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Abstract: Oral squamous cell carcinoma (OSCC) is the most common type of malignant tumor in the head and neck, with a poor 
prognosis mainly due to recurrence and metastasis. Classical treatment modalities for OSCC like surgery and radiotherapy have 
difficulties in dealing with metastatic tumors, and together with chemotherapy, they have major problems related to non-specific cell 
death. Molecular targeted therapies offer solutions to these problems through not only potentially maximizing the anticancer efficacy 
but also minimizing the treatment-related toxicity. Among them, the receptor-mediated targeted delivery of anticancer therapeutics 
remains the most promising one. As OSCC exhibits a heterogeneous nature, selecting the appropriate receptors for targeting is the 
prerequisite. Hence, we reviewed the OSCC-associated receptors previously used in targeted therapy, focused on their biochemical 
characteristics and expression patterns, and discussed the application potential in personalized targeted therapy of OSCC. We hope 
that a better comprehension of this subject will help to provide the fundamental information for OSCC personalized therapeutic 
planning. 
Keywords: oral squamous cell carcinoma, receptors, targeted therapy, active targeting, drug delivery

Introduction
Oral squamous cell carcinoma (OSCC), originating from the mucosa of the tongue, buccal, palate, floor of the mouth, 
alveolar ridge, and other parts of the oral cavity, is the most common malignant tumor in the head and neck. The newest 
global cancer statistics reported that OSCC accounted for over 370,000 new cancers and 170,000 cases of death.1 Despite 
lots of efforts having been put on treatment of OSCC, its five-year survival rate is still no more than 50%. The leading 
causes for poor prognosis might be correlated to recurrence and metastasis, which could be due to incomplete resection 
of tumor and neglected metastases.2,3 Developing more efficient therapeutics is essential for improving prognosis of 
OSCC.

The principal strategies for OSCC treatment are surgery, chemotherapy, radiotherapy, or a combination of these 
modalities based on the severity of disease.4,5 Surgery remains the most efficient treatment for OSCC, while it inevitably 
damages the functions and aesthetics of the orofacial region.6 Moreover, together with radiotherapy, they have difficulties 
in dealing with metastatic tumors.7 Chemotherapy could inhibit rapidly growing cells including those in metastatic sites 
via inhibiting cell growth and division.8,9 However, its selective toxicity is relatively low, and normal cells with enhanced 
proliferation rates such as the hair follicles, bone marrow and gastrointestinal tract could also be harmed.10 To alleviate 
toxicities to normal cells, chemotherapeutics is often used at suboptimal doses, which might lead to the final failure of 
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treatment, and even drug resistance and metastatic disease. Therefore, there has been a great pursuit for development of 
targeted anticancer drugs to increase the selective toxicity in cancer therapy.

At present, two targeted approaches are being explored for improving the selective toxicity. One is developing newer 
drugs that alter specific signaling pathways of cancer cells.11,12 For example, bevacizumab, a monoclonal antibody that 
directly targets vascular endothelial growth factor receptor (VEGFR), suppresses functions of all VEGF-A isoforms and 
blocks correlated downstream signaling, leading to cell-cycle arrest, apoptosis and anti-angiogenesis.13 However, 
researches for these molecular targeted therapies will not be pressed ahead further, as these may cause a series of 
adverse effects in normal cells that usually distinct from classical cytotoxic chemotherapy.14 The other emerging one is 
targeted delivery of anticancer drugs to cancer region, increasing the drug dosages that reach the malignant tissue and 
avoiding the undesirable side effects to the normal tissue through specific receptors targeting.15,16 A paradigmatic 
example is trastuzumab emtansine, an antibody-drug conjugate targeting HER2-positive breast cancer cells and function-
ing via transporting cytotoxic compound emtansine, which was approved by the US Food and Drug Administration 
(FDA) in 2013.17 Thus, in the first place, it is essential to select the appropriate receptors for targeting, especially in 
OSCC which remains a heterogeneous nature.

Where Do We Stand in Oral Squamous Cell Carcinoma Treatment?
Targeted anticancer therapy generates the concept of personalized cancer therapy, which can be explained as conducting 
the specific targeted therapy on patients according to their specific molecular characterization of cancer cells and cancer 
microenvironment, thus promoting clinical outcome. In brief, that is performing the right therapeutics on the right patient 
at the right time, and has become an irresistible trend in the field of anticancer research.18,19 A simplified example is that 
patients with non-small-cell lung cancer (NSCLC) usually respond to epidermal growth factor receptor (EGFR) tyrosine 
kinase inhibitors erlotinib and gefitinib well when they have specific EGFR mutations.20 During the personalized cancer 
therapy, the urgent need is to identify biomarkers uniquely expressed or overexpressed in cancer compared to normal 
tissues, and use them for early detection, prognosis prediction, clinical outcome evaluation, or personalized diagnostic 
and therapeutic planning.21–23

Till now, two kinds of molecular targeted treatment have been approved by FDA for OSCC therapeutics. The first one 
is EGFR targeted therapy. EGFR is the member of ErbB family of receptor tyrosine kinase. Activated by either its 
ligands EGF or transforming growth factor-α (TGF-α), EGFR becomes phosphorylated and subsequently activates signal 
transduction pathways, such as mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K)/ Akt 
pathway, and Src pathway. These processes play crucial roles in a variety of cellular behaviors especially growth and 
migration, in both normal and neoplastic cells.24 Studies have reported that EGFR activity is increased in a large majority 
of cancers, such as NSCLC, breast, colorectal, pancreatic and head and neck cancer,25 and almost all premalignant and 
malignant lesions of oral cavity are witnessed with EGFR overexpression.26,27 In 2006, a chimeric monoclonal antibody 
cetuximab which competitively inhibits binding of EGFR to its ligands was approved by FDA for the treatment of OSCC 
under certain conditions.28,29 However, the clinical outcome has not been remarkably improved as the median survival 
time of those administered with cetuximab plus chemotherapy increased marginally from 7.4 to 10.1 months compared to 
those with chemotherapy alone.30

Another recently approved targeted therapeutics for OSCC is the immune checkpoint blockade-based anti-PD1 
therapy. In cancer immune microenvironment, the immune checkpoint programmed cell death 1 (PD1) expressed on 
the surface of CD8+ T cells and its ligand programmed cell death ligand 1 (PDL1) expressed on the surface of cancer 
cells and associated stromal cells, act as accomplices to blunt the anticancer effects of CD8+ T cells. Anti-PD1 therapy 
blocks the interaction of PD1/PDL1, thus abolishing the inhibition of CD8+ T cells and promoting the immune 
normalization.31–33 In OSCC, anti-PD1 therapy using pembrolizumab and nivolumab was approved by FDA in 
2016.34,35 Although there was a statistically significant improvement in overall survival in patients with metastatic and 
recurrent head and neck squamous cell carcinoma (HNSCC) when administered with pembrolizumab plus chemotherapy, 
compared to those administered with cetuximab plus chemotherapy as reported by a recent clinical trial, only a fraction 
of patients responded to anti-PD1 therapy and toxicities existed in organs like lung, which also express PDL1.36 Hence, 
existing targeted therapies remain limited for OSCC patients, and other targeting strategies need to be explored.
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How Strategic is Targeting Specific Oral Squamous Cell Carcinoma Cell 
Receptors?
As introduced before, receptors- or antigens-mediated targeted delivery of anticancer drugs to cancer cells or cancer- 
associated regions will be a rapidly growing field of research and a source of newer anticancer products for clinical use. 
Herein, searching for appropriate targeting receptors is regarded as the key factor to this targeted anticancer therapy, 
except for selecting cytotoxic drugs, drug carriers, etc.37 OSCC, as well as other types of cancer, exhibits various 
surface receptors. These receptors might have unique expressions indicating that they are only expressed or functional 
in tumor regions, or have evidently higher expressions in tumor regions compared to those in normal sites, thus 
exhibiting the possibility of being utilized for mediating drug delivery. Next, we will review the OSCC cell receptors 
that have been previously targeted in published researches concerning targeted delivery of anticancer therapeutics to 
OSCC region, focusing on their biochemical characteristics, expression patterns, and targeting strategies (Figure 1, 
Table 1).

Targeting Receptors with Cancer Specific Expression
Urokinase-Type Plasminogen Activator Receptor (uPAR)
uPAR is a cell membrane protein important for cancer invasion, angiogenesis and metastasis of various cancers, 
including OSCC.38–40 The main mechanism underlying these functions is uPAR’s binding to its ligand urokinase-type 
plasminogen activator (uPA) in cell membrane of migrating cells, thus mediating the extracellular matrix remodeling.41 

Additionally, uPAR activates many intracellular pathways through interaction with transmembrane receptors, and thus 
induces malignant behaviors of cancer cells.42 uPAR expression is usually cancer specific, and in most cases, its high 
expression correlates with increased aggressiveness, thus conferring it the ability of being as a promising diagnostic, 
therapeutic and prognostic biomarker.43,44 For example, in breast cancer, bladder cancer, and prostate cancer, a uPAR- 
targeting peptide was used for tumor imaging in a Phase I clinical trial.45

Figure 1 Schematic illustration of target receptors in OSCC and OSCC-associated regions for anticancer drugs delivery. 
Notes: Except for targeting receptors expressed on OSCC cells, biomarkers of OSCC-associated regions can also be targeted for anticancer drugs delivery, such as CSCs, 
cancer cells in hypoxia regions, stromal cells, blood endothelial cells, metastatic lymph nodes, and jaw bones adjacent to oral malignancies. 
Abbreviations: CSCs, cancer stem cells; OSCC, oral squamous cell carcinoma; TME, tumor microenvironment.

International Journal of Nanomedicine 2022:17                                                                                   https://doi.org/10.2147/IJN.S377816                                                                                                                                                                                                                       

DovePress                                                                                                                       
4295

Dovepress                                                                                                                                                              Cao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


In OSCC, it has been reported that enhanced uPAR expression was associated with cancer invasion, lymph node 
metastasis, high recurrence rate and significant reduction in overall survival of OSCC patients. Also, uPAR is highly 
cancer specific in OSCC, where it is expressed on OSCC cells and stromal cells like fibroblasts and inflammatory cells in 
the cancer microenvironment, and almost absent in normal cells (Figure 2A). Moreover, uPAR has been found to have 
strong expressions at the invasive front of OSCC.46,47 The early investigation for clinical potential of uPAR in OSCC is 
tumor imaging and intraoperative guidance.45,48,49 For example, Christensen et al have developed a uPAR-targeting 
fluorescent agent and a PET agent using conjugates of AE105 (a ligand for uPAR) and fluorophore ICG or radioactive 
isotope 64Cu, for fluorescence-guided tumor resection or preoperative tumor imaging of OSCC and the metastatic lymph 
nodes (Figure 2B).50 In addition, Zuo et al constructed therapeutic drugs-encapsulated dendritic mesoporous silica 
nanoparticles (NPs) decorated with AE105 targeting uPAR, and applied them for photonic hyperthermal and sonody-
namic targeted therapy of OSCC.51

Integrin αvβ6
The integrin αvβ6 is composed of an αv subunit and a β6 subunit, both of which contain three domains: the cytoplasmic 
domain, the extracellular domain, and the transmembrane domain. The extracellular domains recognize and adhere to 
specific ligand which contains the Arg-Gly-Asp (RGD) motif, while the cytoplasmic domain of β6 subunit transmits 

Table 1 OSCC-Associated Receptors That Have Been Used in Targeted Therapy

Classification Receptors Representative Ligands in 
OSCC Therapy

Representative Targets Ref

Cancer specific 

expression

uPAR AE105 Cancer cells and cancer-associated stroma cells [50, 51]

αvβ6 RGD, anti-αvβ6 mAb Epithelial cancer cells [57, 58]

Folate receptors Folic acid Cancer cells [62–65]

Cancer 

overexpression

EGFR Cetuximab Cancer cells and cells from dysplasia, normal 

epithelium and normal salivary gland

[66–70]

PDL1 Anti-PDL1 Ab Cancer cells [72]

c-Met cMBP Solid cancer cells especially OSCC cells [78, 79]

GRPR Bombesin, TM1 Cancer cells [85, 86]

PDPN Anti-PDPN Ab Cancer cells and lymphatic endothelial cells [92]

Sigma receptors Anisamide Cancer cells [97, 98]

TfR1 Ferritin heavy chain Cancer cells and activating lymphocytes and 
osteoclasts

[101, 102]

αvβ3 RGD Cancer cells, osteoclasts and vascular endothelial cells [109–111]

SPARC HSA Cancer cells and CAFs in some cancers including 

OSCC

[114]

LDLR Anti-LDLR Ab OSCC cells in hypoxia regions [116]

CD44 Anti-CD44 Ab, hyaluronic acid Cancer stem cells [118, 119]

P-selectin Fucoidan Vascular endothelial cells of various cancers [121]

CXCR4 SDF-1 Metastatic lymph nodes [122]

Abbreviations: CAFs, cancer-associated fibroblasts; c-Met, mesenchymal-epithelial transition factor; cMBP, cMet-binding peptide; CXCR4, CXC chemokine receptor 4; 
EGFR, epidermal growth factor receptor; GRPR, gastrin-releasing peptide receptor; HSA, human serum albumin; LDLR, low-density lipoprotein receptor; mAb, monoclonal 
antibody; OSCC, oral squamous cell carcinoma; PDPN, podoplanin; PDL1, programmed cell death ligand 1; RGD, Arg-Gly-Asp tripeptide; SDF-1, stromal cell-derived factor- 
1; SPARC, Secreted Protein Acidic and Rich in Cysteine; TfR1, transferrin receptor 1; uPAR, urokinase-type plasminogen activator receptor.
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various extracellular stimulus to cytoskeleton and vast intracellular signaling pathways.52,53 As the β6 subunit only binds 
to αv, it is the β6 subunit that contributes to its epithelial specific expression, and many unique functions of αvβ6 
especially in cancer invasion and metastasis.54 αvβ6 is almost undetectable in normal epithelial cells, while highly 
expressed in malignant epithelial cancers including OSCC,55 in which its high expression correlates with invasion and 
poor prognosis,56 providing the possibility of using αvβ6 as a promising biomarker for OSCC therapeutics. For example, 
a study conjugated peptides containing RGD to the surface of NPs and exerted the OSCC-targeting effects by 

Figure 2 The expression pattern and targeting efficiency of uPAR in OSCC. 
Notes: (A) Images of H&E and uPAR immunohistochemical staining showing the results of uPAR expression in tumor (left), tumor stroma (middle) and normal squamous 
epithelium. Reproduced from Baart VM, van Duijn C, van Egmond SL et al. EGFR and αvβ6 as promising targets for molecular imaging of cutaneous and mucosal squamous 
cell carcinoma of the head and neck region. Cancers. 2020;12(6):1474. Creative Commons Attribution License.46 (B) Fluorescence-guided tumor resection using 
fluorescence agent ICG-Glu-Glu-AE105 targeting uPAR. Mice with a tumor in the left anterior tongue as shown on preoperative MRI (a, b, white arrow indicates 
tumor). A time sequence fluorescence imaging showing that the tongue was fixed with a suture in the tip of the tongue, and tumor resection was performed guided by real- 
time optical imaging (e-h). H&E staining showing the tongue specimen had a clear resection margin (c), and the resection specimen showed a localized tumor, indicating 
radicality of tumor resection (d). Reproduced from Christensen A, Juhl K, Persson M et al uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for 
image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model. Oncotarget. 2017;8(9):15,407–15,419. Creative Commons Attribution 
License.50

International Journal of Nanomedicine 2022:17                                                                                   https://doi.org/10.2147/IJN.S377816                                                                                                                                                                                                                       

DovePress                                                                                                                       
4297

Dovepress                                                                                                                                                              Cao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://www.dovepress.com
https://www.dovepress.com


αvβ6-mediated endocytosis.57 In addition, Legge and teamworkers constructed an anti-αvβ6 monoclonal antibody- 
conjugated functional NPs for OSCC targeting, and for further therapy.58

Folate Receptor
Folate receptors (FRs) including FRα, FRβ and FRγ, are cell surface glycoproteins that bind folic acid with high affinity. 
Usually expressed at low levels in most tissues, FRs, especially FRα, have high expressions in numerous cancers 
including OSCC, in order to meet the dramatically increasing need of rapidly growing cancer cells for folic acid.59,60 

Interestingly, although FRα expression in cancer cells is not cancer specific, we categorize it into this kind of receptors as 
it localizes at the luminal surface of polarized epithelial cells and is separated from the circulation in nonmalignant 
situation. However, in malignant situation, FRα is expressed on the cell surface with high densities, becoming easily 
targeted for cancer therapy.61 In OSCC, various folic acid-linked NPs have been designed to improve the OSCC targeting 
efficiency and for gene therapy, drug delivery or photothermal therapy (PTT).62–65

Targeting Receptors with Cancer Overexpression
EGFR and PDL1
As the applications of anti-EGFR therapy and PD1/PDL1 blocking therapy have been described previously, the concept 
using EGFR or PDL1 as the targeting receptor for OSCC therapeutics has also been put forward. EGFR has been found 
to be highly expressed in a majority of cancers, and up to 90% of HNSCC exhibits overexpressed EGFR. However, 
EGFR lacks a cancer specific expression. Specimens containing dysplasia, normal epithelium and normal salivary gland 
tissues also exhibit regular EGFR expressions.46,47 Studies have already shown the use of EGFR monoclonal antibody 
such as cetuximab for targeting EGFR on the surface of OSCC cells, and conjugating with contrast agents for the purpose 
of imaging-guided therapy.66–68 However, as reported by a phase I clinical trial, normal epithelium and salivary gland 
tissues outside the OSCC compartment also showed signals with the use of an EGFR targeting imaging agent.69 Hence, 
EGFR targeting needs to be improved further. Recently, Wang et al constructed a kind of NPs which exposed the peptide 
targeting EGFR of OSCC cells in the acidic cancer environment, while sequestered it in the physiological condition, thus 
improving the problem of cancer non-specific expression of EGFR.70

Also, targeting PDL1 has been utilized for receptor-mediated drug delivery in OSCC therapeutics, as PDL1 was 
reported to be highly expressed in human OSCC tissues when compared with healthy tissues, and its overexpression in 
OSCC correlated with disease progression and increased tumor infiltrating CD8+ T cells.71 In this case, a recent study 
modified a kind of drug-encapsulated NPs with an anti-PDL1 antibody in OSCC targeted therapy, to improve both drug 
specificity and immune function.72

Mesenchymal-Epithelial Transition Factor (c-Met)
c-Met, a member of the tyrosine protein kinase receptor family, is also called the hepatocyte growth factor (HGF) 
receptor, as it is the only receptor that binds to HGF. As a key transmembrane protein encoded by the proto-oncogene 
c-MET, it can promote the growth of hepatocytes, and is overexpressed in a broad range of solid cancers to stimulate 
proliferation, survival, migration, invasion and angiogenesis.73,74 When compared with other cancers and normal tissues, 
OSCC cells exhibit highly expressed c-Met.75 According to an investigation, 90% of HNSCC cell lines and 84% of 
patient tissues had upregulated c-Met expression, indicating its potential for targeted therapeutics.76,77 Recently, the main 
application of targeting c-Met in OSCC is the field of imaging for early diagnosis, intraoperative navigation and 
prognosis prediction.78,79

Gastrin-Releasing Peptide Receptor (GRPR)
GRPR, which binds to GRP with high affinity, has regulatory roles in various parts of the body, such as the brain, the 
vascular system, intestinal mucosa and the endocrine system. In physiologically normal organs, GRP/GRPR has low 
concentrations, while in human cancer, it is highly overexpressed and can stimulate cancer growth.80 Initially, GRPR was 
found to be overexpressed in prostate cancer and used as a diagnostic tool. Nowadays, more cancers have been 
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recognized with increased GRPR, and emerging studies have investigated the possibility of targeted diagnosis and 
therapy using GRPR, such as in breast cancer, gastrointestinal cancer, colorectal cancer, and so on.81–83 In OSCC, Lango 
et al have reported that GRPR expression was six times higher than that in normal tissues, and four times higher than that 
in adjacent normal epithelial tissues.84 Furthermore, studies focusing on near-infrared fluorescent imaging of OSCC 
utilized GRPR targeting, and results showed that it’s available in intraoperative surgical margin decision and metastatic 
lymph node detection.85,86

Podoplanin (PDPN)
PDPN is a small mucin-type transmembrane protein, which has a majority of physiological and pathological effects 
including regulation of organ development, cell motility, tumorigenesis and metastasis.87 PDPN is expressed in a variety 
of normal cells, but overexpressed in cancer and cancer-associated cells of several cancer types, including squamous cell 
carcinoma of the lung, head and neck, malignant mesothelioma, and brain tumors. In addition, PDPN is a specific marker 
of lymphatic vessels, and increased PDPN correlates with cancer lymphangiogenesis and migration of cancer cells into 
the lymphatic system.88,89 Thus, it is clear that PDPN overexpression plays a critical role in cancer progression and 
metastasis. In OSCC, studies have reported that PDPN was upregulated and associated with malignant phenotype.90,91 

Liu et al established a multifunctional gold nanoplatform conjugated with anti-PDPN antibody and anticancer drug Dox, 
to actively target OSCC for chemo/photothermal therapy.92

Sigma Receptors
Sigma receptors, including sigma-1 and sigma-2, are a unique class of membrane proteins ubiquitously expressed and 
highly conserved throughout the mammalian body, indicating their important roles in cellular function.93 Encoded from 
different genes, sigma-1 receptor has been detected in plasma membrane and membranes of endoplasmic reticulum and 
mitochondria of various organs, and has evidently high expressions in embryonic stem cells during all stages of 
embryogenesis.94 Sigma-2 receptor is expressed in the central nervous system, gastrointestinal tract, kidney, liver and 
heart, with lower expression levels than sigma-1.95 Overexpression of sigma receptors is observed in various cancers, 
including NSCLC, breast cancer, melanoma, and so on, with a similar subcellular localization, suggesting their critical 
roles in both caspase-dependent and caspase-independent cell death pathways.96 As reported by recent studies, sigma 
receptors were highly expressed in OSCC tissues. Modifying anisamide on the outer-leaflet of certain NPs has been 
developed for actively targeting sigma receptors and then transporting agents like siRNA to the OSCC cells97,98

Transferrin Receptor 1 (TfR1)
TfR1, a homodimer expressed in the cell membrane, binds to transferrin (Tf)-bound iron and transports it as the complex 
through the clathrin-mediated endocytosis. TfR1 expression depends on the cellular iron status. It increases in iron- 
deficient cellular context, while decreases in the presence of excess iron.99 Rapidly proliferating cells and energy- 
requiring cells, such as cancer cells, activating lymphocytes and osteoclasts, exhibit high expressions of TfR1, due to the 
fast-growing need for iron. Emerging studies have reported that TfR1 showed specific overexpression in a wide number 
of cancers, and up to 100 times higher than that in normal tissues.100 Hence, targeting TfR1 for cancer diagnosis and 
treatment has attracted extensive attention. Damiani et al have successfully developed a human ferritin heavy chain-based 
carriers which can actively target TfR1 on the surface of OSCC cells, and be freely internalized as a complex for further 
therapy.101,102

Integrin αvβ3
The integrin αvβ3, composed of an αv subunit and a β3 subunit, is an integrin essential for angiogenesis and tumor cell 
biology. The same as αvβ6, αvβ3 is one of the eight integrins that can recognize peptides containing the RGD sequence 
and facilitate extracellular matrix proteins-integrins interaction.103 Rapidly dividing cells including cancer cells and 
certain nonmalignant cells especially osteoclasts and endothelial cells of blood vessels, express large amounts of αvβ3, 
whereas quiescent cells usually have little or no expressions.104 Moreover, it has been reported that smooth muscle 
cells, skeleton muscle myoblasts, platelets and activated macrophages contain functional αvβ3 expressions, and the 
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normal colon, brain, salivary gland and thyroid gland express quite low, but detectable levels of αvβ3.104,105 Thus, αvβ3 
is important for not only malignant behaviors of cancer cells, but also some physiological functions maintaining. In 
OSCC, αvβ3 was reported to be expressed solely on the neovasculature of tumors using RGD-based tracers specific for 
αvβ3.106,107 However, Lobeek et al identified that OSCC with highly keratinizing phenotype also showed αvβ3 
expression on cancer cells using68 Ga-RGD PET/CT imaging, while αvβ3 expressed at low levels in metastatic lesions 
as compared with primary OSCC tissues.108 Researchers usually modified multi-functional nanoplatforms with RGD 
containing peptides to actively target αvβ3 for OSCC therapeutics,109–111 indicating its potential role in targeted 
therapy.

Secreted Protein Acidic and Rich in Cysteine (SPARC)
SPARC, also termed as osteonectin, is an extracellular matrix glycoprotein first isolated as the main non-collagenous 
component of bone, and induces calcium deposition after binding to collagen. Furthermore, SPARC has been investigated 
to be expressed by a variety of tissues undergoing repair or remodeling due to wound healing, disease, or natural 
process.112 In cancer microenvironment, SPARC exhibits diverse functions depending on the specific cancer type. Some 
types of cancer have high levels of SPARC expression and this high expression correlates with disease progression and 
poor prognosis, while in some other types of cancer, SPARC acts as a tumor suppressor.113 In OSCC, SPARC reveals 
higher expressions in tumor tissues especially in cancer cells and cancer-associated fibroblasts (CAFs) than that in normal 
tissues.114,115 A study used human serum albumin (HSA) as a nanocarrier to actively target SPARC expressed on OSCC 
cells and CAFs, to exert PTT/photodynamic therapy (PDT)/chemotherapy after SPARC-mediated transcytosis of NPs and 
further release of functional agents.114

How Strategic is Targeting Oral Squamous Cell Carcinoma-Associated 
Microenvironment Biomarkers?
Except for targeting receptors mainly expressed on cancer cells, biomarkers of OSCC-associated regions can also be 
targeted for personalized therapeutics, in order to increase sensitivity to classical therapeutic strategies, prevent cancer 
recurrence and metastasis, and enhance overall treatment efficacy. For example, modifying the surface of multifunctional 
NPs with antibodies against low-density lipoprotein receptor (LDLR), which was reported to be a specific OSCC 
biomarker in hypoxia regions, has been proved to successfully target OSCC and exert tumoricidal effects using PDT/ 
PTT and chemotherapeutic agents.116 As the hypoxia region, which means the core area of tumors, has a close relation-
ship with chemoresistance, actively targeting this region might be helpful for preventing chemoresistance-induced 
treatment failure.117 Moreover, cancer stem cells (CSCs), a group of cancer cells capable of self-renewal and both 
initiating tumorigenesis and promoting metastasis, are also one of the leading causes of resistance to chemotherapy and 
radiotherapy. Su’s research used the anti-CD44 antibody-modified superparamagnetic iron oxide NPs to target CD44- 
overexpressed CSCs in OSCC, and kill them under an alternating magnetic field-induced hyperthermia.118 Similar study 
exists using hyaluronic acid, which is one of the ligands of CD44, for CSCs targeted therapy in OSCC.119

Tumor vasculature and metastatic lymph nodes of OSCC are also the essential targets for therapy, as OSCC is 
a stroma-rich tumor and metastasize mainly through the lymphatic system.120 P-selectin, a cell adhesion molecule 
overexpressed in the vasculature of several cancers including OSCC, was targeted by fucoidan-based NPs for further 
delivery of anticancer agents.121 Another study prepared a stromal cell-derived factor-1 (SDF-1)-modified nanosystem to 
co-deliver chemotherapeutic drug DOX and PTT photosensitizer ICG, and actively targeted CXC chemokine receptor 4 
(CXCR4)-expressed metastatic lymph nodes using SDF-1ʹs binding to CXCR4, for synergistic PTT/chemotherapy in 
metastatic OSCC and cutting off the metastasis pathway.122

Furthermore, preventing bone invasion is a special aspect in OSCC targeted therapeutics, as jaw bones’ close 
anatomical relationship with oral malignancies.123 In such case, researchers have designed a delicate biomimetic 
nanoparticle using the HNSCC and red blood cell membrane hybrid exterior shell with PTT agents containing inside, 
and then modified with the octapeptide (Asp8) which has high binding affinities to hydroxyapatite, for exerting tumor 
and bone dual targeting effects.124
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What are Other Active Targeting Strategies in Oral Squamous Cell 
Carcinoma?
In addition to the already known receptors or biomarkers-mediated drug delivery, other active targeting strategies also 
exist. For example, researchers isolated a novel peptide HN-1 from an M13 single-stranded phage-based random peptide- 
display library when using human HNSCC cells to allow endocytosis to occur. HN-1, a 12-amino acid peptide, can 
specifically bind to and be efficiently internalized into HNSCC cells, but not normal cells or other types of cancer cells, 
indicating that HN-1 uptake does not occur ubiquitously.125 Since then, various studies have used HN-1 to conjugate with 
anticancer drugs or tumor imaging agents for HNSCC-targeted therapeutics in vitro and in vivo.126,127 In our previous 
study, HN-1 also showed a significantly enhanced ability to mediate cellular uptakes of nanoparticles.128 However, 
although scientists considered that HN-1 may exert this targeting effect through specific interaction with a cellular 
receptor, the exact receptor is currently not known and requires further analysis. Additionally, studies also utilized cancer 
cell membrane-camouflaged biomimetic NPs to enhance the specific targeting capacities to cancer cells.129 Moreover, as 
OSCC exhibits upregulated macropinocytosis, an endocytotic, nutrient-scavenging pathway that promotes albumin 
internalization into cells, therapeutic agents bound to albumin could also selectively target OSCC cells, except for via 
the SPARC receptor.130

The Future Perspectives
Exploring the molecular biology of cancer cells for more effective targeted therapeutics is an unavoidable trend in the 
winding way of tackling cancer, and selecting the tumor-specific biomarkers remains the prerequisite. In this review, 
receptors or biomarkers that were utilized for targeted treatments of OSCC were summarized. These receptors are either 
uniquely expressed or overexpressed in OSCC or OSCC-associated regions. However, several problems exist concerning 
the current literatures of OSCC targeted therapy. Firstly, most studies utilized generally the same cell lines to investigate 
the efficiency of receptor-mediated drug delivery to OSCC regions. Although the results were promising turned out, they 
still do not fit the reality very well as OSCC exhibits a heterogeneous nature and the specific chosen receptors shall be 
different and dependent on patients with distinct risk habits and anatomical sites where OSCC arises. Additionally, with 
the development of nanotechnology, receptors-mediated active targeting strategy modified in nanosystem has attracted 
great interests in the field of oncological research.131,132 On one hand, the nanoparticle itself exhibits the passive 
targeting effect, namely the enhanced permeability and retention (EPR) effect due to its small size.133 On the other 
hand, receptors or other factors-mediated active targeting strategies reviewed above could increase specificity and uptake 
efficiency, and overcome the multiple-drug resistance after initial accumulation, since EPR effect is not taken place in 
some hypovascular cancers, and permeability of new blood vessels could vary in a single cancer.134–136 However, 
limitations are that no nanoparticles with active targeting strategies have gained the FDA approval to date, and only a few 
anticancer drugs conjugated with active targeting agents have been developed for clinical use in cancer therapeutics 
except for OSCC.137

On the positive side, summarizing the target receptors in OSCC personalized therapy and studying their biochemical 
characteristics and expression patterns could undoubtedly provide basic and valuable information for further clinical 
research and application. Currently, emerging studies have put their efforts to improve the targeting and tumor killing 
effects by optimizing therapeutic strategy. For example, Chen et al developed a drug delivery nanosystem with bone and 
OSCC cells dual targeting function, to maximize the treatment efficiency for OSCC with bone invasion.124 In addition, 
cancer targeting has been improved by not only targeting molecules highly expressed on cancer cell membranes, but also 
self-reinforcing of the targeting molecule which has upregulated expression in response to cellular attack via cancer 
treatments.138 Furthermore, cancer targeted therapy has been combined with other treatments like phototherapy, sono-
dynamic therapy, immune therapy, etc. to completely destroy cancer and compensate for the poor efficiency of single 
receptor targeting.139,140 Therefore, investigating the target receptors provides huge potential in further researches and 
oncological clinical applications including the field of early detection, prognosis prediction, clinical outcome evaluation, 
and personalized diagnosis and therapies,141 while great challenges need to be solved with well-designed therapeutic 
strategy and further proper randomized clinical trials for personalized OSCC therapy.
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