
ORIGINAL RESEARCH

RETRACTED ARTICLE: CCNBI Expedites the Progression of Cervical Squamous Cell Carcinoma via the Regulation by FOXMI

This article was published in the following Dove Press journal: OncoTargets and Therapy

Shufeng Li¹ Ning Liu² Jinxia Piao¹ Fanxu Meng³ Yanyan Li¹

¹Department I of Gynecological Oncology, Jilin Cancer Hospital, Changchun I30012, Jilin, People's Republic of China; ²Department of Gynecology and Oncology, The Second Hospital of Jilin University, Changchun I30041, Jilin, People's Republic of China; ³Department of Radiotherapy, Jilin Cancer Hospital, Changchun I30012, Jilin, People's Republic of China

Methods: First, we analyzed differentially expressed genes from CSCC dataset GSE63678 and conducted gene function enrichment analysis. Subsequently, CCNB1 expression was knocked down in CSCC cell lines to sessed cell proliferation, apoptosis, and cell cycle distribution. After the validation of the binding relationship by ween forkhead box protein M1 (FOXM1) and the promoter of CCNB1, the effect of FOXM2 in CCNB1 expression and on CSCC cell growth and apoptosis was verified. We further analyzed the histone ChIP-Seq data of CCNB1 in CSCC cells and measured the aptylation of the CCNB1 promoter histones.

Results CCNB1 of overexpressed in CSCC tissues and cells, and CCNB1 silencing inhibited the rowth CSCC cells, and promoted cell cycle arrest and apoptosis. FOXM1 pentiated CNB1 transcription by binding to its promoter and recruiting CBP/P300, a higher acetyltransferase. Further increasing FOXM1 expression or increasing P300 activity in a CC cells with CCNB1 knockdown elevated CCNB1 expression and proliferation and cell cycles progression of CSCC cells. Knockdown of CCNB1 activated the p53 pathway

Colusion: FOXM1 inhibited the activation of the p53 pathway by recruiting CBP/P300, which promoted the transcription of CCNB1, resulting in the growth and cell cycle progression of CSCC cells

Keywords: cervical squamous cell carcinoma, CCNB1, FOXM1, CBP/P300, p53 pathway, cell cycle

Introduction

Cervical cancer remains to be the second leading reason of cancer-related death in female aged 20 to 39 years, leading to 10 premature fatalities per week in this population. The chronic infection induced by a sexually delivered virus called human papillomavirus is a main contributor for the progression of cervical cancer. Cervical squamous cell carcinoma (CSCC) is the major subtype of cervical cancer, accounting for 80–85% of all cervical cancer diagnoses. Major progresses have been witnessed in the management of locally advanced and high-risk early stage patients during the past decade with the combination of cisplatin with radiation and

Correspondence: Yanyan Li
Department I of Gynecological
Oncology, Jilin Cancer Hospital, No.
1018, Huguang Road, Chaoyang District,
Changchun 130012, Jilin, People's
Republic of China
Tel/Fax +86-15143170172
Email yanyanli06152@163.com

gemcitabine added to cisplatin chemoradiation at advanced stage.⁴ Nevertheless, the 3-year to 5-year survival of patients in many developing countries is still under 50% for all stages combined.⁵ Consequently, much more efforts are needed to further elucidate the molecular mechanisms that involved in initiation and progression of CSCC, which might be helpful for developing better targets for the treatment of CSCC.

Defective cell cycle regulation represents the hallmark of malignancies supporting the cancer development, and normal cell cycle is governed by the synchronized and consecutive regulation of cyclin-dependent kinases activity. 6 Cyclins A, D and E mediate the transition from G1 to S stage, while cyclins A and B the passage from G2 to M stage. Intriguingly, cyclin B1 (CCNB1), an important component of the cell cycle pathway, was identified as one of the hub genes to exert a substantial influence on the development of cervical cancer.8 Therefore, targeting CCNB1 may be a promising strategy for the treatment of papillomavirus-related malignancy by reactivating p53.9 A microarray screen was performed in the present work, which revealed that CCNB1 was significantly overexpressed in CSCC tissues and cell lines. Moreover, a transcriptional factor, forkhead box protein M1 (FOXM1), located in 12p13.33, was identified as an upstream modulator of differentially expressed genes in cer cal cancer. 10 In addition, overexpression of FOXM1 results 1 malignant phenotypes by directly upregulating CCNB1.¹ Nevertheless, the molecular mechanisms bound unknown up to now. In the current study, we determine connection between FOXM1 and CCV exp on in the context of CSCC. By gain- and los f function so dies, we explored the biological function (CC) and FOAM1 in cell growth, apoptosis and carcycle progretion, and elucidated the possible underlying mechanisms in vivo.

Me hod **Materials** Reagents Plasmids, Ambodies and Primers \

CREB binding tein (CBP)/E1A binding protein P300activator \(\frac{1}{2}\)-(4-chloro-3-trifluoromethyl-phenyl)

-2-ethoxy-6-pentadecyl-benzamide (CTPB, #CAS No: 586976-24-1, MedChemExpress, Monmouth Junction, NJ, USA) was configured into a solution using dimethylsulfoxide (DMSO). Three small interfering RNAs (siRNAs) targeting CCNB1 (CAT#: SR311714) were synthesized and purchased from OriGene Technologies (Beijing, China). The overexpression vector and empty vector of FOXM1 were synthesized at Shanghai Sangon Biological Engineering Technology & Services Co., Ltd. (Shanghai, China). Antibodies used in Western blot analysis including: CCNB1 (ab32053, Abcam, Cambridge USA, KO validation), FOXM1 (#GTX102170, GCTex, Inc. 1ton Pkwy Irvine, CA, USA, KO validation), coliferating all nuclear antigen (PCNA, #60097-1-1 Protein sh Grove, Chicago, IL, USA, KO validation B-cell CLL/lyl ma 2 (Bcl-2, #MA5-11757, Invitroge KD alidation), BCL-associated X (Bax, ab32503 Bcam, Novalidation), p53 up-regulated modulator of opsis (PUMA, X29643, Genetex, KO/ KD validation), p53 13-4000, Invitrogen, IP-MS valida-33-7000, In rogen Inc., Carlsbad, CA, USA, KD alidation), glyceraldehyde 3-phosphate dehydrogenase (GADH, ab8245 ABcam), acetylation of histone H3 lysine 27ac, # A5-24671, Invitrogen, cell treatment valition). The primers used for quantitative real-time polymerreaction (qPCR) were designed using Primer remiere 5.0 (Premier, Canada) and synthesized by Sangon. The primer sequence list is shown in Table 1.

Bioinformatics Analysis

Firstly, the expression microarray GSE63678 for CSCC was downloaded from Gene Expression Omnibus (GEO) database website (https://www.ncbi.nlm.nih.gov/geo/) with the GPL platform: [HG-U133A 2] Affymetrix Human Genome U133A 2.0 Array. Differentially expressed genes were analyzed with the help of the Limma R package (http://www. bioconductor.org/packages/release/bioc/html/limma.html). The pHeatmap R package (https://cran.r-project.org/web/ packages/pheatmap/index.html) was utilized to create a heatmap. Functional analysis of differentially expressed

Table I Primer Sequences Used for RT-qPCR

Targets	Forward (5'-3')	Reverse (5'-3')	Accession No
CCNBI	GACCTGTGTCAGGCTTTCTCTG	GGTATTTTGGTCTGACTGCTTGC	NM_031966
FOXMI	TCTGCCAATGGCAAGGTCTCCT	CTGGATTCGGTCGTTTCTGCTG	NM_001243088
GAPDH	GTCTCCTCTGACTTCAACAGCG	ACCACCCTGTTGCTGTAGCCAA	NM_001256799

Abbreviations: CCNB1, cyclin B1; FOXM1, forkhead box protein M1; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; qPCR, quantitative real-time polymerase chain reaction.

genes was subsequently conducted using Gene Set Enrichment Analysis (GSEA) software (https://www.gseamsigdb.org/gsea/index.jsp). Expression of cyclin D1 (CCND1), cell division cycle 7-related protein kinase (CDC7), CCNB1, and cyclin E2 (CCNE2) in gynecologically associated malignancies, including endocervical adenocarcinoma (CESC), breast carcinoma (BRCA), ovarian cancer (OV), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS), in addition to the correlation between CCNB1 and FOXM1 in The Cancer Genome Atlas (TCGA)-CESC were predicted using the GEPIA website (http://gepia.cancer-pku.cn/index.html). The transcription factor binding to CCNB1 promoter was predicted using the TRRUST website (https://www.grnpe dia.org/trrust/). JASPAR website (http://jaspar.genereg.net/) was then applied to predict the binding sites between FOXM1 and CCNB1 promoter. The level of promoter histone acetylation of CCNB1 was predicted using the ENCODE website (https://www.encodeproject.org/).

Cell Culture and Transfection

CSCC cells (CaSki, ME-180, C33A, and SiHa) derived Biotech (http://www.otwobiotech.com/, Shenzhou, Guangdong, China) as well as normal in epithelial cells (HaCaT) derived from CLS Cell Service GmbH (https://www.clsgmbh.de/p900 HaC html, Eppelheim, Germany) were included. At mation of the absence of mycoplasma entamin short sequence tandem repeat rean and s, cells were grown in Dulbecco's modific Eagle's making (Noble Ryder Technology Co., Fijing, China) supplemented with penicillin-streptor cin (100 μg L) and 10% FBS at 37°C in a 5% Concubator.

Siha and Cask ells re plated into 6-well plates at a concentration of 1 cells and cultured till their 6. Cells were then transconfluence reach 70% fected of the siR or overexpression plasmids (50 nM) using the offectamine 2000 kit (Invitrogen, Carlsbad, CA, USA) a per the kit instructions. At 48 h posttransfection, the transfection efficiency was assessed by RT-qPCR and Western blot.

5'-Ethynyl-2'-Deoxyuridine (EdU) Assay

EdU staining was carried out using a Click-iTEdU imaging kit (Invitrogen) as per the protocol. In brief, the cells were exposed to 50 µM EdU for 2 h and fixed with 4% formaldehyde. Cells were then treated with 2 mg/mL glycine to neutralize formaldehyde and permeabilized with 0.5% Triton X-100. Finally, the cells were reacted with 100 µL 1X Apollo reaction solution for 0.5 h and incubated with 100 µL Hoechst 33342 (5 µg/mL). Images were acquired using an Olympus IX-71 inverted microscope (Tokyo, Japan). The percentage of EdU-positive cells was determined by dividing the number of EdUpositive cells by the number of Hoechst-stained cells.

CellTiter Glow

A total of 2×10^3 cells was plated in 96-well plates in quadruplicate. At the indicated time points, cell viability was assessed by Celltiter Glossay (Proega, Madison, WI, USA), and biolumines ce signals ere measured with a TECAN Infinity 2000 late refer (TECAN, Maennedorf, Zürich switzerland).

Clonoger, Ass.

d into 6-well plates. After 2 A total of 0^2 cells were weeks of cell with, 4% paraformaldehyde fixing and a 200.4% cryst violet (Beyotime, Shanghai, China) aining, clonality was measured under the microscope.

T-qPCR

harvested after transfection, and RNA was ted using TRIzol reagent (Sigma-Aldrich). Then, 10 ng RNA was applied for reverse transcription using the TagMan MicroRNA RT kit (Applied Biosystems, Life Technologies, Madison, WI, USA). Briefly, 5 µL RNA was added to 10 µL stock solution containing 0.15 µL dNTP (100 nM), 1 μL multiscribe enzyme (50 U/μL), 1.5 μL 10× RT-buffer, 0.19 μL RNAse inhibitor (20 U/μL), 4.16 μL RNAse-free H₂O and 3 μL primers. Quantitative real-time PCR of each miRNA was performed in a total volume of 10 μL containing 5 μL TaqMan stock solution, 3.17 µL RNase-free H₂O, 0.5 µL TaqMan primer, and 1.33 μL cDNA. PCR was performed in a quadruple reaction in Rotor-Gene Corbett Q 6000 PCR. Data were collected and analyzed using Rotor-Gene quantitative software.

Western Blot

Cells were lysed with radio immunoprecipitation assay lysis buffer containing proteinase inhibitors (Roche, Basel, Switzerland) and phosphatase inhibitors (Sangon Biotech, Shanghai, China) on a shaker at 4°C overnight. After quantification using the Pierce bicinchoninic acid assay protein assay kit (Thermo Fisher Scientific), equal amounts of protein were boiled and loaded for Western blot analysis. Polyvinylidene fluoride membranes were

submit your manuscript | www.dovepress.com 12385 OncoTargets and Therapy 2020:13

then probed with primary antibodies (1:1000) at 4°C for one night and then with horseradish peroxidase-conjugated anti-rabbit/mouse IgG secondary antibody Biotechnology Co., Ltd., Beijing, China) for 60 min at ambient temperature. Protein bands were visualized using an enhanced chemiluminescence detection kit (Thermo Fisher Scientific) and a ChemiDoc Touch imaging system (Bio-Rad Laboratories, Hercules, CA, USA).

Flow Cytometry

Apoptosis rate and cell cycle distribution of CSCC cells were assessed by flow cytometric analysis. Cells were fixed in cold citric acid buffer (No. orb-EHJ024527, BIOHJSW, USA) for 10 min at 4°C to disperse the cells into a cell density of 2×10^5 cells/200 mL citric acid buffer, which were transferred into Falcon tubes. PE Annexin V Apoptosis Assay Kit (No. 640934-1, BioLegend, San Diego, CA, US) was used to determine the relative number of AnnexinV-fluorescein isothiocyanate (FITC)-positive, propidium iodide (PI)-negative cells. Cells were stained with PI using the PI Cell Cycle Kit (No. CSK-0112, Nexcelom Bioscience, Lawrence, MA, USA). Cells were treated as indicated and then FAScan was run to detect apoptosis rate and cell cycle distribution.

Chromatin Immunoprecipitation (ChIP)-qPCR

ChIP-qPCR was performed using the Z-M ChlP Kit (Millipore Corp, Billerica, MA JSA) in Stat accordance with the protocol. Anti-odic against H. 27ac (5μg, Abcam, Cambridge, A, USA), QXM1 (8 μg; Abcam, Cambridge, M/ USA), or IgG (µg; Sigma-Aldrich Chemical Comany, Louis, MO, USA) were atin. Pricers used are listed used to precipitate the co below: CC 21-1 motel CA P1: CCTATAC AGGGGCGGGTTV, reverse, GGCGGACT TAGAAACC GC CCND Promoter ChIP P2: forward, GGTGGCTTAC TATAGGGAGAG, reverse GCGACA TGGGGCTGCTTIXA; CCNB1-promoter ChIP P3: forward, AAGCCATCTGCCAAGAGCAG, reverse CTCTTTTACTGACGCTGCCC.

Co-Immunoprecipitation (Co-IP)

Cell lysates were prepared using radioimmunoprecipitation assay lysis buffer (P0013D, Beyotime, Shanghai, China) containing a mixture of protease inhibitors (469313200, Roche Diagnostics, Co., Ltd., Rotkreuz, Switzerland).

Immunoprecipitation and Western blot analyses were performed using anti-p300 antibody (ab54984, Abcam) and FOXM1 antibody (ab207298, Abcam), or control antiimmunoglobulin G antibody (X0936, DAKO, Santa Clara, CA, US).

Luciferase Assay

A total of 5×10^4 cells were seeded in 24-well plates the day prior to the transfection. Cells were then transfected with Lipofectamine 2000 (Invitrogen, USA) as per the manufacturer's instructions. At 42 transfection, ed using luciferase activity was determi he Dual-Luciferase Reporter Assay System Promega).

Statistical Analys

the $m = n \pm SD$ of three The values were displand replicates. Unpred t-test or corporarison between two samples) an one vay or two ay analysis of variance followed by Tukey's at (for comparison among multiple samp¹ of were applied 1 statistical analysis using SPSS software (PM, Chicago, IL, USA). p < 0.05 was inditive of a statistically significant difference.

sults

CND is Significantly Overexpressed in CSCC Tissues and Cells

ve first downloaded the GSE63678 expression microarray from the GEO database, which contained five CSCC tissues and five normal tissues. A total of 584 upregulated genes and 519 downregulated genes (Figure 1A) were screened out in the CSCC tissues. The heatmap in Figure 1B shows the top 50 differentially expressed genes. We subsequently observed that the cell cycle pathway was significantly positively correlated in CSCC tissues by GSEA software (Figure 1C). Moreover, we further determined the expression of CCND1, CDC7, CCNB1, and CCNE2 in gynecological malignancies (CESC, BRCA, OV, UCEC, and UCS) by GEPIA. The expression of CCNB1 in gynecological malignancies was much higher than in the corresponding normal tissues (Figure 1D-G). In a study by Xiao et al, it was noted that MNX1 promotes the proliferation of SCC by promoting the expression of CCNE1 and CCNE2.12 Zhen et al proposed that Toona Sinensis and Moschus Decoction promoted cell cycle arrest in CC cells by suppressing CDC7 expression.¹³ The occurrence and metastasis of CC caused by CCNB1 have not been thoroughly studied, so we chose CCNB1 as our study subject. Thus, we speculated that CCNB1 has a relevance in cervical

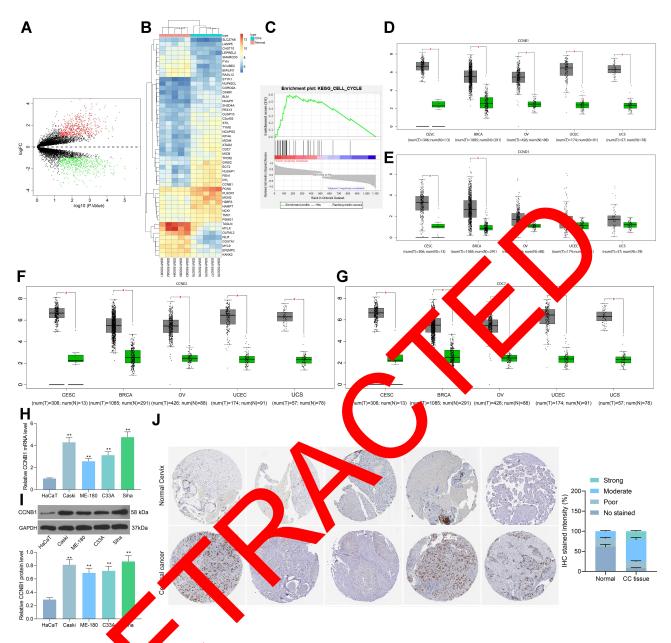


Figure I CCNBI is overexp CSCC tise and cells. (A) Volcano diagram of differentially expressed genes in CSCC microarray GSE63678; (B) heatmap of the top CSCC mi 50 differentially array GSE63678; (C) cell cycle pathway positively correlates with cancer tissue in GSEA; (D-G) the expression of CCNBI (D), CCNDI (**F**), and in gynecological malignancies, including CESC, BRCA, OV, UCEC, and UCS; (H) the mRNA expression of CCNB1 in normal elial cells b Western CaT and in cells measured by RT-qPCR; (I) the protein expression of CCNBI in normal cervical epithelial cells HaCaT and in CSCC cells cervical ep asity of staining in normal cervix and in cervical cancer tissues by HPA database and statistical analysis. The experiments were performed s were expressed as mean ± SD. One-way analysis of variance followed by Tukey's test were applied for statistical analysis (H and I). *p < 0.05 vs in triplicate normal tissues; < 0.01 vs HaCaT cells.

Abbreviations: C., cervical squamous cell carcinoma; CCNBI, cyclin BI; qPCR, quantitative real-time polymerase chain reaction; CCNDI, cyclin DI; CDC7, cell division cycle 7-relates otein kinase; CCNE2, cyclin E2.

carcinogenesis, and we detected the CCNB1 expression in normal cervical epithelial cells as well as in CSCC cells and noted that the CCNB1 expression was remarkably enhanced in CSCC cell lines (Figure 1H and I). Furthermore, we further queried from the human protein atlas (HPA) database that the

staining intensity of CCNB1 in normal cervical tissues was either poorly- or not-stained, whereas that in cervical cancer tissues was mostly moderately- or strongly stained (Figure 1J). All in all, we conjectured that CCNB1 plays an important part in the CSCC development.

Li et al Dovepress

CCNB1 Knockdown Hampers Growth and Cell Cycle Progression of Caski and Siha Cells

To clarify the role of CCNB1 in CSCC growth, we transfected three siRNAs targeting CCNB1 into Caski and Siha cells with the relative high level of CCNB1. We performed RT-qPCR and Western blot by detecting the CCNB1 expression in cells to confirm the success of transfection and to exclude off-target effects, and we found the highest efficiency of CCNB1-siRNA-#2 (Figure 2A and B). We assayed cell activity by CellTiter Glow kit and we noted that CCNB1-siRNA significantly inhibited CSCC cell activity

(Figure 2C). Moreover, we further observed that the proliferative capacity of Caski and Siha cells was greatly reduced in CSCC cells with poor expression of CCNB1 (Figure 2D and E). Furthermore, we tested the proportion of apoptosis in the cells, and the results of flow cytometry showed an augment in the proportion of apoptosis after diminishing the CCNB1 expression in the cells (Figure 2F). Subsequently, we used flow cytometry to examine cell cycle distribution in Caski and Siha cells, which revealed significantly more S-phase cell cycle arrest in poorly-expressing CCNB1 cells (Figure 2G). Later, Western blot was utility to measure the expression of proliferation- and are prosis-rest of proteins. After CCNB1 knockdown, the expression patt as of the

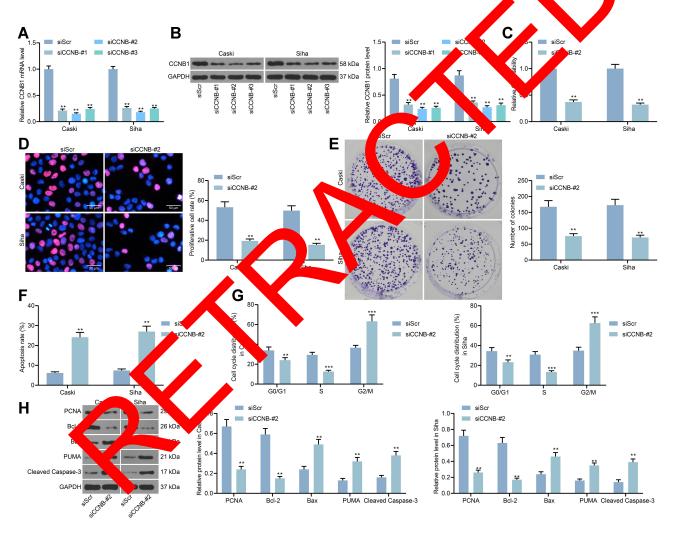


Figure 2 Knockdown of CCNB1 inhibits the growth of Caski and Siha cells and cell cycle progression in vitro. Three siRNAs targeting CCNB1 were delivered into Caski and Siha cells, which have the relative high expression of CCNB1. (A) The mRNA expression of CCNB1 in cells measured by RT-qPCR; (B) the protein expression of CCNB1 in cells measured by Western blot; (C) cell growth activity in Caski and Siha cells evaluated by Cell Tilter Glow kit; (D) the proliferative activity of Caski and Siha cells measured by EdU staining; (E) the number of colonies formed evaluated by colony formation assay; (F) cell apoptosis in Caski and Siha cells by flow cytometry; (G) cell cycle distribution in Caski and Siha cells by flow cytometry; (H) the expression of PCNA, Bcl-2, Bax, PUMA and Cleaved Caspase-3 in Caski and Siha cells measured by Western blot. The experiments were performed in triplicate and expressed as mean ± SD. Two-way analysis of variance followed by Tukey's test were applied for statistical analysis. **p < 0.01, ***p < 0.001 vs siScr.

Abbreviations: CCNB1, cyclin B1; PCNA, proliferating cell nuclear antigen; Bcl-2, B-cell CLL/lymphoma 2; Bax, BCL-associated X; PUMA, p53 up-regulated modulator of apoptosis; qPCR, quantitative real-time polymerase chain reaction; siRNAs, small interfering RNA; EdU, 5'-Ethynyl-2'-deoxyuridine.

proliferation-related factors PCNA and Bcl-2 decreased remarkably, whereas the expression patterns of the apoptosis-related proteins Bax, PUMA and Cleaved Caspase-3 increased significantly in Siha and Caski cells (Figure 2H).

FOXMI Activates CCNBI Expression Transcriptionally

To further clarify the upstream regulatory mechanism of CCNB1, we used the TRRUST website to predict the transcription factors (Figure 3A) of CCNB1. We focused on FOXM1 and noticed a moderate positive correlation between FOXM1 and CCNB1 expression in TCGA-CESC (Figure 3B). We then predicted FOXM1 binding sites around 1000 bp upstream of CCNB1 via the JASPAR website. FOXM1 was found to be able to bind to the

promoter sequence upstream of CCNB1 (Figure 3C and D). Thus, we tested the binding relationship between FOXM1 and CCNB1 in Caski and Siha cells by ChIPqPCR experiments, which displayed that the enrichment level of the CCNB1 promoter fragment pulled down using anti-FOXM1 antibody was much higher than that of IgG (Figure 3E). To further determine the binding relationship between FOXM1 and the CCNB1 promoter, we constructed a luciferase reporter vector containing the CCNB1 promoter and an overexpression plasmid of FOXM1. We co-transfected the pression plasmid of FOXM1 with the lucifer reporter v tor into 293T cells, and we found that the riferase ad vity in 293T cells was significant increased Figu 3F). We also found that FOXM was ex essed at agnificantly higher

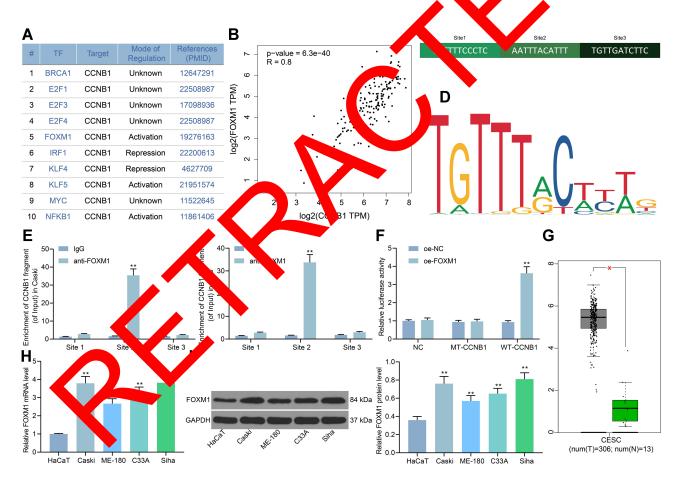


Figure 3 CCNBI is transcriptionally activated by FOXMI. (A) The transcription factors for CCNBI predicted by the TRRUST website; (B) correlation between FOXMI and CCNBI expression in TCGA-CESC dataset analyzed by Spearman's rho correlation; (C) the binding relationship of FOXMI to the CCNBI promoter predicted by the JASPAR website; (D) the conservative binding sequence of FOXMI; (E) binding of FOXMI to the CCNBI promoter in Caski and Siha cells detected by ChIP-qPCR experiments; (F) luciferase activity in 293T cells co-transfected with the FOXMI overexpression plasmid and the luciferase reporter vector assessed by luciferase reporter assasy; (G) the expression of FOXMI in normal cervical tissue and CESC predicted by GEPIA website; (H) the mRNA expression of FOXMI in normal cervical epithelial cells HaCaT and in CSCC cells measured by RT-qPCR; (I) the expression of FOXMI in normal cervical epithelial cells HaCaT and in CSCC cells measured by Western blot. The experiments were performed in triplicate and expressed as mean ± SD. One-way analysis of variance followed by Tukey's test were applied for statistical analysis (E, F, H and I). *p < 0.05 vs normal tissues; **p < 0.01 vs HaCaT cells, IgG or oe-NC treatment.

Abbreviations: CCNB1, cyclin B1; FOXM1, forkhead box protein M1; CSCC, cervical squamous cell carcinoma; CESC, endocervical adenocarcinoma; ChIP, chromatin immunoprecipitation.

levels in CESC than in normal cervical tissues (Figure 3G), and the same trend was noted in CSCC cell lines (Figure 3H and I).

Overexpression of FOXMI Promotes Growth of CSCCs

To determine the role of FOXM1 in regulating CCNB1 expression in CSCC cell growth as well as apoptosis, we further transfected FOXM1 overexpression plasmids into Caski and Siha cells with poor expression of CCNB1. There was a significant elevation in CCNB1 expression in Caski and Siha cells after overexpression

of FOXM1 (Figure 4A and B). We found that after upregulation of CCNB1 in Caski and Siha cells by the FOXM1 overexpression plasmid, the activity as well as the proliferative capacity of CSCC cells was enhanced as well (Figure 4C and D). Furthermore, we found that S-phase cell arrest due to CCNB1-siRNA was significantly mitigated by the overexpression of FOXM1 (Figure 4E), and even the level of apoptosis was significantly reduced (Figure 4F). The application of Western blot to detect apoptosis- and proliferation-related proteins in cells has considered experimental results (Figure 4G).

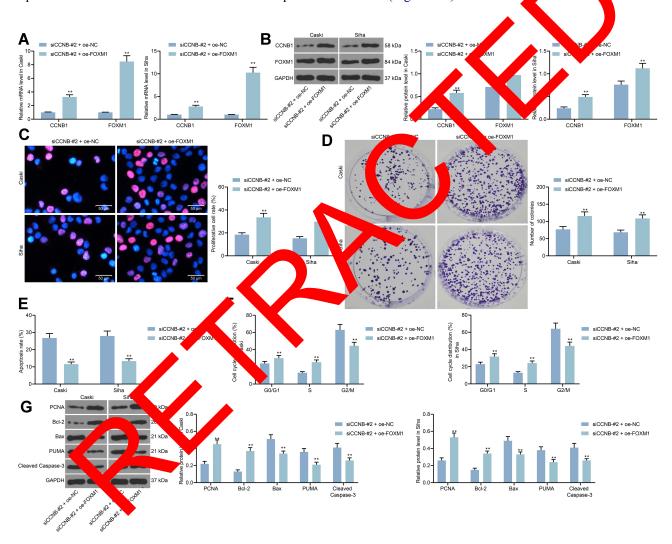


Figure 4 Overexpression of FOXMI promotes the growth of CSCC cells. The overexpression plasmid of FOXMI was further delivered into Caski and Siha cells with poor expression of CCNBI. (A) The expression of CCNBI and FOXMI in CSCC cells after co-transfection at mRNA level measured by RT-qPCR; (B) the expression of CCNBI and FOXMI in CSCC cells after co-transfection at protein level measured by Western blot; (C) the proliferative activity of Caski and Siha cells measured by EdU staining; (D) the number of colonies formed assessed by colony formation assay; (E) cell apoptosis in Caski and Siha cells by flow cytometry; (F) cell cycle distribution in Caski and Siha cells by flow cytometry; (G) the protein expression of PCNA, Bcl-2, Bax, PUMA and Cleaved Caspase-3 in Caski and Siha cells measured by Western blot. The experiments were performed in triplicate and expressed as mean ± SD. Two-way analysis of variance followed by Tukey's test were applied for statistical analysis. **p < 0.01 vs siCCNBI + oe-NC.

Abbreviations: CCNB1, cyclin B1; FOXM1, forkhead box protein M1; CSCC, cervical squamous cell carcinoma; ChIP, chromatin immunoprecipitation; PCNA, proliferating cell nuclear antigen; Bcl-2, B-cell CLL/lymphoma 2; Bax, BCL-associated X; PUMA, p53 up-regulated modulator of apoptosis; qPCR, quantitative real-time polymerase chain reaction; EdU, 5'-Ethynyl-2'-deoxyuridine; oe, overexpression; NC, negative control.

FOXMI Promotes H3K27ac to Activate CCNBI Expression by Recruiting CBP/P300

We speculated that there could be a super enhancer in the CCNB1 promoter sequence to promote the CCNB1 transcription. We first predicted the H3K27ac level of the promoter of CCNB1 in Hela cells via the ENCODE website, and we found that the promoter sequence of CCNB1 had a significant H3K27ac level (Figure 5A). We first examined the acetylation levels of histone H3K27 in normal cervical epithelial cells as well as in CSCC cells, and we found that the levels of H3K27ac were significantly higher in the CSCC cell lines than those of HaCaT cells (Figure 5B). ChIP experiments were then conducted using

H3K27ac antibodies to detect the acetylation modification of H3K27 in the promoter histone of CCNB1, we found that the promoter of CCNB1 has a higher level of acetylation modification (Figure 5C) in CSCC cells. In a study by Mansour et al, it was noted that CBP/P300 activated the TAL1 promoter H3K27ac, thereby enhancing TAL1 expression. 14 Thus, we hypothesized that CBP/P300 promoted acetylation modification of the CCNB1 promoter to facilitate its transcription. We first used the CBP/P300specific inhibitor P300/CBP-IN-5 in the CSCC cell lines and found that the histone H3K27 ecetylation level of the CCNB1 promoter was sign neantly 1 luced in CSCC cells (Figure 5D) and that the alls had sign icantly lower levels of CCNB1 mRM, and prein (Fig. re 5E and F). To further determine that FOXM mances CCND1

Figure 5 FOXM1 promotes H3K27ac levels by recruiting CBP/P300. (A) H3K27ac levels of the promoter of CCNB1 in Hela cells predicted by ENCODE website; (B) H3K27ac levels in HaCaT and CSCC cells determined by Western blot; (C) histone H3K27 acetylation levels of the CCNB1 promoter sequence in HaCaT and CSCC cells measured by ChIP experiments; (D) histone H3K27 acetylation levels of the CCNB1 promoter sequence in CSCC cells in response to the CBP/P300 specific inhibitor measured by ChIP experiments; (E) the mRNA expression of CCNB1 in CSCC cells in response to the CBP/P300 specific inhibitor measured by RT-qPCR; (F) the protein expression of CCNB1 in CSCC cells in response to the CBP/P300 specific inhibitor measured by Western blot; (G) Co-IP detection of FOXM1 binding to p300 in Caski and SiHa cells. The experiments were performed in triplicate and expressed as mean ± SD. Two-way analysis of variance followed by Tukey's test were applied for statistical analysis (B–F). ***p < 0.01 vs HaCaT cell or CSCC cells treated with DMSO.

Abbreviations: CCNBI, cyclin BI; FOXMI, forkhead box protein MI; CSCC, cervical squamous cell carcinoma; ChIP, chromatin immunoprecipitation; qPCR, quantitative real-time polymerase chain reaction; CBP, CREB binding protein; CTPB, N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide; siRNAs, small interfering RNA.

OncoTargets and Therapy 2020:13

submit your manuscript | www.dovepress.com
DovePress

transcription by recruiting p300 and thereby enhancing CCND1 transcription, we used a Co-IP assay to examine the binding relationship of FOXM1 to p300 in SiHa cells and Caski cells. We found FOXM1 expression in the complexes precipitated with the anti-p300 antibody and p300 expression in the complexes precipitated with the anti-FOXM1 antibody. The above results suggest that FOXM1 activated the expression of CCNB1 by recruiting p300 (Figure 5G). The above data signposted that the transcription factor FOXM1 modifies histone H3K27ac by recruiting CBP/P300 to promote CCNB1 expression.

CTPB Treatment Activates CCNBI in CSCC Cells to Promote Their Growth

To further explore the effect of H3K27ac modification of the CCNB1 promoter on CSCC growth and apoptosis, we added the CBP/P300-specific activator CTPB to Caski and Siha cells with poor expression of CCNB1. Significant augments in the level of H3K27 acetylation of the CCNB1 promoter histone and the expression of CCNB1 were observed after CTPB supplement (Figure 6A-C). Additionally, the proportion of EdU-positive cells was

drastically increased in Caski and Siha cells (Figure 6D), and the proportion of apoptosis in Caski and Siha cells was considerably downregulated (Figure 6E), and the cell cycle arrest was remarkably inhibited (Figure 6F). It showed that enhancing the H3K27ac modification of the CCNB1 promoter histone by CBP/P300 in cells significantly promoted the expression of CCNB1 in CSCC cells, as well as cell growth and cell progression.

Silencing of CCNB1 Activates p53 Pathway in CSCC Cells

GSEA of differentially expresse genes reveald that the p53 pathway was significantly in tively regulated in cancer tissues (Figure 7) It was not by an et al that CCNB1 silencing sign cantly omoted be activation of alar cargoma cells. 15 Thus, the p53 pathway ir lepak we first examine the express a of DK1, p53 and p21 in the p53 path ay in ells and found that after silencing of CCNB1 the express of CDK1 was significantly decreased, while the expression of p53 and p21 was drasy boosted. Newever, upon further CCNB1 expression ted by overxpression of FOXM1 or enhancement

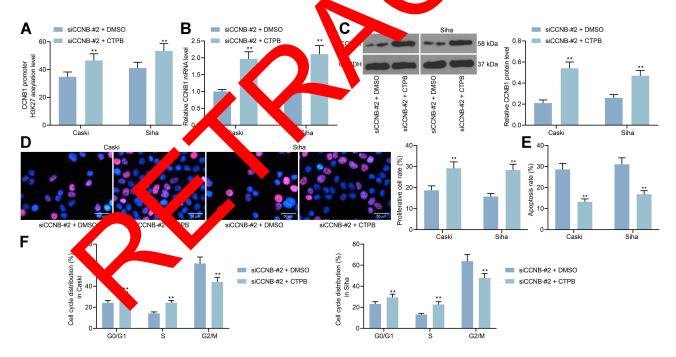


Figure 6 CTPB treatment activates the expression of CCNBI to promote the growth of CSCC cells. P300-specific activator CTPB was added to Caski and Siha cells with stable poor expression of CCNBI. (A) Histone H3K27 acetylation levels of the CCNBI promoter sequence in CSCC cells measured by ChIP experiments; (B) the mRNA expression of CCNB1 in CSCC cells in response to the CBP/P300 specific inhibitor measured by RT-qPCR; (C) the protein expression of CCNB1 in CSCC cells in response to the CBP/P300 specific inhibitor measured by Western blot; (D) he proliferative activity of Caski and Siha cells measured by EdU staining; (E) cell apoptosis in Caski and Siha cells by flow cytometry; (F) cell cycle distribution in Caski and Siha cells by flow cytometry. The experiments were performed in triplicate and expressed as mean ± SD. Two-way analysis of variance followed by Tukey's test were applied for statistical analysis. **p < 0.01 vs siCCNB1 + DMSO.

Abbreviations: CCNBI, cyclin BI; FOXMI, forkhead box protein MI; CSCC, cervical squamous cell carcinoma; EdU, 5'-Ethynyl-2'-deoxyuridine; qPCR, quantitative realtime polymerase chain reaction; CBP, CREB binding protein; CTPB, N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide; Co-IP, coimmunoprecipitation.

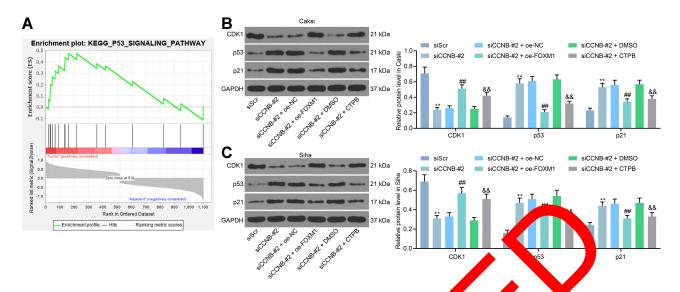


Figure 7 Silencing of CCNBI activates the p53 pathway in CSCC cells. CSCC cells were transfected with siCCN the presence of oe-FOXMI or CTPB. (A) Caski (B) The p53 pathway negatively correlates with cancer tissue in GSEA; (B and C) the protein expression of p53, and C Siha (C) cells. The experiments were performed in triplicate and expressed as mean ± SD. Two-way analysis of variance followed by Tukey or statis ar analysis. **p < 0.01 vs siScr; ##p < 0.01 vs siCCNB1 + oe-NC, **p < 0.01 vs siCCNB1 + DMSO.

a; CTPB, N-(4 Moro-3-trifluoromethyl-phenyl)-2-ethoxy-Abbreviations: CCNBI, cyclin BI; FOXMI, forkhead box protein MI; CSCC, cervical squamous 6-pentadecyl-benzamide; siRNAs, small interfering RNA; oe, overexpression; NC, negative control.

of H3K27ac modification of the CCNB1 promoter, p53 and p21 expression in cells was notably inhibited and that of CDK1 was increased (Figure 7B and C).

Discussion

Each year, 530,000 new CC diagnoses ar 275, 0 deat are reported in a world range, contributing to portality to-incidence ratio of abound 50% Best uman papillomavirus E6 and E7 interact of the a broat spectrum of signaling pathways, including the ediation of cell cycle and the governance of apptosis, while are of great importance in sustaining mal cell functions In the present study, we establish that pairment of the CCNB1 function may offer a pronting there cutic option for treating alting ell cy gression and proliferation. posed that FOXM1 directly bound to Moreo r, we recruited CBP/P300 to enhance the CCNB1 H3K27ac lev

Previous studies identified the oncogenic role of CCNB1 in different cancers, including hepatocellular carcinoma¹⁵ and cervical cancer. ¹⁸ Also, CCNB1 represents a prognostic factor for overall survival and metastasis-free survival in breast cancer. 19 Meanwhile, our bioinformatics website prediction verified its overexpression in CSCC clinical samples and cell lines. Therefore, we conducted loss-of-function assays to substantiate the inhibitory role of siCCNB1 in vitro. As expect, siCCNB1

repressed CSCC cell activities, as maniced PCNA and Bcl-2, whilst restored Bax, sted by red A ap Cleaved Caspase-3 expression. In order to expound its upstream factor, we applied a bioinformatics west to TRRUST to predict the transcription factors for CCNB1. FOXM1 was found as one of the possible transcription factors that work. Given the potential of the multifarious oncogene, FOXM1 has emerged as an imperative biomolecule implicated in the initiation and development of cancers.²⁰ Moreover, FOXM1 is a typical proliferation-associated transcription factor, provokes cell proliferation a proliferation-specific expression pattern.²¹ For instance, microRNA-374b reduced cervical cancer cell proliferation and invasion through targeting FOXM1.²² Our subsequent JASPAR website prediction, ChIP and luciferase report assay revealed that there is a binding relationship between CCNB1 and FOXM1. Lee et al provided that suppression of FOXM1 diminished hepatocellular carcinoma cell viability and the expression of CCNB1,²³ which was largely in line with our observations in the following rescue experiments where overexpression of FOXM1 abrogated the suppressive effect of siCCNB1 on cell viability and cell cycle progression.

Sengupta and George reported that transcription factors binding to enhancers contribute to the recruitment of the mediator complex, which expedites enhancer connection

submit your manuscript | www.dovepress.co 12393 OncoTargets and Therapy 2020:13

with the basal transcription machinery and RNA polymerase II at promoters.²⁴ More specifically, the expression of vital oncogenes is controlled by large regulatory elements, known as super-enhancers, which recruit transcriptional apparatus and are characterized by acetylation of H3K27.¹⁴ ENCODE website exhibited that the promoter sequence of CCNB1 has a distinct H3K27ac level. Similarly, we found that the acetylated levels of histone H3K27ac were significantly higher in CSCC cell lines than in HaCaT cells by ChIP and that FOXM1 bound to p300 by Co-IP. Furthermore, the transcriptional activity of FOXM1 involves binding of CDK-cyclin complexes to modulate CDK phosphorylation of the FOXM1B Thr 596 residue, which is crucial for recruitment of p300/ CBP coactivator proteins.²⁵ By applying CBP/P300specific inhibitor P300/CBP-IN-5, we observed that the levels of H3K27ac and the expression of CCNB1 at mRNA and protein levels were remarkably reduced. Therefore, we established the involvement of CBP/P300 in the mediation of FOXM1 on the expression of CCNB1. Kim et al proposed that suppression of p300 acetyltransferase activity with the help of a catalytic p300/CBP inhibitor exhibited effective growth inhibitory effects in melanoma cells.²⁶ Functional rescue experiments in o study further validated that the CBP/P300-specific activator CTPB promoted EdU-positive cells and red tosis in the presence of siCCNB1. Lastly present study disclosed that p53 pathway w conversely regulated in CSCC. Know down of XM1 in malignant meningioma cells led creased centroliferation, angiogenesis and invasion by regulating cyclin D1 and p21.27 While our Western blot results shibited that siCCNB1 expedited the p53 poliway, while further oe-FOXM1 or CTPB contribute to the p3 pathway deficit.

In conclusion in above sults adicated that the anti-

tumor effect of siC B1 in CC are likely caused by cell cycle anscriptional regulation by FOXM1 and/or cetylation modification of its histone H3K27ac by p30c SBP. CCNB1 inhibition may offer a possibly effective therapeutic strategy by blocking the cell cycle progression in CSCC. Nonetheless, in vivo studies are warrant to establish CCNB1 inhibition as a therapeutic option for the CSCC treatment and control.

Data Sharing Statement

All the data generated or analyzed during this study are included in this published article.

Disclosure

The authors declare no conflicts of interest in this work.

References

- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. doi:10.3322/caac.21590
- 2. de Freitas AC, Gomes Leitao Mda C, Coimbra EC. Prospects of molecularly-targeted therapies for cervical cancer treatment. Curr Drug Targets. 2015;16(1):77-91. doi:10.2174/13894501166661412 05150942
- 3. Wen X, Liu S, Cui M. Effect of BRCA1 on the concurrent chemoradiotherapy resistance of cervical squamous cell carcinoma based on transcriptome sequencing analysis 398417 2020;2020:3598417. doi:10.1155/2020
- Cetina L, Co 4. Duenas-Gonzalez A, Serrano-Olvera nel J. New al cant Int J Wo molecular targets against cervi ns Health. 2014;6:1023-1031. doi:10.21/JJWH.S494
- 5. Small W Jr, Bacon MA djaj A, e health crisis. *Cancer*. 20, 123(13) al. Cer ancer: a global 404–2412.
- 6. Lin ZP, Zhu YL, P er E eting cycle dependent kinases for treatment of nt Oncol. 2018;8:303. recologic ` cers. doi:10.3389/f 18.00303
- is S, Okulicz K, et al. Cyclin B1 expression 7. Hoffmann K, Trek and p53 status in squareus cell carcinomas of the head and neck.

 Any Res. 2011;31(1), 3151–3157.

 V. X, Peng L, Zhang Y, et al. Identification of key genes and
- thways in cer al cancer by bioinformatics analysis. Int J Med 2019;16(6):8 –812. doi:10.7150/ijms.34172
- M, Kramer A, et al. Restoration of the tumor NN, Sanb by downregulating cyclin B1 in human papillomairus 16/18-infected cancer cells. 2010;29 Oncogene. 1-5603. doi:10.1038/onc.2010.290
- Chen T, Yang S, Xu J, Lu W, Xie X. Transcriptome sequencing profiles of cervical cancer tissues and SiHa cells. Funct Integr Genomics. 2020;20(2):211-221. doi:10.1007/s10142-019-00706-y
- Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancer genetics and genomics of human FOX family genes. Cancer Lett. 2013;328(2):198-206. doi:10.1016/j.canlet.2012.09.017
- 12. Xiao L, Hong L, Zheng W. Motor neuron and pancreas homeobox 1 (MNX1) is involved in promoting squamous cervical cancer proliferation via regulating cyclin E. Med Sci Monit. 2019;25:6304-6312. doi:10.12659/MSM.914233
- 13. Zhen H, Zhang Y, Fang Z, Huang Z, You C, Shi P. Toona sinensis and moschus decoction induced cell cycle arrest in human cervical carcinoma HeLa cells. Evid Based Complement Alternat Med. 2014;2014:121276. doi:10.1155/2014/121276
- 14. Mansour MR, Abraham BJ, Anders L, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of noncoding intergenic element. Science. 2014:346 (6215):1373-1377. doi:10.1126/science.1259037
- 15. Jin J, Xu H, Li W, Xu X, Liu H, Wei F. LINC00346 acts as a competing endogenous RNA regulating development of hepatocellular carcinoma via modulating CDK1/CCNB1 axis. Front Bioeng Biotechnol. 2020;8:54. doi:10.3389/fbioe.2020.00054
- 16. Berumen J, Espinosa AM, Medina I. Targeting CDKN3 in cervical cancer. Expert Opin Ther Targets. 2014;18(10):1149-1162. doi:10.1517/14728222.2014.941808
- 17. Dukic A, Lulic L, Thomas M, et al. HPV oncoproteins and the ubiquitin proteasome system: a signature of malignancy? Pathogens. 2020;9(2):133. doi:10.3390/pathogens9020133
- 18. Bai X, Wang W, Zhao P, et al. LncRNA CRNDE acts as an oncogene in cervical cancer through sponging miR-183 to regulate CCNB1 expression. Carcinogenesis. 2020;41(1):111-121. doi:10.1093/carcin/bgz166

- 19. Nimeus-Malmstrom E, Koliadi A, Ahlin C, et al. Cyclin B1 is a prognostic proliferation marker with a high reproducibility in a population-based lymph node negative breast cancer cohort. *Int J Cancer.* 2010;127(4):961–967.
- Nandi D, Cheema PS, Jaiswal N, Nag A. FoxM1: repurposing an oncogene as a biomarker. Semin Cancer Biol. 2018;52(Pt 1):74–84. doi:10.1016/j.semcancer.2017.08.009
- Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. *Adv Cancer Res*. 2013;118:97–398.
- Xia N, Tan WF, Peng QZ, Cai HN. MiR-374b reduces cell proliferation and cell invasion of cervical cancer through regulating FOXM1. *Eur Rev Med Pharmacol Sci.* 2019;23(2):513–521.
- Lee HA, Chu KB, Moon EK, Kim SS, Quan FS. Sensitization to oxidative stress and G2/M cell cycle arrest by histone deacetylase inhibition in hepatocellular carcinoma cells. *Free Radic Biol Med.* 2020;147:129–138. doi:10.1016/j.freeradbiomed.2019.12.021

- Sengupta S, George RE. Super-enhancer-driven transcriptional dependencies in cancer. *Trends Cancer*. 2017;3(4):269–281. doi:10.1016/j.trecan.2017.03.006
- Major ML, Lepe R, Costa RH. Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. *Mol Cell Biol.* 2004;24(7):2649–2661. doi:10.1128/MCB.24.7.2649-2661.2004
- 26. Kim E, Zucconi BE, Wu M, et al. MITF expression predicts therapeutic vulnerability to p300 inhibition in human melanoma. *Cancer Res.* 2019;79(10):2649–2661. doi:10.1158/0008-5472.CAN-18-2331
- 27. Kim H, Park KJ, Ryu BK, et al. Forkhead box M1 (FOXM1) transcription factor is a key oncogenic driver of aggressive human meningioma progression. *Neuropathol Appl Neurobiol*. 2020;46 (2):125–141. doi:10.1111/nan.12571

OncoTargets and Therapy

Publish your work in this journal

OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of management programs and new therapeutic

agents and protocols on patient perspectives such as quality of life, adherence and satisfaction. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/oncotargets-and-therapy-journal

Dovepress