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Purpose: To quantitatively analyze lipid molecules in tumors and adjacent tissues of intrahepatic cholangiocarcinoma (ICC), to 
establish diagnostic model and to examine lipid changes with clinical classification.
Patients and Methods: We measured the quantity of 202 lipid molecules in 100 tumor observation points and 100 adjacent observation 
points of patients who were diagnosed with ICC. Principal component analysis (PCA) and orthogonal partial least squares-discriminant 
analysis (OPLS-DA) were handles, along with Student’s t-test to identify specific metabolites. Prediction accuracy was validated in the 
validation set. Another logistic regression model was also established on the training set and validated on the validation set.
Results: Distinct separation was obtained from PCA and OPLS-DA model. Ten differentiating metabolites were identified using PCA, 
OPLA-DA and Lasso regression: [m/z 722.5130], [m/z 863.5655], [m/z 436.2834], [m/z 474.2626], [m/z 661.4813], [m/z 750.5443], 
[m/z 571.2889], [m/z 836.5420], [m/z 772.5862] and [m/z 478.2939]. Using logical regression, a diagnostic equation: y = 3.4*[m/z 
436.2834] - 3.773*[m/z 474.2626] + 3.82*[m/z 661.4813] - 4.394*[m/z 863.5655] + 10.165 based on four metabolites successfully 
differentiated cancerous areas from adjacent normal areas. The AUROC of the model reached 0.993 (95% CI: 0.985–0.999) in the 
validation group. Compared with the adjacent non-tumor area, three characteristic metabolites FA (22:4), PA (P-18:0/0:0) and 
Glucosylceramide (d18:1/12:0) showed an increasing trend from stage I to stage II, while seven other metabolites LPA(16:0), PE 
(34:2), PE(36:4), PE(38:3), PE(40:6), PE(40:5) and LPE(16:0) showed a decreasing trend from stage I to stage II.
Conclusion: We successfully identified lipid molecules in differentiating tumor tissue and adjacent tissue of ICC, established 
a discrimination logistic model which could be used as a classifier to classify tumor and non-tumor regions based on analysis in 
tumor margins and provided information for biomarker changes in ICC, and proposed to related lipid changes with clinical 
classification.
Keywords: intrahepatic cholangiocarcinoma, in situ lipids profiles, metabolomics, mass spectrometry, classification and diagnostic model

Introduction
Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor with poor prognosis. The 5-year overall survival rate after 
surgical resection was 11–40%.1,2 Since 2000, the average annual incidence has been 1.6 per 100,000/year.3 A study 
shows that the incidence of cholangiocarcinoma in the United States has increased significantly in the past 40 years.4 The 
incidence of cholangiocarcinoma in China is much higher than that in the United States and Europe.5 The overall limited 
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survival has led to notable efforts toward the identification of novel targets and agents that could modify the natural 
history of these aggressive hepatobiliary malignancies. The use of next-generation sequencing (NGS) has led to the 
identification of previously unknown molecular features of ICC, including fibroblast growth factor receptor (FGFR)2 
gene fusions and rearrangements, isocitrate dehydrogenase-1 (IDH-1) mutations, and BRAF mutations.6,7 The develop-
ment of some treatments targeting these molecular mutations has received accelerated approval by the US Food and Drug 
Administration (FDA).8 Based on these premises, the identification of some novel targets has a promising future.

Mass spectrometry (MS) is an analytical technique that can ionize chemicals and classify ions according to their 
mass-charge ratios. The development of MS makes it possible to collect molecular information from tissue samples.9 

The obtained mass spectra can be displayed as intensity maps showing the distribution of individual m/z values of 
interest. Based on the different methods of sample preparation, the current research mainly focuses on the analysis of 
proteins,10 lipids,11 small molecules12 or polysaccharides.13 Metabolic and micro-environmental differences between 
tumor tissues and adjacent tissues can be revealed.14 Because of the accuracy of mass spectrometry, researchers can 
obtain hundreds of observation points in a small number of samples. Enough data can effectively improve the persuasion 
of the results.

In particular, different from blood samples, if a fresh sample of solid tumor is obtained, researchers can obtain the 
mass spectrometry information at multiple detection points on the sample, so as to draw the distribution map of tumor 
metabolites, which is what we call in situ detection, which will be conducive to the study of tumor heterogeneity and the 
pathological judgment of tumor margin. It can achieve better follow-up and treatment management for patients who have 
undergone surgical resection.15

In the field of cholangiocarcinoma, researchers have carried out many different studies on protein difference in 
samples including peripheral blood,16 tissues,17 and even bile.18 However, in previous studies, there were few studies on 
lipid molecular MS between cancer tissues and adjacent tissues of ICC. Also, few study explored relationship between 
clinical subtype classification and ICC. In addition, there might exist racial difference on lipid molecules in ICC and few 
studies have been managed in Chinese population. Our study aims to quantitatively in situ analyze lipid molecules in 
tumor tissues and adjacent tissues of Chinese ICC patients, to establish diagnostic model and to examine lipid changes 
with clinical classification.

Materials and Methods
Sample Information
We prospectively collected 10 patients who were diagnosed with ICC and underwent surgery in Peking Union Medical 
College Hospital (PUMCH) from Dec, 2018 to Dec, 2020. The diagnoses were confirmed by pathology and patients with 
mixed pathological carcinoma or distal metastasis were excluded. One hundred tumor observation points and 100 
adjacent observation points were selected in these samples. The samples were divided into training group and validation 
group equally and randomly. Written informed consent was obtained from all research subjects. Tissue samples with 
cancerous area and adjacent area were remaining tissues after clinical pathological examinations. The study was 
approved by the Ethics Committee of Peking Union Medical College Hospital (S-K205, September, 2018). Informed 
consents were written by all individual participants included in the study. Our study complies with the Declaration of 
Helsinki.

Sample Preparation and Matrix Deposition
Specimens with a volume of 1cm3 were snap-frozen in liquid nitrogen immediately after collection and stored at −80°C 
refrigerator until use. Tissue samples were then cut into 12μm thin tissue sections and one 4μm section. The 4μm one was 
used for hematoxylin and eosin (H&E) staining. The 12μm ones were thaw-mounted onto indium-tin-oxide (ITO) coated 
glass slides in a freezing microtome. Solution composition, matrix concentration and coating volume were optimized for 
matrix deposition conditions. Then, a homebuilt sublimation apparatus was used to coat a uniform matrix. The matrix 
used in the present study was GO matrix (Nanjing Ji Chang nano company, purity >99.0%), and the matrix spraying 
concentration of 10.5mg/mL. Recrystallization was then performed to enhance signal intensity.
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MSI or Mass Spectrometry Profiling
MSI or mass spectrometry profiling was performed on tissue sections using a 9.4 T Apex-ultraTM hybrid Qh-FTICR 
MS equipped with a 355 nm and 200 Hz Nd:YAG Smartbeam laser (Bruker Daltonics, Billerica, MA, USA). MSI data 
were acquired on two adjacent tissue sections at the spatial resolution of 150 μm in the negative ion modes. A full 
scan mass spectrum was acquired at 80 laser shots each over a mass range of 100–1000 Da in negative ion mode with 
the resolutions of 66,000 at m/z 400. External calibration was performed using a mixture of FA(16:0) (m/z 
255.23295), FA(18:1) (m/z 281.24860), FA(20:4) (m/z 297.27990), LPE(18:0) (m/z 480.30956), PA(18:0/18:0) (m/z 
703.52833), PE(18:0/18:0) (m/z 746.57053), PI(18:0/20:4) (m/z 885.54985) (Avanti Polar Lipids Inc., Alabaster, 
AL, USA).

The profiling data were acquired at the same experimental parameters as those of the MSI data acquisition. To 
confirm data reliability and to assess the heterogeneity of tissues, ten mass spectra at different positions of the cancerous 
area and the adjacent area were acquired randomly.

Structure Identification of Differentially Expressed Lipids of Interest
Lipid species identification was performed based on the Human Metabolome Database (HMDB) and Lipidmaps, with 
a mass error of 5 ppm. Structure identification was based on the measured accurate molecular masses, reliable isotope 
distributions.

Data Handing and Statistical Analysis
The FlexImaging software (version 2.1, Bruker Daltonics) with the absolute intensity was used for molecular images 
with a mass error of 1 ppm. Peaks with signal-to-noise ratio of >3, relative intensity of >0.1%, and absolute intensity 
thresholds of 100,000 were selected as reliable variables. Internal mass calibration and reliable isotope distributions were 
carried out using DataAnalysis 4.0 software (Bruker Daltonics), after which the metabolites among different samples and 
different pixels were combined as one metabolite within a narrow mass tolerance window (0.001 Da), orthogonal partial 
least squares-discriminant analysis (OPLS-DA) was used to discriminate the metabolic patterns between cancerous and 
adjacent area after mean centering and unit variance scaling. The default 7-fold cross-validation was performed to guard 
against model over-fitting.

Principal component analysis (PCA) is an unsupervised statistical analysis used to describe associations and patterns 
among a set of variables. R2X and Q2 are two measures of PCA model quality. R2X is the goodness of fit, which is the 
sum of squares of the entries of X explained by all extracted components. Q2 is the predictive power of the model, which 
is the fraction of the total variation of the entries of X that can be predicted by all extracted components, as estimated by 
cross validation.

Lasso regression is a method suitable for high-dimensional data, where the number of variables is larger than the 
number of samples, and the variables are strongly correlated with each other.19

In addition, the Student’s t-test was applied to all metabolites. To adjust the p-value, a classical one stage method of 
false discovery rate (FDR) was performed. Those variables with the variable importance in the projection (VIP) score 
>1.0, Lasso regression = 100 and p < 0.05 (Student’s t-test) were selected.

Further, to establish a model with simple equation, the logistic regression was used for each metabolite selected by 
VIP score >1.0, Lasso score = 100 and p < 0.05 (Student’s t-test). After univariate analysis, variables with P < 0.05 were 
selected for multiple logistic regression and forward method was used to select variables with significance, and an 
equation was established with these variables.

To further investigate the relationship between metabolite concentration and the pathological stages, the samples in 
the training group and validation group were pooled together. Patients with early stages and advanced stages were 
compared using the Student’s t-test. The difference between the metabolite concentrations of patients at different stages 
were visualized by histograms.
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Results
PCA and OPLS-DA Model Establishment and Differentiating Metabolites Identification
PCA and OPLS-DA model were performed on the training set. A total of 86 metabolites out of 202 metabolites passed 
the filtering procedure and were used for the final refinement of model. An unsupervised PCA model was first established 
and the tumor and adjacent areas were clearly separated with a R2X of 0.950 and a Q2 of 0.915 (Figure 1). Then, 
a supervised OPLS-DA was obtained with a R2X of 0.594, a R2Y of 0.947 and a Q2 of 0.932. A clear separation was also 
observed with all the tumor plots on the right half and all the adjacent plots on the left half (Figure 1). Further, a 999-time 
permutation test was performed to validate the model, with the R2 and Q2 values lower than the original ones. In 
addition, the Q2 intercept was below zero (Figure 1).

Then, an unadjusted Student’s t-test and an adjusted false discovery rate (FDR) test were performed on the 
metabolites derived from MS. 18 metabolites were selected with the criteria of: p-value <0.05 in Student’s t-test, 
q-value <0.05 in FDR test, and VIP value >1 based on the OPLS-DA evaluation (Table 1). LASSO regression further 
selected 10 metabolites: [m/z 722.5130], [m/z 863.5655], [m/z 436.2834], [m/z 474.2626], [m/z 661.4813], [m/z 
750.5443], [m/z 571.2889], [m/z 836.5420], [m/z 772.5862] and [m/z 478.2939] with a LASSO score of 100, which 
independently distinct tumor and adjacent areas.

Representative ion images of the 10 metabolites selected finally for discriminating tumor and non-tumor areas in the 
negative ion modes, with the corresponding H&E staining. In the H&E staining, the cancerous area circled with red line. 
In situ ion images of lipid metabolites are shown in right panel (Figure 2).

Figure 1 PCA, OPLS-DA models and permutation test. PCA and OPLS-DA score plots of metabolites from the tumor area (green dots) and the adjacent area (red dots) 
were shown in above and permutation test for OPLS-DA was shown in bottom.
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Validation of the OPLS-DA Model
Validation of the OPLS-DA model was performed on the validation group. The predicted probability of each plot being 
a tumor area was calculated. The performance of the model was assessed by the area under receiver-operating 
characteristic (AUROC) curve, which reached 0.936 (95% CI: 0.906–0.966) in our model (Figure 3A).

Logistic Regression Model
Further, a simple diagnostic model was also established. The 10 metabolites selected for differentiating tumor and non- 
tumor areas were imported into SPSS for logical regression. After univariate and multivariate analysis, the final 
diagnostic equation was obtained: y = 3.4*[m/z 436.2834] - 3.773*[m/z 474.2626] + 3.82*[m/z 661.4813] - 4.394*[m/ 
z 863.5655] + 10.165. Then, Y-values were calculated for each sample in the validation set. The AUROC of the model 
reached 0.993 (95% CI: 0.985–0.999) in the validation group (Figure 3B).

Metabolites Relating with Clinical Staging
Compared with the non-tumor areas, the concentrations of FA (22:4), PA (P-18:0/0:0) and Glucosylceramide 
(d18:1/12:0) were detected to be higher in areas from the stage I patients, and even higher in areas from the stage 

Table 1 Differentiating Metabolites Between Cancer Areas and Adjacent Areas Identified from the 
Learning Dataset

Metabolites VIPa P-valueb Q-valuec LASSOd

722.5130 2.8662 3.85E-35 3.16E-33 100

762.5079 2.1349 1.48E-23 2.03E-22 0

861.5499 2.032 5.04E-26 1.38E-24 40
452.2783 2.0241 3.99E-30 1.64E-28 80

863.5655 1.7943 1.06E-25 2.17E-24 100

750.5443 1.7776 6.72E-17 2.50E-16 100
436.2834 1.7668 4.59E-23 4.00E-22 100

474.2626 1.7022 9.32E-25 1.53E-23 100
661.4813 1.601 4.88E-23 4.00E-22 100

790.5392 1.5664 4.07E-19 2.08E-18 0

835.5342 1.5088 1.04E-18 4.99E-18 90
571.2889 1.474 2.82E-21 1.78E-20 100

833.5186 1.3479 5.19E-17 2.03E-16 0

738.5079 1.3288 1.09E-12 2.78E-12 0
836.5420 1.3223 2.17E-14 6.59E-14 100

714.5079 1.2738 4.40E-23 4.00E-22 0

771.5182 1.2375 1.43E-09 2.79E-09 80
772.5862 1.1711 7.77E-13 2.12E-12 100

437.2674 1.1198 4.16E-09 7.94E-09 30

792.5549 1.0993 9.43E-13 2.49E-12 0
747.497 1.068 1.86E-18 8.45E-18 20

619.2889 1.0567 1.42E-12 3.52E-12 20

621.3045 1.0562 1.50E-14 4.72E-14 90
478.2939 1.03 1.38E-10 3.13E-10 100

718.5392 1.0009 6.47E-16 2.21E-15 70

Notes: aVariable importance in the projection (VIP) was obtained from OPLS-DA with a threshold of 1.0; bp-values are calculated 
from a Student’s t-test; cq-values are the adjusted p-value with the false discovery rate (FDR); dLASSO are frequency after LASSO 
regression. 
Abbreviations: ICC, Intrahepatic cholangiocarcinoma; MS, Mass spectrometry; PUMCH, Peking Union Medical College Hospital; 
H&E, Hematoxylin and eosin; ITO, Indium-tin-oxide; HMDB, Human Metabolome Database; OPLS-DA, Orthogonal partial least 
squares-discriminant analysis; PCA, Principal component analysis; FDR, False discovery rate; VIP, Variable importance in the 
projection; AUROC, Area under receiver-operating characteristic; LASSO, least absolute shrinkage and selection operator.
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II patients. The concentrations of LPA(16:0), PE(34:2), PE(36:4), PE(38:3), PE(40:6), PE(40:5) and LPE(16:0) 
showed a decreased trend from the non-tumor areas to areas from the stage I patients, and to areas from the stage 
II patients (Figure 4).

Figure 2 Representative H&E staining and in situ ion images of lipid metabolites. (A) Representative H&E staining (from Patient 2 and Patient 7) are shown in left panel, with 
the cancerous area circled with red line. In situ ion images of lipid metabolites are shown in right panel. MSI data were acquired with the spatial resolution of 200 mm. (B) 
Mass spectra of representative cancer and normal regions.

Figure 3 Receiver-operating characteristic curve of (A) the OPLSDA model and (B) the logistic regression model. (A) Receiver-operating characteristic curve of the 
OPLSDA model in discriminating of tumor and adjacent areas in the validation cohort, in an independent sample set. The area under the receiver-operating characteristic 
curve was 0.936. (B) Receiver-operating characteristic curve of the logistic regression model in discriminating of tumor and adjacent areas in the validation cohort, in an 
independent sample set. The area under the receiver-operating characteristic curve was 0.993.
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Figure 4 Comparison of non-tumor areas with tumor areas in different stages. Compared with the adjacent non-tumor area, three characteristic metabolites showed an 
increasing trend from stage I to stage II, while five other metabolites showed a decreasing trend from stage I to stage II. **P < 0.01; ***P < 0.001.
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Discussion
The present study identified lipid molecules in differentiating tumor tissue and adjacent tissue of ICC, established 
a discrimination logistic model which could be used as a classifier to classify tumor and non-tumor regions based on 
analysis in tumor margins and provided information for biomarker changes in ICC, and proposed to related lipid changes 
with clinical classification.

Mass spectrometric analysis of CC has been reported in many literatures, most studies focus on proteomics. Dos 
Santos found that vimentin may be a diagnostic marker of ICC.20 Apolipoprotein (28K m/z peak) in cholangiocarcinoma 
was found to be significantly lower than that in benign tumors and inflammation.21 It was also found that thymosin beta-4 
was overexpressed in extrahepatic cholangiocarcinoma (ECC).22 However, there are few studies on lipid histology. Park 
et al found that the contents of phosphatidylcholine (pcs) 34:1 [m+h]+ (m/z 760.70) and PC 34:1 [m+na]+ (m/z 782.72) 
in the cancer epithelium were higher than those in the adjacent epithelium.23 The present study systemically evaluated 
lipid molecules in cholangiocarcinoma by MS, established a discrimination model based on logistic regression, 
respectively, and proposed to related lipid changes with clinical classification.

The ten lipids which were most significant included PE (P-16:0/20:4), PI (36:1), PE (P-18:0/20:4), PE (P-16:0/0:0), LPE 
(18:3), DG (38:6), LPI (16:0), PI (34:0), PE(38:1) and LPE(18:1). Most belong to dimethylphosphatidylethanolamine. 
Although each lipid group has 2–20 different chemical structures based on the existing KEGG database, we can still locate 
that glycerophospholipid metabolism pathway plays an important role. Phosphatidylinositol plays an important role in 
regulating differentiation,24 proliferation25 and apoptosis.26 It also participates in the process of anchoring proteins to the 
plasma membrane.27 The phosphoinositide phosphatidylinositol (4) phosphate [PtdIns(4)P] binds to GOLPH3. PtdIns(4)P is 
enriched at the trans-Golgi and recruits GOLPH3 to form a GOLPH3 complex and bind to myosin18A (MYO18A), which 
binds F-actin. This complex generates a pulling force to extract vesicles from the Golgi, interference with this GOLPH3 
complex results in dramatically reduced vesicle trafficking. The GOLPH3 complex has been identified as a driver of cancer in 
humans, likely through multiple mechanisms that activate secretory trafficking.28 Our finding may be related to the origin of 
cholangiocarcinoma, and may be helpful for researchers to study the pathophysiological mechanism.29 Further verification of 
pathways can be achieved by immunohistochemistry and single-cell sequencing.

Then, our study established a model which yielded a great sensitivity and specificity to distinguish between tumor tissues 
and adjacent tissues. In breast cancer and renal cell, similar models were established and validated using metabolomic 
profiles.30,31 However, there were no such models for ICC. Thus, we firstly have identified several metabolic biomarkers for 
ICC and established an accurate and repeatable OPLSDA model which could clearly discriminate tumor from adjacent areas 
using these biomarkers. In addition, we obtained the most important ten lipids by Lasso regression and established a simple 
logistic regression model, which greatly improved the efficiency of the model and easily usage in clinical work. Our findings 
had several clinical values. First, it could be used as a classifier to classify tumor and non-tumor regions and contributed to 
analysis in tumor margins, which was thought a significant prognostic factor for ICC. Due to the separation of analyses from 
matrix by mass, the MS assay is characterized by its inherent selection and low interference,32 which might reach a more 
sensitivity for difficult distinguishing margin. It can also be used to help pathologists to judge whether the incision margin is 
positive, achieving better plan the treatment of individual patients. Second, it provides information for molecular changes in 
ICC. In the future, the changes of these molecules could be tested in serum of ICC patients and could provide convenient and 
sensitive biomarkers for detecting ICC patients.

Another finding of our work is the association of metabolic changes with clinical stages. Compared with adjacent 
area, the concentration of LPA(16:0), LPE(16:0), PE(34:2), PE(36:4), PE(38:3), PE(40:6) and PE(40:5) were detected to 
be lower in early stage tumor area, and keep decreased in late stage tumor area. The concentration of FA(22:4), PA 
(P-18:0/0:0) and Glucosylceramide(d18:1/12:0) were significantly elevated in tumor areas of those with early stage 
cancer, and keep increased in late stage ones. The different change in metabolic molecules in different stages of cancer 
was observed in breast cancer.23 However, to our knowledge, this is the first study evaluating the association of lipid 
markers with clinical stages in ICC. The staging system, which was assessed according to AJCC system, was well-known 
to be related with survival outcome.33 Thus, our results indicate that these markers are of great prognostic values.
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One of the potential use of our results is the real-time analysis of lipids for the discrimination of tissues during 
surgeries. Previous research have demonstrated the use of mass spectrum coupled with a PIRL-based laser scalpel in 
discriminating different brain areas.34 Cancer screening of body fluids was the other possible way using mass spectrum 
which may improve the survival time prognosis of patients. The pathologic confirmation of the diagnosis is necessary 
before any non-surgical treatment and can be challenging in ICC. Endoscopic imaging and tissue sampling are often 
inadequate for molecular profiling, tissue sampling has reported high specificity but low sensitivity, and the highly 
desmoplastic nature of ICC limits the accuracy of cytological and pathological approaches. Liquid biopsy has received 
growing attention over the years given its promising applications in cancer patients.35 Previous studies showed that mass 
spectrometry determined a wide range of serum lipids biomarkers which reached high sensitivity and specificity to 
diagnose pancreatic cancer at an early stage, and are comparable to established diagnostic imaging methods.36 Our results 
might provide the potential role for liquid biopsy in patients with ICC.35,37

Our research has some limitations. First, future external validation using samples from multiple centers is in 
preparation. Second, the mechanisms underlying the changes of these metabolites are still uncertain, which needed 
future investigation. Last but not least, our samples size was small and we would perform validation in a larger group in 
the future.

Conclusion
The present study first systemically evaluated ten lipid molecules [m/z 722.5130], [m/z 863.5655], [m/z 436.2834], [m/z 
474.2626], [m/z 661.4813], [m/z 750.5443], [m/z 571.2889], [m/z 836.5420], [m/z 772.5862] and [m/z 478.2939] in 
cholangiocarcinoma by MS which were most significant different between ICC and adjacent areas. Then, it established 
a discrimination logistic model y = 3.4*[m/z 436.2834] - 3.773*[m/z 474.2626] + 3.82*[m/z 661.4813] - 4.394*[m/z 
863.5655] + 10.165 which could be used as a classifier to classify tumor and non-tumor regions based on analysis in 
tumor margins and provided information for biomarker changes in ICC. Last but not least, this study proposed to related 
lipid changes with clinical classification.
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