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Introduction: Plasma albumins as protein nanoparticles (PNs) exert essential functions in the control of biological osmotic pressure 
(OP), being involved in regulating water metabolism, cell morphology and cell tension. Understanding how plasma albumins and 
different electrolytes co-determine biological OP effects is crucial for correct interpretation of hemodynamic disorders, and practical 
treatment of hypo/hyper-proteinemia.
Methods: Optical measurement based on intermediate filament (IF) tension probe was used for real-time evaluation of transmembrane 
osmotic effects in live cells. Ion fluorescent probes were employed to evaluate intracellular ion levels, and a current clamp was used to 
measure membrane potential, thus exploring association of electrochemical and osmotic effects.
Results: Albumins are involved in regulation of intracellular osmolarity by a quantitative relationship. Extracellular PNs can alter 
membrane potentials by adsorbing counterions, induce production of intracellular PNs and further control the opening of ion channels 
and ion flow, contributing to electrochemical and osmotic re-equilibrium. Furthermore, various ions interplay with extracellular PNs, 
showing different osmotic effects: increased levels of calcium ions result in a hypotonic effect, whereas potassium ions induce hyper- 
osmolarity.
Conclusion: Extracellular PNs and Ca2+/K+ display antagonistic or synergetic effects in regulating biological OP. Live cells can 
spontaneously regulate osmotic effects through changing membrane potential and controlling intracellular ion content. Various plasma 
components need to be comprehensively analyzed, further developing a diagnostic index that considers the biological OP effects of 
various blood components and improves the evaluation of symptoms and diseases, such as calcium/potassium-hemodynamic disorders 
and edema.
Keywords: biological OP, protein nanoparticle-ion interplay, albumin, electrochemical and osmotic re-equilibrium, intermediate 
filament tension

Introduction
Plasma albumins and electrolytes play essential roles in regulating osmotic pressure (OP) gradients in blood plasma, 
interstitial fluid, and intracellular fluid, physiological concentrations of which are maintained within narrow ranges.1–7 

Maintenance of body-fluid homeostasis relies on modulating OP between the two sides of a cell membrane. According to 
the Van’t Hoff theory, OP values are determined by the amount of solution particles, including ions and colloid. Ion- and 
colloid-induced OP can be, respectively, measured by the freezing point osmometer and colloid osmometer.8–10 However, 
colloid components are considered to occupy a smaller percent of plasma components than ion particles; and it is 
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assumed that colloid osmotic pressure (COP) values are not comparable to ion-induced OP values and have lesser 
effects.4,8 However, it raises the question of physical isotonicity dependent on semipermeable membranes whether 
presents “biological osmotic effects” in the body. Medical research has shown that plasma-protein-induced COP plays 
a crucial role that may underly undiscovered mechanical mechanisms in the body and that are different from single-ion- 
induced OP.

Recent studies have demonstrated that intracellular protein nanoparticles (PNs) exert amplified osmotic effects in live 
cells,11–14 termed PN-induced osmotic pressure (PN-OP). Specifically, PNs carrying negative charges adsorb cations and 
induce changes in free ion levels, as theoretically supported by the Gibbs-Donnan effect.15,16 Although this theory is still 
disputed due to serum albumins having little effect on blood OP, it provides the possibility that albumins could interplay 
with various ions to regulate biological OP.17,18 The theory of electric double layer could provide a reasonable 
explanation. High-valence ions, such as Ca2+, can be adsorbed by PNs and replace low-valence ions (Na+, K+), 
contributing to the decreasing number of ions in the two electric layers and compression of the diffused layer.19,20 PN- 
ion interplay induced biological OP effects are closely associated with symptoms and pathogenesis. For example, 
inflammasomes facilitate astrocytic swelling during pyroptosis,14 and PNs derived from cytoskeletal depolymerization 
and inflammasome induce pulmonary edema.21 Therefore, biological OP effects on transmembrane water-ion flux are 
closely associated with the opening of ion channels, whose dynamic equilibrium highly depends on PN and ion features.

Albumin acts as a plasma buffer, low levels of which are closely associated with decreased plasma OP, increased 
capillary filtration, and edema.3 Hypoalbuminemia is widely used as a predictive indicator of edema morbidity.22,23 

However, human albumin supplementation to treat hypoalbuminemia is a controversial issue, possibly because hypoal-
buminemia is often simply an epiphenomenon of another condition.24–29 Notably, abnormal albumin levels can be 
accompanied by pathophysiological alteration of electrolytes,17,18 suggesting that different plasma ions collaborate with 
albumin particles to play the amplified roles in control of biological OP, thus critically involved in biophysical regulation 
of cellular function and hemodynamic disorders.

Osmotic effects of the PN-ion interplay are difficult to evaluate in real-time using osmometry based on the 
concentration of plasma proteins and electrolytes. Thus, it is necessary to establish a biocompatible sensor for real- 
time monitoring and analysis of transmembrane osmotic effects in PN-ion mixed systems for live cells. In the present 
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study, we used a fluorescence resonance energy transfer (FRET)-based intermediate filament (IF) tension probe to realize 
real-time evaluation of transmembrane OP gradients. Using this probe, we have illustrated synergetic or antagonistic OP 
regulation by PNs (albumins) and multiple electrolytes, and their stress-compensatory osmolarity control in the human 
body. The Gibbs-Donnan effect and the Van’t Hoff theory partly explain the mechanisms underlying the PN-OP effects 
under different ionic circumstances, in which calcium and potassium ions play crucial roles. Particularly, PN induced 
electrochemical and osmotic alterations regulate water-ion flux. These provide reasonable interpretations of osmotic 
effects in regulating water metabolism, cell swelling, and pathological morphogenesis. Our findings will provide better 
understanding of how plasma albumins and electrolytes co-determine hemodynamic disorders as well as how the body 
self-compensates to achieve osmotic equilibrium, which is crucial for the correct interpretation of hemodynamic clinical 
symptoms and providing practical albumin treatments corresponding to different electrolytic disorders.

Materials and Methods
Cell Culture and Reagents
Astrocytes of the U87 cell line were purchased from the American Type Culture Collection (ATCC, Manassas, USA). 
U87 cells were cultured in Dulbecco’s modified Eagle’s Medium (Invitrogen, New York, USA) containing 10% fetal 
bovine serum (GIBCO BRL, Grand Island, NY, USA) and 1% penicillin-streptomycin (Hyclone, South Logan, UT, USA) 
maintained at 37°C under 5% CO2. Modified Hanks’ balanced salt solution (MHBSS) was prepared to simulate blood 
plasma, to which was added albumins (Bovine Serum Albumin Fraction V, BioFRoxx, Einhausen, Germany) and Ca2+ 

(concentrations to 2.4 mmol/L). The electrolyte concentrations were adjusted using CaCl2, MgCl2, NaCl and KCl 
(Solarbio, Beijing, China). The pH and OP were maintained at 7.4 and 300 ± 10 mOsmol/kg. MHBSS components 
are shown in the Supplementary Materials And Methods Tables S1 and S2.

Probe Construction
Based on the FRET principle, a glial fibrillary acidic protein (GFAP) fluorescent tension probe was constructed using 
a cloning kit and restriction enzyme cloning technology.13,30 We constructed fluorescent sensors with circularly 
permutated cpVenus and cpCerulean (cpVenus–7aa–cpCerulean [cpstFRET]).

cpstFRET, FRET-AB, and FRAP Analyses
The FRET effectiveness was determined by the dipole angle between donor/eCFP and acceptor/eYFP.13,31–33 The donor 
and acceptor were tested using an argon laser at 458 and 514 nm, respectively. The CFP/FRET ratio was calculated using 
the relationship 1/R=ICerulean donor/IVenus acceptor. Acceptor photobleaching FRET (FRET-AB) and fluorescence 
recovery after photobleaching (FRAP) experiments were performed. The overall FRET efficiency was obtained based on 
the fluorescence intensities of the donor and acceptor before and after bleaching.

Measurement of Cytoplasmic OP and Protein Particle Counts
Cells under treatment were digested and centrifuged to obtain cell supernatants. The cytoplasmic OP was assessed 
using an Osmomat 3000 Freezing Point Osmometer (Gonotec, Berlin, Germany). The number of cytoplasmic 
nanoparticles (kilocycles per second, Kcps) was determined using a Nanosight NS300 (Malvern Instruments, 
Malvern, UK).

Calcium and Chloride Fluorescence Imaging
Fluo-4 AM and N-6-methoxyquinolyl acetoethyl ester (MQAE) fluorescent probes were used to perform Ca2+ and Cl− 

imaging, respectively.34,35 Cells were loaded with the fluorescence probe and detected with Thunder Imager (SP8; Leica). 
Fluo-4 was detected with excitation at 494 nm and emission at 516 nm, and MQAE was detected with excitation at 355 
nm and emission at 460 nm.
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Electrophysiology
The patch clamp technique was employed to record the membrane potentials of U87 cells. Cells were plated onto 9 mm 
glass coverslips at a suitable density, mounted in a chamber (Warner Instruments, Hamden, CT; U.S.A.), placed onto the 
stage of an inverted microscope, and perfused with the required solution. Measurements were obtained at room 
temperature in whole-cell configuration.21

For measurement, the cells were perfused with a solution containing (in mM): 144 NaCl, 4.3 KCl, 2.5 CaCl2, 1.1 
MgCl2, 10 glucose, and 10 HEPES (pH 7.3), and mannitol was used to adjust the osmolality to 300–310 mosmol/kg. The 
concentrations of Ca2+, K+ and albumin were adjusted according to the experimental requirements. The patch electrodes 
were pulled from borosilicate capillary glass (1.5 mm outer diameter; 0.86 mm inner diameter; Sutter Instruments, USA) 
with a vertical two-stage pipette puller (P-1000; Narishige). Measurements were performed with glass pipettes (between 
3 and 6 MΩ) filled with an intracellular solution comprising (in mM): 140 KCl, 2 MgCl2, 2 Na2ATP, 1 CaCl2, 5 Ethylene 
Glycol Tetraacetic Acid (EGTA), 5 glucose (pH 7.3, 290–300 mosmol/kg). All measurements were performed using 
a Multiclamp 700B amplifier at a data-sampling rate of 2 kHz with a Digidata 1550B Digitizer controlled using PClamp 
10.6 software (Molecular Devices, Sunnyvale, CA, U.S.A.).

Statistical Analyses
FRET ratios were determined using Image J image analysis software, and the results of ion imaging were analyzed semi- 
quantitatively. Graph Pad Prism 7 software was used for statistical processing. Each experiment was repeated at least 
three times, and the data are expressed as Means ± standard error of mean (SEM). Unpaired t-test (two-tailed P value) 
was used to determine the statistical significance, with P<0.05 taken as statistically significant.

More detailed methods can be found in the Supplementary Materials and Methods.

Results
Osmotic Effects in Live Cells Result from Transmembrane OP Gradients and 
Intracellular PN Amount
Osmotic changes are closely associated with cell volume and IF tension, which requires cytoskeletal tractive force 
against outward osmotic force.14 Thus, to quantitatively analyze osmotic effects on IF tension, a glial fibrillary acidic 
protein (GFAP) FRET-based tension probe was deployed in astrocytes to provide real-time IF tension measurements 
based on optical variation.13 Astrocytes were selected based on their sensitivity to OP and the accompanying volume 
change. They were individually exposed to Hanks’ balanced salt solutions (HBSSs) having different NaCl concentrations 
corresponding to OP gradients of 150–450 mOsmol/kg. The GFAP tension remains stable under isotonic conditions (300 
mOsmol/kg). However, it increases under extracellular hypoosmolarity and decreases under hyperosmotic conditions 
within 15 min (Figure 1A and B). This indicates that transmembrane OP differences are strongly correlated with IF 
tension, and a linear correlation between GFAP tension and NaCl concentration is observed (R2 = 0.9512, Figure 1D). 
Consistently, the correlation between GFAP tension and osmotic gradient is also observed when mannitol is used in the 
HBSS instead of NaCl (R2 = 0.9942, Figure 1C and E).

As osmotic effects on live cells are determined by transmembrane oncotic pressure gradients rather than extracellular 
OP, we measured the cytoplasmic OP using a freezing point osmometer. Extracellular hypoosmotic stimuli promote an 
increase in cytoplasmic OP (Figure 1F), contributing to enhanced transmembrane OP gradients and stronger osmotic 
effects on cells. Furthermore, PNs are produced in cells under hypotonic stress, and the increased number of intracellular 
PNs along with the decreased extracellular OP (Figure 1G) impacts the oncotic pressure in the cells. These data 
demonstrate the generation of transmembrane OP gradients resulting from alterations of intracellular OP as well as 
PN amount. Transmembrane differences in OP induced by intracellular PNs determine the osmotic effects on live cells, 
which can be evaluated in real-time by monitoring IF tension.
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Quantitative Analysis of IF Tension Regulated by Extracellular PNs and Different Ionic 
Components
Ions and PNs are predominant components of plasma and intracellular fluid in the human body. According to the Van’t 
Hoff theory, ions rather than PNs (or colloids) are the dominating factor controlling OP in the living body. However, the 
Gibbs-Donnan effect provides an alternative explanation whereby intracellular PNs play a vital role, as clarified in our 
recent study.13,14 To investigate whether extracellular PNs share similar mechanisms underlying the osmotic effects for 
live cells, astrocytes were treated with isotonic albumin in Modified Hanks’ balanced salt solution (MHBSS), which 
contains albumins in different concentrations. When extracellular albumins are present at physiological concentration 
(50 mg/mL), IF tension remains unchanged. However, hypoalbumins (albumins at 10 and 30 mg/mL) induce a reduction 
of IF tension, whereas hyperalbumins (albumins at 70 and 100 mg/mL) cause a tension increase (Figure 2A). A parabolic 
equation for the correlation between IF tension and extracellular PN concentrations was determined. Importantly, this 
positive correlation is linear for PN concentration and IF tensions (10–100 mg/mL, Figure 2B).

Figure 1 Relationships between extracellular OP gradient, GFAP tension, and intracellular OP. (A and B) A GFAP cpstFRET probe module was used to measure changes in 
IF tension in U87 cells. Representative images of normalized Cyan Fluorescence Protein (CFP)/FRET ratios of GFAP tension subjected to the NaCl solutions with different 
concentrations, including extracellular hypoosmolality (less than 300 mOsmol/kg) and hyperosmolality (higher than 300 mOsmol/kg) are shown. (C) Representative images 
of normalized CFP/FRET ratios of GFAP tension subjected to hyperosmotic mannitol solutions. Scale bar, 10 μm. (D) Linear correlation between GFAP tension and NaCl 
concentration. (E) Linear correlation between GFAP tension and mannitol concentration. (F) Cytoplasmic OP values as measured using a freezing point osmometer. (G) 
Intracellular PN count rates under different treatments. Data presented as mean ± SEM.
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Under physiological conditions, extracellular ion profiles remain in homeostasis. However, pathological data reveal 
hypo- or hyperalbuminemia accompanying varying plasma ion levels. According to the Gibbs-Donnan effect, PNs can 
regulate OP through ion adsorption. Thus, to determine the effects that interactions of different ions with extracellular 
PNs on osmotic regulation, cells were treated with electrolytes containing different biologically relevant cations at 
differing concentrations along with 50 mg/mL albumin at a constant extracellular OP of 300 mOsmol/kg. Ca2+ at typical 
physiological concentration (2.5 mM) has no effect on IF tension or isotonic equilibrium. However, abnormal Ca2+ levels 
cause IF tension changes (Figure 2C) due to transmembrane disequilibrium. IF tension and extracellular Ca2+ concentra-
tion is closely associated in the curvilinear relationship, determined by 0–10 mM of Ca2+. For the two pathophysiologic 
ranges of plasma Ca2+ concentration, ie, hypocalcemia (<2.5 mM) and hypercalcemia (2.5–5 mM), the negative 
correlation between IF tension and Ca2+ concentration is linear (Figure 2D). These data suggest that hypocalcemia can 
result in increased IF tension, corresponding to hyperosmolarity. The other divalent cation found in plasma, Mg2+, 
induces slight changes in IF tension under the pathophysiologic concentrations (other than 1.1 mM, Figure 2E and F).

In terms of monovalent cations, changes in extracellular K+ and Na+ levels also strongly impact cell IF tension. K+ at 
its typical physiological level (4.3mM) mixed with 50 mg/mL albumin presents an isotonic effect. However, lower K+ 

concentrations (0 and 2.15 mM) contribute to decreased IF tension, representing the hypotonic effects on live cells, while 
abnormally high K+ concentrations (5, 8.6, and 10 mM) increase IF tension in response to the hypertonic effects 
(Figure 3A). K+ concentration and IF tension present a linear correlation (R2 = 0.9735, Figure 3B). In addition, 
extracellular Na+ concentration negatively correlates with IF tension (R2 = 0.9591, Figure 3C and D). The univariate 

Figure 2 Quantitative analysis of IF tension regulated by albumin and divalent cations. (A) Representative images and mean values of normalized CFP/FRET ratios of GFAP 
tension in cells subjected to isotonic MHBSS solutions with different albumin concentrations (0, 10, 30, 50, 70 and 100 mg/mL). (B) Relationship between GFAP tension and 
albumin concentration, showing the parabolic correlation of the experimental concentrations and the linear correlation in the pathophysiologic ranges (10–100 mg/mL 
albumin). (C) Representative images and mean values of normalized CFP/FRET ratios of GFAP tension in cells subjected to isotonic solutions containing 50 mg/mL albumin 
(the normal physiological concentration) and different Ca2+ concentrations (mM as number indicators). (D) Relationship between GFAP tension and Ca2+ concentration in 
different experimental and pathophysiologic ranges. (E) Representative images and mean values of normalized CFP/FRET ratios of GFAP tension in cells subjected to isotonic 
MHBSS solutions containing 50 mg/mL albumin and different Mg2+ concentrations (mM as number indicators). (F) Relationship between GFAP tension and Mg2+ 

concentration in different ranges. Scale bar, 10 μm. Data presented as mean ± SEM.
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data reveal that IF tension, extracellular PN concentration and electrolyte concentration are strongly correlated, as shown 
by the linear regression equations and R2 values in Tables S3 and S4.

Pathological Concentrations of Plasma Components Induce Transmembrane OP 
Gradients and Production of Intracellular PNs
As IF tension is closely related to transmembrane OP gradients, we sought to determine whether changes in extracellular 
components also affect cytoplasmic OP. When the albumin, Ca2+, and K+ concentrations of the simulated plasma 
solutions change, the cytoplasmic OP gradient changes (Figure 4A–C) in a manner consistent with that of IF tension. 
Previous reports have indicated that cytoplasmic OP may be regulated by intracellular PNs.12–14 Indeed, the amounts of 
cytoplasmic PNs correlate closely with IF tension and cytoplasmic OP (Figure 4D–F), indicating that extracellular PN 
and ion-induced transmembrane osmotic gradients could be caused by changes in the number of intracellular PNs.

Extracellular PNs Regulate Osmotic Effects by Inducing Changes in Membrane 
Potential
According to the Donnan effect, intracellular PNs can adsorb counter ions, leading to osmotic disequilibrium.13–15 We 
speculate that PNs induced by extracellular stimuli adsorb cations, disrupting the electrochemical equilibrium near mem-
branes. To test this speculation, a current clamp was used to measure membrane potential. The data indicate that extracellular 
albumins cause membrane hyperpolarization independent of solute concentration (Figure 4G–I, Figure S1A–C). These 
results suggest that extracellular albumins change membrane potential, affecting cytoplasimc OP and IF tension.

Figure 3 Quantitative analysis of IF tension regulated by monovalent cations. (A) Representative images and mean values of normalized CFP/FRET ratios of GFAP tension in 
cells subjected to isotonic MHBSS solutions containing 50 mg/mL albumin and different K+ concentrations (mM as number indicators). (B) Linear relationship between GFAP 
tension and K+ concentration. (C) Representative images and mean values of normalized CFP/FRET ratios of GFAP tension in cells subjected to isotonic MHBSS solutions 
containing 50 mg/mL albumin and different Na+ concentrations (mM as number indicators). (D) Linear relationship between GFAP tension and Na+ concentration. Scale bar, 
10 μm. Data presented as mean ± SEM.
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Extracellular Components Regulate PN-OP Associated with Intracellular Ion Levels
Intracellular ion levels were also determined using chloridion and calcium imaging to clarify any effects they may have 
alongside those of extracellular ions. The results show that the intracellular Cl− and Ca2+ contents are positively 

Figure 4 Osmotic effects for live cells derived from changes in intracellular OP, PN count, membrane potential and intracellular ion levels. The cytoplasmic OP values in 
response to extracellular variations of albumin (A), 50 mg/mL albumin and Ca2+ (B), 50 mg/mL albumin and K+ (C) as determined using a freezing point osmometer. 
Intracellular PN counts under the effects of different extracellular components, including albumin (D), 50 mg/mL albumin and Ca2+ (E), 50 mg/mL albumin and K+ (F). 
Membrane potential was measured by the current-clamp method under treatments with albumin (G), 50 mg/mL albumin and Ca2+ (H), and 50 mg/mL albumin and K+ (I). 
Chloridion imaging presents the relative MQAE fluorescence intensity ratio of 15 min (F15/F0) under different concentrations of extracellular albumin (J), 50 mg/mL albumin 
and Ca2+ (K), 50 mg/mL albumin and K+ (L). An increase in intracellular Cl− levels leads to a decrease in MQAE fluorescence value. Calcium imaging presents the relative 
FLUO-4 fluorescence intensity ratio of 15 min (F15/F0) for cells under different concentrations of extracellular albumin (M), 50 mg/mL albumin and Ca2+ (N), 50 mg/mL 
albumin and K+ (O). Data presented as mean ± SEM.
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correlated with extracellular albumin concentration (Figure 4J and M, Figure S2A and D). However, extracellular hyper- 
calcium inhibits cytoplasmic levels, while hypo-calcium promotes Cl− and Ca2+accumulation in cells (Figure 4K and N, 
Figure S2B and E). Intracellular Cl− and Ca2+ levels are positively correlated with extracellular K+ concentration 
(Figure 4L and O, Figure S2C and F).

Overall, changes in extracellular components affect the accumulation of various ions in cells, which is related to 
transmembrane OP gradients. When extracellular PNs are present, alterations in extracellular ion components affect 
transmembrane PN-OP, potentially due to changes in membrane potential and ion influx. Notably, Ca2+ and K+ appear to 
exert opposite effects on PN-OP regulation.

Extracellular PNs, Ca2+ and K+ Synergistically Regulate Transmembrane Osmotic 
Equilibria
As the above data appear to reveal contrary influences on transmembrane osmotic effects, we investigated the synergetic or 
antagonistic effects of extracellular albumins and Ca2+ on the regulation of PN-OP. Cells were treated with hypoalbuminous 
(30 mg/mL) and hyperalbuminous (70 mg/mL) solutions also containing Ca2+ at different concentrations (1.25, 2.5, and 5 
mM). The IF tension data indicate two conditions of osmotic equilibrium, where isotonic IF tension is established within 15 
mins. These conditions are 30 mg/mL albumin with 1.25 mM Ca2+ and 70 mg/mL albumin with 5 mM Ca2+ (Figure 5A). 
Compared with plasma component levels under normal physiological conditions (50 mg/mL albumins with 2.5 mM Ca2+), 
these two osmotically equilibrated states are similar in terms of cytoplasmic OP and intracellular PN count (Figure 5B and C), 
accompanied by membrane hyperpolarization (Figure 5D and E, Figure S1D and E). The intracellular Cl− and Ca2+ contents at 
the two equilibrium states seemed to change the least (Figure 5F–I). Likewise, hypo/hyper-albumins and K+ concentrations 
present two states of osmotic equilibrium: 30 mg/mL albumins with 8.6 mM K+ and 70 mg/mL albumins with 2.15 mM K+ 

(Figure 6A), which is correlated with cytoplasmic OP, PN count, membrane potential, and the intracellular Cl−/Ca2+ content 
data (Figure 6B–I, Figure S1F and G). These results suggest that hypoalbumins mixed with hypocalcium or hyperpotassium 
can provide osmotic equilibrium, whereas hyperalbumin mixed with hypercalcium or hypopotassium maintain the transmem-
brane isotonic states.

We speculated that hypoalbuminemia-induced osmotic disequilibrium may be alleviated by adjusting extracellular 
Ca2+ and K+ levels. To assess this speculation, hypoalbumin (30 mg/mL) or physiologically normal albumin (50 mg/mL) 
was mixed with different concentrations of Ca2+ and K+ and the IF tension measured. Again, the tension results present 
two osmotically equilibrated conditions, ie, 50 mg/mL albumin with 1.25 mM Ca2+ and 2.15 mM K+, and 50 mg/mL 
albumin with 5 mM Ca2+ and 8.6 mM K+ (Figure 7). Overall, extracellular PNs, Ca2+, and K+ enable the collaborated 
regulation of transmembrane osmotic effects for cells. Ca2+, and K+ appear the opposite effects with albumins, possibly 
by adjusting membrane potentials and the amounts of intracellular PNs and ions, re-achieving transmembrane osmotic 
equilibrium.

Discussion
Previous studies have reported that physical OP can be determined from solution particles across semipermeable 
membrane. However, a new viewpoint of “biological OP” presents the interplay between protein nanoparticles and 
different ions to control osmotic effects in the body, dependent on changes in membrane potential and sensed by cell- 
stress-compensatory osmolarity. Changes in extracellular PN or ion component can induce corresponding cytoplasmic 
OP adjustment. Therefore, PNs crucially determine the osmotic effects in the body, reaching a dynamic osmotic 
equilibrium.

Albumins, as extracellular PNs, enable enhancement of transmembrane OP gradients accompanied by increasing IF 
tensions. Our results revealed that 300 mOsm/kg of ionic circumstance show the transmembrane isotonic equilibrium; 
however, only the presence of extracellular PNs (albumins) triggers the production of intracellular PNs and an increase of 
cytoplasmic OP. The amplified roles of PNs in regulating biological OP can be partly explained by the Gibbs-Donnan 
effect.15,16,36–38 PNs carry negative charges and adsorb cations to form the colloid-ion compassing group, changing the 
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levels of free ions near cell membranes and membrane potential, which is closely associated with voltage-dependent ion 
channels, and constituting a vital mechanism underlying PN-OP in the body.

In the other case, abnormal contents of albumin, Ca2+ and K+ induce production of intracellular PNs, further driving 
the cytoplasmic PN-ion adsorbing. More importantly, extracellular albumins and intracellular PNs collaboratively 
contribute to electrochemical changes and the resultant ion rearrangement across membranes. The consequent water 
flow to modulate the intracellular ion concentrations, resulting in change of cell volume and osmotic potential. This is 
supported by the data that albumin and various cations exhibit linear correlations between their concentrations and cell IF 
tension, where albumin and K+ present positive slopes and Ca2+, Mg2+, and Na+ present negative slopes. At the same 

Figure 5 Albumin and Ca2+ co-regulate osmotic effects. (A) Representative images and mean values of normalized CFP/FRET ratios of GFAP tension in cells subjected to 
isotonic solutions with hyper/hypo-albumin and Ca2+. Scale bar, 10 μm. (B) Cytoplasmic OP values as measured using a freezing point osmometer. (C) Intracellular PN 
counts, ns, not significant. (D and E) Membrane potentials using the current-clamp method under different conditions. (F and G) Chloridion imaging micrographs and traces 
of relative MQAE fluorescence intensity ratio of 15 min (F15/F0). An increase in intracellular Cl− level leads to a decrease of MQAE fluorescence value. (H and I) Calcium 
imaging micrographs and traces of relative FLUO-4 fluorescence intensity ratio of 15 min (F15/F0). Scale bar, 100 μm. Data presented as mean ± SEM.
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time, intracellular Cl− and Ca2+ levels are consistent with PN-OP effects. Therefore, abnormal levels of PNs and ions 
trigger proportional changes of transmembrane ion flow, depending on electrochemical-osmotic re-equilibrium.

Notably, extracellular PNs and different ionic compositions exhibit synergistic and antagonistic regulation of 
biological OP, achieving intero-sensory and stress-compensatory osmolarity control in the body. Consistently, the 
statistical analysis of clinical serum samples reveals hypoalbuminemia along with low Ca2+ plasma levels,22,39 possibly 
as a self-rescue measure to prevent osmotic disequilibrium in the body after the occurrence of edema. Likewise, clinical 
treatment of hyperpotassemia is performed with intravenous calcium injection, which is supported by the findings of the 
present study, ie, that increased extracellular Ca2+ levels are antagonized with hyperpotassemia to recover the isotonic 
state (Table S5). Changes in osmotic effects can affect neurohormones and nervous activity and are associated closely 

Figure 6 Albumin and K+ synergistically regulate transmembrane osmotic effects. (A) Representative images and mean values of normalized CFP/FRET ratios of GFAP 
tension in cells subjected to isotonic solutions with different albumin and K+ concentrations. Scale bar, 10 μm. (B) Cytoplasmic OP values. (C) Intracellular PN count, ns, not 
significant. (D and E) Membrane potentials using the current-clamp method under different conditions. (F and G) Chloridion imaging micrographs and traces of relative 
MQAE fluorescence intensity ratio of 15 min (F15/F0). (H and I) Calcium imaging micrographs and traces of relative FLUO-4 fluorescence intensity ratio of 15 min (F15/F0). 
Scale bar, 100 μm. Data presented as mean ± SEM.
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with water excretion and thirst. The extracellular hypertonic effect triggers vasopressin release and the resultant 
promotion of water permeability and reabsorption to regulate the osmotic gradients. In turn, water intake decreases 
OP and vasopressin release.40,41 Thirst and vasopressin act as osmotic responses in the intero-sensory control of body 
water homeostasis in the plasma, interstitial fluid, and intracellular fluid. Therefore, various ionic components are 
involved in regulating PN-adsorbing properties and consequent control of the activity of ion channels and biological 
OP, the mechanisms of which require further investigation.

The conventional method of OP measurement using an osmometer neglects the interplay of PNs and various ions in 
regulating transmembrane OP gradients. Thus, a reasonable system for real-time monitoring of osmotic effects in live 
cells is necessary. In the present study, a FRET-based GFAP tension probe was used for real-time measurement of IF 
tension, which is a sensitive and effective sensor for transmembrane OP gradients and a valid evaluation approach for 
live cells. In addition, multiple biochemical indexes of albumin and various ions undergo pathophysiologic changes, 
pathological symptoms do not necessarily appear due to synergy and antagonism-induced compensation and homeostasis 
in the human body (Figure 7). Therefore, indexes based on single plasma component are not sufficient criteria for blood 
disease diagnosis, especially those that are subject to transmembrane OP gradients in the body. Various components 
should be comprehensively considered if we are to develop new clinical diagnostic indexes or elucidate the mechanisms 
by which PN-OP regulates water flux in living systems.

Conclusion
In summary, biological OP is an underlying mechanism of PN-ion homeostasis in the body. The present study proposes 
that extracellular PN that adsorbs counterions is a crucial factor regulating biological OP. Particularly, Ca2+ and K+ 

exhibit the antagonistic and synergistic effects with extracellular PNs in regulating biological OP. Live cells can 
spontaneously regulate osmotic effects through changing membrane potential, controlling the ion channels and ion 
concentrations, switching between the hyper- and hypo-OP circumstances, regulating water flux, and alteration of cell 

Figure 7 Synergistical effects of albumin, Ca2+, and K+ on IF tension. Representative images (A) and mean values (B) of normalized CFP/FRET ratios of GFAP tension in cells 
subjected to isotonic solutions with different albumin, Ca2+, and K+ concentrations. Scale bar, 10 μm. Data presented as mean ± SEM.
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volume and cytoskeleton structural tensions, eventually achieving new homeostasis. These factors suggest that asympto-
matic albumin-ion disorders possibly develop into diseases, but are difficult to diagnose early. In our study, the linear 
relationships between the concentrations of various plasma components and transmembrane osmotic states could be 
comprehensively analyzed, further establishing a new appraisal index for osmotic equilibrium. Through analysis of 
clinical biochemical indexes and the incidence of edema, this new comprehensive index may be used to predict edema 
occurrence and further our understanding of the pathophysiologic variations of edema-related ions in the blood. In 
addition, we propose that certain PNs in the body, like albumin, inflammasome and amyloid β-protein,14,42 may also be 
involved in regulating biological OP, the mechanisms of which, and their relationship to underlying neurodegenerative 
diseases, should be further investigated.
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