highest precision when genes are this number. (E) GSE54514 datasets (N=25); (F) GSE63042 datasets (N=22); (G) GSE65682 
datasets (N=40); (H) GSE95233 datasets (N=16). (I) An UpSet diagram exhibited the interactions result of Lasso and SVM in multi-transcriptome datasets. (J) The 
visualization of artificial neural network (ANN). The neural network contains 8 input layers, 4 hidden layers, and 2 output layers. 
Abbreviatons: I, input layers; H, hidden layers; O, output layers.
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trauma (Figure 4L). PCA revealed that the ARG classifier effectively distinguished sepsis from SIRS (Figure 4M), uninfected 
control (Figure 4N), anaphylaxis (Figure 4O), and head trauma (Figure 4P).

ARG classifier showed a favorable prognostic ability in multiple cohorts, with AUC values ranging from 0.750 to 0.919 
(Figure 5A). Univariate and multivariate logistic regression analyses confirmed that ARG classifier was an independent 
predictor of adverse survival outcomes in multiple transcriptome datasets (Table 2), regardless of other clinical characteristics.

Figure 4 The diagnostic efficacy of ARG classifier in multi-transcriptome datasets. (A–H) ROC curves analyzed the diagnostic accuracy of ARG classifier in multiple datasets and 
time points. (A) GSE54514 datasets; (B) GSE57065 datasets; (C) GSE65682 datasets; (D) GSE69063 datasets; (E) GSE69528 datasets; (F) GSE95233 datasets; (G) GSE131761 
datasets; (H) GSE154918 datasets. (I and J) Comparison of the ARG scores between sepsis and SIRS in GSE63042 datasets (I), uncomplicated Infection in GSE154918 datasets (J). 
p value was calculated using the Wilcoxon test. (K) Comparison of the ARG scores between sepsis, healthy control and anaphylaxis in GSE69063 datasets. p value was calculated 
using the Kruskal–Wallis test. (L) Comparison of the ARG scores between sepsis, healthy control and head trauma in GSE69063 datasets. p value was calculated using the Kruskal– 
Wallis test. (M–P) Principal component analysis based on hub ARGs to distinguish sepsis from SIRS (M), uninfected control (N), anaphylaxis (O), and head trauma (P). 
Abbreviation: SIRS, systemic inflammatory response syndrome.
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Figure 5 The prognostic efficacy of ARG classifier in multi-transcriptome datasets. (A) An Lollipop chart showed the AUC values of prognostic prediction in multiple 
datasets. (B and K) Correlation between ARG score and APACHE-II in GSE54514 datasets (B), and E-MTAB-7581 datasets (K). Correlation coefficient and p value were 
calculated by Spearman correlation analysis. (C, D and F) The distribution of mortality rate between low ARG and high ARG subgroups in GSE54514 datasets (C), 
GSE63042 datasets (D), and GSE95233 datasets (F). p value was calculated using the Chi-square test. (E) Comparison of the ARG scores between uncomplicated sepsis, 
severe sepsis and septic shock in GSE63042 datasets. p value was calculated using the Kruskal–Wallis test. (G, I and J) The Sankey diagram depicts the flow from the two 
subgroups (low ARG and high ARG) to different phenotypes and survival outcomes, in which the width of the flow rate is proportional to the patient number. (G) E-MTAB- 
4421 datasets; (I) E-MTAB-4451 datasets; (J) GSE65682 datasets. p value was calculated using the Chi-square test. (H and L) The heatmap depicted the distribution of clinical 
characteristics arranged by the increasing ARG score in GSE106878 datasets (H), and E-MTAB-7581 datasets (L). Comparison of the different clinical characteristics 
between low ARG and high ARG subgroups. The asterisks indicate a statistically significant p-value calculated using the Chi-square test (*p < 0.05; **p < 0.01; ***p < 0.001). 
Abbreviation: APACHE-II, Acute Physiology and Chronic Health Evaluation II.
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Table 2 Univariable and Multivariable Logistic Regression Analysis for Prediction of Survival in GEO and 
ArrayExpress Databases

Dataset Factors Subgroup Univariable Analysis Multivariable Analysis

GSE54514 OR (95% CI) P OR (95% CI) P

Age 1.02 (1.02–1.08) 0.004* 1.04 (0.99–1.09) 0.057

APACHE II 1.17 (1.08–1.26) < 0.001* 1.20 (1.07–1.34) 0.001*

ARG score 54.71 (7.15–418.96) < 0.001* 79.67 (9.16–693.03) < 0.001*

GSE63042

ARG score 5.56 (2.02–15.27) 0.001* 5.56 (2.02–15.27) 0.001*

GSE65682

Age 1.02 (0.99–1.04) 0.114 NA NA

Sex Female 1

Male 1.42 (0.75–2.67) 0.284 NA NA

MARS 1–2 1

3–4 0.93 (0.67–1.31) 0.688 NA NA

DM No 1

Yes 1.63 (0.71–3.74) 0.248 NA NA

ARG score 4.53 (2.17–9.43) < 0.001* 4.40 (2.10–9.20) < 0.001*

GSE95233

Age 0.99 (0.95–1.03) 0.657 NA NA

Sex Female 1

Male 0.65 (0.35–1.18) 0.156 NA NA

ARG score 12.13 (4.13–35.59) < 0.001* 12.14 (4.13–35.69) < 0.001*

GSE106878

Age 1.05 (1.01–1.09) 0.019* 1.04 (0.99–1.08) 0.107

ARG score 5.06 (1.80–14.23) 0.002* 6.54 (3.06–13.97) 0.009*

E-MTAB-4421

Age 1.05 (1.02–1.07) < 0.001* 1.05 (1.02–1.08) < 0.001*

Sex Female 1

Male 1.16 (0.64–2.10) 0.620 NA NA

SRS 1

2 1.77 (0.98–3.20) 0.060 NA NA

ARG score 6.45 (3.09–13.48) < 0.001* 6.54 (3.06–13.97) < 0.001*

E-MTAB-4451

Age 1.00 (0.98–1.03) 0.934 NA NA

Sex Female 1

(Continued)
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The ARG score was significantly correlated with APACHE II in GSE54514 datasets (Figure 5C) and in E-MTAB- 
7581 datasets (Figure 5K). The ARG score of uncomplicated sepsis was significantly lower than that of severe sepsis and 
septic shock in GSE63042 datasets (Figure 5E). Patients in the low-ARG group showed a significantly higher survival 
rate than those in the high-ARG group (Chi-square test; Figure 5B, D, and F). A Sankey chart was produced to visualize 
that the low-ARG group had a lower proportion of MARS 1 and SRS1 endotypes (representing immunosuppression), 
whereas the high-ARG group had a higher proportion of MARS 4 and SRS2 endotypes (representing immunoactivation; 
Figure 5G, I, and J). According to ARG scores, the patients were categorized to produce a landscape plot of 
corresponding clinical characteristics (Figure 5H and L). The ARG scores were significantly higher in elder patients, 
in those receiving adrenocorticotropic hormone (ACTH; non-responders), patients with higher APACHE II scores, SRS1 
subtypes, and deceased patients.

Clinical Applicability of ARG Classifier
ARG classifier performed better in predicting mortality than age, APACHE II, SRS, or MARS endotypes in multiple 
databases (Figure 6A–H). The DCA diagram indicated that ARG classifier outperformed age, APACHE II, MARS, and 
SRS, according to the continuity of potential death threshold (x-axis) and the net benefit of risk stratification using the 
model (y-axis; Figure 6I–P).

Immune Cell Infiltration
To investigate the differential composition of immune cells between different ARG patterns, the CIBERSORTx tool and 
the ssGSEA algorithm were utilized to evaluate the fraction of immune cells in immune microenvironment. In GEO and 
ArrayExpress datasets, the CIBERSORTx results showed that, compared with the ARG high-expression subgroup, CD8 
T cells and activated NK cells were more abundant in the ARG low-expression subgroup, whereas regulatory T cells 
(Tregs), resting mast cells, and eosinophils were more abundant in the ARG high-expression than in the ARG low- 
expression subgroup (Figures 7A and 8A).

Table 2 (Continued). 

Dataset Factors Subgroup Univariable Analysis Multivariable Analysis

Male 0.95 (0.40–2.28) 0.913 NA NA

SRS 1

2 2.70 (1.18–6.19) 0.019 1.35 (0.50–3.70) 0.555

ARG score 4.90 (2.15–11.15) < 0.001* 4.35 (1.87–10.15) 0.001*

E-MTAB-7581

Age 1.02 (0.99–1.04) 0.091 NA NA

Sex Female 1

Male 1.39 (0.71–2.72) 0.343 NA NA

SRS 1

2 1.31 (0.68–2.55) 0.423 NA NA

APACHE II 1.08 (1.04–1.13) 0.001* 1.09 (1.04–1.15) 0.001*

ARG score 5.08 (2.37–10.86) < 0.001* 5.01 (2.28–11.14) < 0.001*

Notes: These variables were eliminated in the multivariate logistic regression model, so the HR and P values were not available. *P < 0.05. 
Abbreviations: OR, odds ratio; CI, confidence intervals; MARS, the Molecular Diagnosis and Risk Stratification of Sepsis; DM, diabetes 
mellitus; NA, not available.
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Figure 6 Clinical usefulness of ARG classifier. (A–H) Multiple ROC analysis was performed to compare the prognostic performance of the ARG classifier against clinical 
features in multiple cohorts. (A) GSE54514 datasets; (B) GSE63042 datasets; (C) GSE65682 datasets; (D) GSE95233 datasets; (E) GSEGSE106878 datasets; (F) E-MTAB- 
4421 datasets; (G) E-MTAB-4451 datasets; (H) E-MTAB-7581 datasets. (I–P) Decision curve analysis was applied to evaluate the clinical usefulness of ARG classifier against 
clinical features in multiple cohorts. The Y-axis represents the net benefit. The black line represents the hypothesis that no patients die. The X-axis represents the threshold 
probability. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment. (I) GSE54514 datasets; (J) GSE63042 
datasets; (K) GSE65682 datasets; (L) GSE95233 datasets; (M) GSEGSE106878 datasets; (N) E-MTAB-4421 datasets; (O) E-MTAB-4451 datasets; (P) E-MTAB-7581 datasets.
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Figure 7 Analyzing the correlation between ARG classifier/hub ARGs and infiltrating immune cells in GEO datasets. (A) Comparison of infiltrating immune cells between 
ARG different subgroups based on CIBERSORTx tool. p value was calculated using the Wilcoxon test. (B) Comparison of infiltrating immune cells between ARG different 
subgroups based on ssGSEA algorithms. p value was calculated using the Wilcoxon test. (C) Correlation between ARG classifier/hub ARGs and immune cells. Correlation 
coefficient and p value were calculated by Spearman correlation analysis.
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Figure 8 Analyzing the correlation between ARG classifier/hub ARGs and infiltrating immune cells in ArrayExpress datasets. (A) Comparison of infiltrating immune cells 
between ARG different subgroups based on CIBERSORTx tool. p value was calculated using the Wilcoxon test. (B) Comparison of infiltrating immune cells between ARG 
different subgroups based on ssGSEA algorithms. p value was calculated using the Wilcoxon test. (C) Correlation between ARG classifier/hub ARGs and immune cells. 
Correlation coefficient and p value were calculated by Spearman correlation analysis.
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The ssGSEA results demonstrated that B cells, CD4 T cells, CD8 T cells, dendritic cells, NK cells, and infiltrating 
lymphocyte (IL) were relatively more abundant in ARG low-expression subgroup than in the ARG high-expression 
subgroup, whereas compared to the ARG low-expression subgroup, the ARG low-expression subgroup generally 
contained a higher proportion of Tregs and myeloid-derived suppressor cells (MDSCs; Figures 7B and 8B).

In addition, Figures 7C and 8C show that ARG scores were significantly negatively correlated with B cells, CD4 
T cells, CD8 T cells, dendritic cells, NK cells, and ILs but were significantly positively correlated with Tregs and 
MDSCs. Eight hub ARGs were significantly correlated to infiltration of pivotal immune cells, particularly ATG4C, 
BIRC5, ERBB2, HIF1A, and NFKB1.

Immune and Molecular Pathways
To determine the molecular pathways potentially involved in the pathophysiology of sepsis, GSVA was conducted to 
determine the enrichment score of pre-defined biological processes. In GEO and ArrayExpress datasets, the GSVA results 
showed that compared with the ARG high-expression subgroup, inflammation-promoting pathways, HLA, and cytolytic 
activity were enriched in the ARG low-expression subgroup, whereas apoptosis, type-II IFN response, and complement 
and coagulation cascades were mainly enriched in the ARG high-expression subgroup (Figure 9A and C).

Further, ARG scores were significantly negatively correlated with inflammation-promoting pathways, HLA, and 
cytolytic activity but significantly positively correlated with apoptosis, type-II IFN response, and complement and 
coagulation cascades. Eight hub ARGs were significantly associated with critical molecular pathways, especially 
ATG4C, ERBB2, and NFKB1 (Figure 9B and D).

Analyses of Cytokines, Immune-Related Genes, and HLA-Related Genes
Wilcoxon tests were used to compare cytokine expression levels in different HLA subtypes. The expression levels of 
IFNG, TNF, and PDGFRB were significantly down-regulated in the ARG high-expression subgroup, and those of IL10 
were significantly up-regulated (Figure 10A and B).

The ARG score was significantly negatively correlated with IFNG, TNF, and PDGFRB but was significantly 
positively correlated with IL10, IL10/TNF, and IL10/IFNG. The eight hub ARGs were significantly associated with 
the key cytokines, especially ATG4C, ERBB2, HIF1A, NCKAP1 and NFKB1 (Figure 10C and D).

Further, the eight hub ARGs, eight immune-related genes, and five HLA-related genes showed a high expression 
correlation and close interaction with each other (Figure 11A and B). Figure 11C shows a regulation relation network 
among these genes.

Preliminary Experimental Validation
To further validate the eight hub ARG expression levels, we conducted RT-qPCR using 40 clinical blood specimens. The 
expression levels of ATG4C, and ERBB2 were significantly down-regulated in patients with sepsis, compared to 
controls, whereas BIRC5, FKBP1A, HIF1A, NCKAP1, and NFKB1 were significantly up-regulated (Figure 11D). 
ARG classifier (AUC = 0.865) exhibited superior diagnostic performance, compared to PCT (AUC = 0.705) and CRP 
(AUC = 0.641; Figure 11E).

Discussion
The present study, which involved ten GEO and three ArrayExpress datasets, comprehensively characterized the potential 
effects of ARGs during sepsis. Based on machine learning algorithms, the ARG classifier model was constructed by 
integrating eight hub ARGs (ATG4C, BAX, BIRC5, ERBB2, FKBP1B, HIF1A, NCKAP1, and NFKB1). ARG classifier 
exhibited excellent diagnostic performance across multiple datasets and time points, and it was able to distinguish sepsis 
from other critical diseases. ARG classifier was significantly associated with clinical characteristics and endotypes, and it 
performed better in predicting mortality than other clinical characteristics. More importantly, the expression levels of key 
ARGs differed significantly between septic and control patients, based on clinical specimens, and ARG classifier showed 
superior diagnostic performance compared to that of PCT and CRP. Further, the ARG classifier/hub ARGs were 
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Figure 9 Analyzing the correlation between ARG classifier/hub ARGs and biological pathways in GEO and ArrayExpress datasets based on Gene set variation analysis 
(GSVA). (A and C) Comparison of biological pathways between ARG different subgroups in GEO datasets (A), and ArrayExpress datasets (C). (B and D) Correlation 
between ARG classifier/hub ARGs and biological pathways in GEO datasets (B), and ArrayExpress datasets (D). Correlation coefficient and p value were calculated by 
Spearman correlation analysis.
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significantly correlated with immune cell infiltration, pivotal immune and molecular pathways, and several cytokines, 
which indicated that ARG classifier/hub ARGs can precisely reflect the immune microenvironment of sepsis patients.

To the best of our knowledge, this is the first full-scale study to investigate autophagy-related molecules based on 
multiple transcriptomes in all-cause sepsis, to apply machine learning for identifying novel biomarkers for a diagnostic 
and prognostic model, and to elucidate the relationship between model and key markers and the immune microenviron-
ment to establish clinical applicability.

Several studies previously established predictive and prognostic models based on genome-wide expression profiling 
during sepsis.16–20 However, these studies developed diagnostic/prognostic models involving dozens and hundreds of 
genes, thus making them difficult to apply in practice.16,17,19,20 Furthermore, other previous studies mainly focused on 
single-expression profiling,17,18,20 whereas multiple transcriptome analysis can increase sample size and thus improve 
statistical power and model generalizability. In addition, most studies only reported that these subclasses of models 
showed good diagnostic ability or had different survival outcomes, but further clinical applicability of the respective 
models was not investigated.16,18–20 The current study focused on specific genes (ie, ARGs) to assess additional clinical 
applications based on their biological characteristics. Importantly, our results revealed that the predictive performance of 
ARG classifier was superior to the classical SRS endotypes17 and MARS phenotypes.18

In recent years, medicine has witnessed the emergence of machine learning as a novel tool to analyze large amounts 
of data.21 Machine learning techniques allow for non-linear correlations and are better suited to extracting additional 
information from continuous variables. Thus, they can identify more important variables and enhance model prediction 
performance, which is an important advantage over traditional prediction models based on logistic regression analysis for 
sepsis.22 Most previous studies adopted unsupervised machine learning for clustering analysis to build models of sepsis, 
which typically involve tens of thousands of genes and is thus not practical for clinical application.18–20 Additionally, 
models are not easily quantified for individual septic patients, and impractical for personalized patient management.

Figure 10 Analyzing the correlation between ARG classifier/hub ARGs and cytokines expression levels in GEO and ArrayExpress datasets. (A and C) Differential 
expression of cytokines between ARG different subgroups in GEO datasets (A), and ArrayExpress datasets (C). The asterisks indicate a significant statistical p value 
calculated using the Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001). (B and D) Correlation between ARG classifier/hub ARGs and cytokines in GEO datasets (B), and 
ArrayExpress datasets (D). Correlation coefficient and p value were calculated by Spearman correlation analysis.
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ARG classifier showed excellent diagnostic performance across multiple datasets and time points. In multiple time 
point datasets, we observed only a slight decline in AUC values over time, suggesting that the ARG classifier may be 
suitable for early diagnosis of sepsis. According to the definition of SIRS and sepsis, patients with both conditions show 
similar signs and symptoms. Thus, it is challenging to differentiate between sepsis and SIRS or severe trauma. In the 

Figure 11 Correlation between Hub ARGs, immune-related genes and HLA-related genes and Preliminary experimental validation. (A and B) Correlation between Hub 
ARGs, immune-related genes and HLA-related genes in GEO datasets (A), and ArrayExpress datasets (B). Correlation coefficient and p value were calculated by Spearman 
correlation analysis (*p < 0.05; **p < 0.01; ***p < 0.001). (C) Cytoscape software depicted visually the gene-gene network regulation relation. Pink lines represent 
a significant positive correlation. Green lines represent a significant negative correlation. (D) Differential expression of hub ARGs between sepsis patients and control 
patients by qRT-PCR. The asterisks indicate a significant statistical p value calculated using the Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001). (E) ROC curves compared 
the diagnostic efficacy of ARG classifier, PCT and CRP based on clinical specimens.
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current study, ARG classifier was found to discriminate effectively between sepsis and SIRS, head trauma, anaphylaxis, 
and uninfected patients. More importantly, RT-qPCR on clinical specimens confirmed that ATG4C, and ERBB2 showed 
significantly lower expression in septic than in control patients; however, BIRC5, FKBP1A, HIF1A, NCKAP1, and 
NFKB1 were significantly higher expressed, and ARG classifier exhibited better diagnostic accuracy than common 
clinical biomarkers (ie, PCT and CRP). This may be ascribed to the following reasons: 1) due to the heterogeneity of 
sepsis, very few biomarkers produce consistently acceptable diagnostic performance in all-cause sepsis, whereas machine 
learning methods and transcriptomics can account for the heterogeneity of the disease.24 2) Large-scale data analysis will 
help identify stable biomarkers. 3) The effective combination of multiple biomarkers is preferable to a single biomarker. 
Taken together, ARG classifier may be a robust tool for early diagnosis of sepsis.

Additionally, multivariate logistic regression analyses verified that ARG classifier is an independent prognostic factor 
in multiple transcriptome datasets. Patients in the ARG high-expression subgroup showed older age, higher APACHE II 
scores, more severe sepsis subtypes, and poorer survival outcome and included fewer ACTH responders, a higher 
proportion of SRS 1 endotypes17 and MARS 1 phenotypes.18 This suggests that ARG classifier found distinct distribution 
patterns in sepsis, which will help assist risk stratification and guide personalized therapy. In several cohorts, we 
observed that the prognosis accuracy of several clinical characteristics, such as APACHE II score and age, were 
comparably high. As each characteristic reflects different pathophysiological aspects, we combined other clinical 
information for ARG classifier to further improve the prediction precision. Taken together, the ARG classifier can 
help identify patients at risk of a poor or even fatal outcome in sepsis.

So far, prognostic biomarkers and models have mainly been utilized for overall prognosis, which has proven 
insufficient.25 The process of autophagy is fundamentally important in cellular development, function, and homeostasis, 
and increasing evidence suggests that autophagy plays an important regulatory role in immune cell activities and 
cytokine release. Suppression or deficiency of autophagy results in immune cell dysfunction and depletion, followed 
by disturbed immunity and increased mortality under septic conditions.26 Thus, we speculated that the identification of 
key ARGs and the model based on ARGs may be closely related to the immune microenvironment of sepsis. Sepsis- 
induced immunoparalysis is characterized by dysfunction of antigen-presenting cells, decreased expression of MHC class 
II molecules, abundant apoptosis of various immune cells, inhibition of T cell proliferation, a drift from pro-inflammatory 
response to anti-inflammatory response, and increased abundance of Tregs.27

The current study showed that the low ARG subgroup was significantly positively associated with activated immune 
cells (B cells, CD4 T cells, CD8 T cells, dendritic cells, NK cells, and ILs), immune/inflammation-related pathways 
(inflammation-promoting pathways, HLA, and cytolytic activity), and pro-inflammatory cytokines (TNF, IFNG, and 
PDGFRB), suggesting that low ARG expression was attributable to the immune-activated microenvironment and was in 
accordance with the prior identification of SRS 1 endotypes17 and MARS 1 phenotypes.18 However, the ARG high- 
expression subgroup was significantly associated with immunosuppressive cells (Tregs and MDSCs), apoptosis, comple-
ment and coagulation cascades, anti-inflammatory cytokines (IL10, IL10, TNF, IL10, and IFNG), suggesting that this 
subgroup shows immunocompromised microenvironments, consistent with the previously published SRS 2 endotypes17 

and MARS 4 phenotypes.18 Similarly, these hub ARGs were also closely correlated with infiltrating immune cells, 
immune/inflammation-related pathways, and cytokines. Overall, ARG classifier efficiently reflected the immune micro-
environment during sepsis, which may help guide immune-modulating agents to achieve immune homeostasis.

The pathophysiological mechanism of sepsis is complex. Currently, the recognized mechanism is the imbalance of 
host immune response and coagulation system dysfunction.28 Abnormal blood coagulation is the basic event eliciting 
sepsis complications and multiple organ failure in humans, thus it should be strategically targeted for therapeutic 
purposes.29 In the current study, we found that the complement and coagulation cascades were mainly enriched in the 
ARG high-expression subtypes that are associated with unfavorable survival outcome. Hence, we speculated that eight 
ARGs of the ARG classifier may participate in complement and coagulation cascades to affect the progress of patients 
with sepsis. Accordingly, when investigating the relationship between the hub ARGs and biological pathways, we found 
that ATG4C, ERBB2, and NFKB1 were significantly associated with the complement and coagulation cascades. 
Additionally, we found that ATG4C was significantly positively correlated with immune cells (macrophages and Th1 
cells) and cytokines (IL15 and TNF). In fact, macrophages secrete IL15, and Th1 cells produce TNF.30 Thus, we deduced 
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that ATG4C, ERBB2, and NFKB1 molecular play a critical role in regulating immunocoagulation during sepsis and are 
promising therapeutic targets. The current study thus provides data support for the clinical application of ATG4C/ 
NFKB1/ERBB2; however, the specific mechanisms require further study.

Despite promising results, there are some limitations to our study. First, our model demonstrated impressive 
performance regarding prediction; however, it is not yet suitable for general use prior to validation using external 
datasets with large sample sizes in prospective cohorts. Second, autophagy frequently shows dynamic changes during 
sepsis. Most cohorts provided transcriptome data at a single point in time, thus we need to explore the effects of dynamic 
expression of these hub ARGs during sepsis. Third, CIBERSORTx deconvolution and ssGSEA algorithm with meta-
genes may not accurately evaluate immune cell subpopulations, even though the different methods and different datasets 
validate each other. It is necessary to apply single-cell RNA sequencing or fluorescence-activated cell sorting to verify 
our results. Further, in vitro and in vivo experiments to explore the molecular mechanism will help further identify the 
exact role of hub genes in the regulation of the immune cell and related immunocoagulation pathways during sepsis.

Conclusion
In conclusion, a diagnostic and prognostic model (ARG classifier) based on eight ARGs was constructed which will help 
aid clinicians in the diagnosis of sepsis and identify high-risk patients for intervention. Additionally, ARG classifier can 
accurately reflect the immune microenvironment complex of sepsis and may facilitate personalized therapy.
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