Cutaneous Reactions Following COVID-19 Vaccination: A Review of the Current Literature

Fabrizio Martora, Teresa Battista, Claudio Marasca, Lucia Genco, Gabriella Fabbrocini, Luca Potestio

Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy

Correspondence: Fabrizio Martora, Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy, Tel +39 - 081 - 7462457, Fax +39 - 081 - 7462442, Email fabriziomartora92@libero.it

Abstract: The outbreak of coronavirus disease 2019 (COVID-19) represented a new worldwide challenge, strongly impacting on the global economy, overall health and lifestyle. Since then, several strategies have been adopted to contain the widespread of infection. Among these, vaccination is currently the most important measure to fight against the pandemic. However, several concerns such as slower-than-hoped-for rollout, the hurried approval with limited data, the mechanism of action (in particular mRNA-based), and the uncertain duration of protection they afforded were initially raised. Moreover, even if cutaneous reactions have been rarely reported in clinical trials, global mass vaccination showed several dermatologic reactions not initially recognized, leaving dermatologists to decide how to diagnose and treat them. In this scenario, dermatologists should be ready to promptly recognize these clinical manifestations. Thus, the aim of this manuscript is to review current literature on cutaneous reactions following COVID-19 vaccination, particularly inflammatory dermatological diseases, in order to help clinicians to better understand these dermatological conditions and to provide an extensive overview of all the vaccine-related skin manifestations.

Keywords: cutaneous reactions, COVID-19 vaccinations, side effects

Introduction

The outbreak of coronavirus disease 2019 (COVID-19) represented a new worldwide challenge, strongly impacting on the global economy, overall health and lifestyle. Since then, several strategies have been adopted to contain the widespread of infection. Dermatologists played a key role during the pandemic, fighting against several challenges such as cutaneous reactions caused by COVID-19 disease, the hesitancy on the efficacy and safety of conventional treatment and biologic drugs in this period, the worsening of several dermatosis due to the wearing of personal protection equipment and the introduction of a new lifestyle. Indeed, the “stay-at-home” policy and the restrictive measures adopted by the Italian Government during the COVID-19 pandemic period strongly affected the quality of life. In addition, COVID-19 restriction measures affect the epidemiology of infectious diseases and skin cancers.

Among the developed public health strategies to control the spread of COVID-19, vaccination is currently the most important measure to fight against the pandemic. However, several concerns such as slower-than-hoped-for rollout, the hurried approval with limited data, the mechanism of action (in particular mRNA-based), and the uncertain duration of protection they afforded were initially raised. Fortunately, worldwide vaccination campaign was a success, showing to be the most effective weapon to prevent and control COVID-19 epidemic, disease progression, hospitalization and mortality.

According to the WHO COVID-19 dashboard accessed on 11 September 2021, more than 608 million confirmed cases of COVID-19 have been reported, with almost 6.51 million deaths. Nowadays, licensed vaccines for COVID-19, use nucleic acid-based vaccination platforms, such as viral vector platforms, messenger ribonucleic acid and inactivated virus.

Four vaccines have been approved by the European Medicines Agency (EMA): 2 mRNA-based vaccines (Pfizer/BioNTech; BNT162b2 and Moderna; mRNA-1273) and 2 viral-vector-based vaccines (AstraZeneca; AZD1222 and Johnson & Johnson; Ad26.COV2.S). However, other vaccines have been approved in other countries such as...
“CoronaVac” (Sinovac), “Sputnik V” (Gamaleya Research Institute), and “Convidecia” (CanSino Biologics). Currently, more than 5.3 billion people have received at least one dose of COVID-19 vaccine.

Similar to other drugs, some people reported mild-to-moderate adverse events following vaccination, including fatigue, headache, diarrhea, redness or pain at the injection site, fever, muscle aches, chills. Fortunately, most of the side effects are limited, with a duration of few days.

Even if cutaneous reactions have been rarely reported in clinical trials, global mass vaccination showed several dermatologic reactions not initially recognized, leaving dermatologists to decide how to recognize and treat them. In particular, a wide spectrum of cutaneous reactions has been reported. However, the significance of these reactions is still unknown. In this scenario, dermatologists should be ready to promptly recognize these clinical manifestations, which should be considered in personalized medicine.

Thus, the aim of this manuscript is to review current literature on cutaneous reactions following COVID-19 vaccination, particularly inflammatory dermatological diseases, in order to help clinicians to better understand these dermatological conditions and to provide an extensive overview of all the vaccine-related skin manifestations.

Materials and Methods
For the current review, literature research was carried out on the PubMed, Embase, Cochrane Skin, Google Scholar, EBSCO and MEDLINE databases (until September 11, 2022). Research was performed by using the following keywords: “COVID-19”, “vaccination”, “vaccine”, “cutaneous”, “side effects”, “adverse events”, “skin manifestations”, “mRNA”, “viral-vector”, “Pfizer/BioNTech”, “BNT162b2”, “Moderna”, “mRNA-1273”, “AstraZeneca”, “AZD1222”, “Johnson & Johnson”, “Ad26.COV2.S”, “atopic dermatitis”, “psoriasis”, “lichen planus”, “bullous disease”, “pemphigus”, “pemphigoides”, “hidradenitis suppurativa”, “urticaria”, “rash”, “herpes”, “pityriasis rosea”, “chilblains”, “vitiligo”, “erythematous eruption”, “alopecia”, “local-injection”, “angioedema”, “eczema”. Analyzed articles included meta-analyses, reviews, letter to editor, real-life studies, case series and reports. The most relevant manuscripts were considered. Studies were selected if they provided information on cutaneous reactions following COVID-19 vaccination with BNT162b2, mRNA-1273, AZD1222 and Ad26.COV2.S, both first and second doses, if applicable. Cutaneous reactions following other vaccines, or the booster dose were excluded. Articles regarding skin reactions reported in clinical trials or with a limited number of cases were excluded. Manuscripts reporting local injection site reactions, both immediate and delayed, rash or unspecified cutaneous eruption and delayed inflammatory reactions to dermal hyaluronic acid filler were not considered. Moreover, articles where the vaccine leading to cutaneous reaction was not specified were excluded. Thus, the research was refined by reviewing the texts and the abstracts of collected articles. The bibliography was also reviewed to include articles that could have been missed. Only English language manuscripts were considered. This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors. Details of the included studies are reported in Table 1.

Results
A total of 1922 reports were initially found searching literature. Subsequently, 523 articles and 71 manuscripts were excluded since they were duplicates and in non-English languages, respectively. Then, literature review was refined following inclusion and exclusion criteria. Finally, a total of 183 articles involving 456 patients were selected in the current review. Main findings are summarized in Table 1.

Several cases of new onset or exacerbation of inflammatory skin diseases have been reported (Figure 1) as well as the type of vaccine causing these reactions has been investigated (Figure 2). As regards psoriasis, a total of 98 reports on psoriasis following COVID-19 vaccination were reported. In particular, flare of pre-existing disease and new-onset disease were reported in 81 and 17 cases, respectively. Moreover, several phenotypes of psoriasis were reported, with plaque subtype as the most frequent. Of note, even if biological treatments showed excellent results in terms of effectiveness and safety in psoriasis management, they seem to reduce the possibility of disease worsening following vaccination, without nullifying the risk. Moreover, the effectiveness of COVID-19 vaccines in patients undergoing treatment with biologics is debated.
Table 1 Main Cutaneous Reaction Following COVID-19 Vaccination

<table>
<thead>
<tr>
<th>Cutaneous Reaction</th>
<th>Cases</th>
<th>Authors and Number of Cases</th>
<th>Overall Reported Cases by Vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>New-onset psoriasis</td>
<td>17</td>
<td>Tran et al²³ (3), Ouni et al²⁴ (2), Nagrani et al⁵⁵ (1), Song et al⁴⁶ (1), Friou et al⁴⁹ (1),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cortonei et al⁶⁰ (1), Lehmann et al⁵³ (1), Elamin et al⁵³ (1), Wei et al³² (1), Lamberth et</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>al³⁵ (1), Romagnuolo et al⁵⁵ (1), Ruggiero et al⁴⁶ (1), Ricardo et al⁴⁷ (1), Pesqué et al⁵⁸ (1).</td>
<td></td>
</tr>
<tr>
<td>Flare of psoriasis</td>
<td>81</td>
<td>Huang et al²⁹ (15), Sotiriou et al³⁰ (14), Koumaki et al³¹ (12), Megna et al³² (11), Wei</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>et al³⁵ (6), Ruggiero et al³⁶ (4), Durmaz et al³⁷ (2), Tran et al³⁸ (2), Piccolo et al³⁹ (2),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bostan et al⁴⁰ (1), Nagrani et al³⁸ (1), Pavia et al³⁸ (1), Durmus et al³⁹ (1), Fang et al⁴⁰ (1),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Krajewski et al³⁰ (1), Trepanowski et al³¹ (1), Miezckowska et al³³ (1), Lopez et al³⁶ (1),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perna et al³⁵ (1), Tsunoda et al³⁵ (1), Nia et al³⁵ (1), Pesqué et al³⁸ (1).</td>
<td></td>
</tr>
<tr>
<td>Cutaneous lichen planus</td>
<td>16</td>
<td>New-onset: Merhy et al⁸² (1), Camela et al⁶³ (1), Kato et al⁶⁹ (1), Diab et al⁷⁰ (1), Zagaria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>et al⁷¹ (1), Awada et al⁷² (1), Picone et al⁷³ (1), Hlaca et al⁷⁴ (1), Zengarini et al⁷⁵ (1),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Massaran et al⁷⁶ (1), Gamonal et al⁷⁷ (1), Alrawashdeh et al⁷⁸ (1), Shakoei et al⁷⁹ (1).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flare: Hiltun et al⁷³ (1), Herzm et al⁷⁸ (1), Hlaca et al⁷⁹ (1).</td>
<td></td>
</tr>
<tr>
<td>New-onset atopic dermatitis/eczema</td>
<td>7</td>
<td>Rerknimitr et al⁷⁷ (3), Holmes et al⁷⁸ (1), Leasure et al⁷⁹ (1), Bekkali et al⁸⁰ (1), Larson</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>et al³⁸ (1).</td>
<td></td>
</tr>
<tr>
<td>Flare of atopic dermatitis/eczema</td>
<td>14</td>
<td>Potestio et al⁸² (11), Leasure et al⁸³ (1), Niebel et al⁸³ (1), Larson et al⁸³ (1).</td>
<td></td>
</tr>
<tr>
<td>Hidradenitis suppurativa</td>
<td>6</td>
<td>Martora et al⁹⁰ (5), Alexander et al⁸⁹ (1).</td>
<td></td>
</tr>
<tr>
<td>Urticaria</td>
<td>98</td>
<td>Magen et al⁶⁴ (39), Potestio et al⁸⁵ (15), Rerknimitr et al⁷⁷ (12), Riad et al⁸⁶ (10), Sidlow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>et al⁸⁷ (3), Peigottu et al⁹⁸ (2), Niebel et al⁸³ (2), McMahon et al⁹⁹ (2), Holmes et al⁷⁸ (2),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fernandez-Nieto et al⁰⁰ (2), Bianchi et al⁰¹ (2), Corbeddu et al⁰² (2), Baraldi et al⁰³ (1),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Choi et al⁰⁴ (1), Patruno et al⁰⁵ (1), Burlando et al⁰⁶ (1), Thomas et al⁰⁷ (1).</td>
<td></td>
</tr>
<tr>
<td>Alopecia areata</td>
<td>24</td>
<td>Scollan et al¹⁰⁹ (9), Babadjouni et al¹¹₀ (3), Rossi et al¹¹¹ (3), Chen et al¹¹² (2), Abdalla</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>et al¹¹³ (1), Gamonal et al¹¹⁴ (1), Ho et al¹¹⁵ (1), Su et al¹¹⁶ (1), Gallo et al¹¹⁷ (1), May</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lee et al¹¹⁸ (1), Essam et al¹¹⁹ (1).</td>
<td></td>
</tr>
<tr>
<td>Pemphigus vulgaris</td>
<td>26</td>
<td>Martora et al¹²¹ (7), Zou et al¹²² (3), Gui et al¹²³ (2), Rouatbi et al¹²⁴ (2), Aryanian et al¹²⁵</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1), Koutras et al¹²⁶ (1), Knecht et al¹²⁷ (1), Ong et al¹²⁸ (1), Yildirim et al¹²⁹ (1), Singh</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>et al¹³⁰ (1), Norimitsu et al¹³¹ (1), Agharbi et al¹³² (1), Almasi-Nasrabadi et al¹³³ (1),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrà et al¹³⁴ (1), Solimani et al¹³⁵ (1).</td>
<td></td>
</tr>
<tr>
<td>Pemphigoids</td>
<td>40</td>
<td>Maronese et al¹³⁷ (21), Maronese et al¹³⁸ (3), Hali et al¹³⁹ (3), Gambichler et al¹⁴⁰ (2),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shanshal et al¹⁴¹ (1), Desai et al¹⁴² (1), Fu et al¹⁴³ (1), Alshammar et al¹⁴⁴ (1), Hung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>et al¹⁴⁵ (1), Pauluzzi et al¹⁴⁶ (1), Dell’Antonia et al¹⁴⁷ (1), Pérez-López et al¹⁴⁸ (1), Agharbi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>et al¹⁴⁹ (1), Young et al¹⁵⁰ (1), Nakamura et al¹⁵¹ (1).</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 1 (Continued).

<table>
<thead>
<tr>
<th>Cutaneous Reaction</th>
<th>Cases</th>
<th>Authors and Number of Cases</th>
<th>Overall Reported Cases by Vaccines</th>
</tr>
</thead>
</table>

Abbreviations: BNT162b2, Pfizer mRNA; AZD1222, Moderna mRNA; AZD1222, AstraZeneca-Oxford AZD1222; Ad26.COV2, Johnson & Johnson Ad26.COV2.S.

Lichen planus is a chronic, inflammatory, autoimmune disease with an unknown pathogenesis.61 To date, 13 cases of new-onset cutaneous lichen planus and 3 cases of cutaneous lichen planus exacerbation have been reported.62–76 Like psoriasis, also cases of new onset and flare of atopic dermatitis or eczema have been reported (7 and 14, respectively).77–83 However, there is not a clear correlation with clinical phenotypes.84 Moreover, undergoing treatment with dupilumab does not seem to prevent the possibility of a flare of the disease, even if its efficacy and safety have been largely demonstrated.85,86 No data of atopic dermatitis worsening in patients undergoing treatment with janus kinase inhibitors are available.57,88 Concerning hidradenitis suppurativa, there are currently few cases of new-onset disease (n = 1)89 or disease exacerbation (n = 5).90 However, patients with hidradenitis suppurativa are not at higher risk for any COVID-19 vaccine-related adverse outcomes.91,92

Urticarial rashes are the second most common cutaneous reaction following COVID-19 vaccination reported, following local injection site reactions, such as “Covid-arm”.93 Globally, 98 cases of urticarial eruptions following COVID-19 vaccination have been collected in our review,77,78,83,94–107 also during treatment with omalizumab.108

Alopecia areata has been reported following COVID-19 vaccination.109–119 The largest study on 77 patients developing alopecia areata (39) or a worsening of the disease (38) has been reported by Nguyen et al. Unfortunately, it is not possible to correlate alopecia areata development and the type of vaccine.120

Regarding bullous disorders, a total of 26 cases of pemphigus vulgaris have been reported following COVID-19 vaccination,121–135 with several implications in treatment and management.136 Moreover, 40 cases of pemphigoids have been described.137–151

Regarding other cutaneous diseases developed following COVID-19 vaccination, 9, 40, 55, 12 and 11 cases of morphea,152–157 pityriasis rosea,158–177 herpes zoster,178–187 chilblains,188–197 and vitiligo198–208 have been reported.
Abbreviations

- BNT162b2, Pfizer mRNA
- mRNA-1273, Moderna mRNA
- AZD1222, AstraZeneca-Oxford
- Ad26.COV2, Johnson & Johnson Ad26.COV2.S.

Figure 1
Cutaneous reactions investigated and number of cases.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitiligo</td>
<td>11</td>
</tr>
<tr>
<td>Chilblains-like/pernio</td>
<td>12</td>
</tr>
<tr>
<td>Herpes zoster</td>
<td>55</td>
</tr>
<tr>
<td>Pityriasis rosea</td>
<td>40</td>
</tr>
<tr>
<td>Morphea</td>
<td>9</td>
</tr>
<tr>
<td>Pemphigoids</td>
<td>40</td>
</tr>
<tr>
<td>Pemphigus vulgaris</td>
<td>26</td>
</tr>
<tr>
<td>Alopecia areata</td>
<td>24</td>
</tr>
<tr>
<td>Urticaria</td>
<td>98</td>
</tr>
<tr>
<td>Hidradenitis suppurativa</td>
<td>6</td>
</tr>
<tr>
<td>Flare of atopic dermatitis/eczema</td>
<td>14</td>
</tr>
<tr>
<td>New-onset atopic dermatitis/eczema</td>
<td>7</td>
</tr>
<tr>
<td>Cutaneous lichen planus</td>
<td>16</td>
</tr>
<tr>
<td>Flare of psoriasis</td>
<td>81</td>
</tr>
<tr>
<td>New-onset psoriasis</td>
<td>17</td>
</tr>
</tbody>
</table>

Note: the different number of administered vaccines may explain the difference between the number of skin reactions following mRNA or viral vector-based vaccines.

Figure 2
Percentage of vaccine types investigated that cause cutaneous reactions.

- **BNT162b2:** 63%
- **mRNA-1273:** 15%
- **AZD1222:** 21%
- **Ad26.COV2:** 1%

Abbreviations: BNT162b2, Pfizer mRNA; BNT162b2; mRNA-1273, Moderna mRNA; AZD1222, AstraZeneca-Oxford AZD1222; Ad26.COV2, Johnson & Johnson Ad26.COV2.S.
Finally, several other dermatoses have been described, even if data are limited. Among these, we want to highlight pityriasis rubra pilaris, leukocytoclastic vasculitis, morbilliform rash, livedo racemosa, fixed drug eruption, erythema annulare centrifugum, granuloma annulare, fascial neutrophilic eruption, annular rash, Henoch-Schönlein purpura, dermatomyositis, regression of viral wart, raynaud phenomenon, eruptive angiomatosis, lichen striatus, pityriasis lichenoides et varioliformis acuta, Rowell’s syndrome, acrocyanosis, … suggesting that a wide type of dermatoses may be triggered by COVID-19 vaccination. However, most of these are limited to 1 or 2 case reports.

Discussion
COVID-19 pandemic revolutionized daily clinical practice. Indeed, several strategies were adopted to contain the spreading of the infection. Dermatologists had to change their clinical routine in order to avoid the reduction in detection and treatment of several conditions, particularly skin cancer. Among these, teledermatology allowed physicians to continuously assist patients’ dermatologic conditions with excellent results in terms of treatment adherence and clinical outcomes. Vaccination campaign is the most important strategy showing excellent results in terms of safety and effectiveness. Indeed, it allowed to reduce the severity and the impact of COVID-19 pandemic. However, several skin diseases induced or exacerbated by COVID-19 vaccination have been reported. Fortunately, most of them were mild and self-limited, not requiring medical attention. In our review, we highlighted several cutaneous reactions following COVID-19 vaccination such as psoriasis, atopic dermatitis, bullous disease, etc. Even if not specifically investigated, local injection-site reaction was the commonest cutaneous vaccine-related adverse event reported. Of note, cutaneous reactions were reported following vaccination with both mRNA and viral vector-based vaccines, suggesting that the pathogenetic mechanism underlying the cutaneous reaction is not directly related to the vaccine mechanism of action itself. Certainly, further studies are needed to understand pathogenetic mechanisms linking cutaneous reaction and COVID-19 vaccination in order to identify “at-risk” subjects and to adopt preventive measures.

Of note, among the articles reviewed in our work, the diagnosis of cutaneous reactions was confirmed by histopathological examination in most of the cases. However, a shared immune process was not found assessing the histological reports.

Overall, mRNA vaccines, particularly BNT162b2, seem to be most commonly associated with cutaneous reactions. However, mRNA vaccines were previously authorized, produced and administered worldwide. Thus, the different number of administered vaccines may explain the difference between the number of skin reactions following mRNA or viral vector-based vaccines. Further epidemiological studies will clarify if the percentage of cutaneous reactions following vaccination is significantly higher in one of the two types of vaccines, with clinical implications.

To sum up, our review analyzed several dermatoses exacerbated or developed following COVID-19 vaccination. However, the temporal association between the administration of the vaccine and the development of skin reaction may be casual. As regards the dose of vaccination, cutaneous reactions were reported following both the first and the second dose of vaccine. Furthermore, skin reactions following both the doses in the same patient have been reported as well. In our opinion, clinicians should be prepared also to cutaneous reaction following the booster dose.

Strengths and Limitations
Main strengths of our review are the systematic method during the literature research and the high number of analyzed article and cutaneous reactions analyzed. Main limitations should be discussed. First, only the four vaccines approved by EMA have been considered. Moreover, several articles reporting registry-based studies did not allow the direct correlation between type of vaccine and cutaneous reaction. Finally, dermatological conditions developed following COVID-19 vaccination are usually mild and patients do not seek for medical attention.

Conclusion
With the worldwide advance of vaccination programs, several cutaneous reactions have been reported. Fortunately, the percentage of these adverse events is extremely low if compared with the number of vaccines administered. In our opinion, other cutaneous reactions following COVID-19 vaccination will be reported. Moreover, the pathogenetic mechanisms linking vaccination and skin reactions should be clarified. Clinicians should keep in mind the possibility...
of the exacerbation of the new onset of several dermatoses following vaccination in order to promptly recognize and differentiate vaccine-induced cutaneous manifestations from other clinical entities. Certainly, vaccination should not be discouraged.

Disclosure
The authors report no conflicts of interest in this work.

References

45. Perna D, Jones J, Schacht CR. Acute generalized pustular psoriasis exacerbated by the COVID-19 vaccine. *

