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Purpose: Vascular endothelial dysfunction is well established in type 2 diabetes. Interleukin-12 (IL-12) and endoplasmic reticulum 
(ER) stress are up-regulated in type 2 diabetic patients and animal models of type 2 diabetes. However, the role and underlying 
mechanisms of IL-12 and the ER stress CHOP in endothelial dysfunction are not fully understood.
Methods: We generated double knockout mice between db−/db− and p40IL-12−/− mice (db−/db−p40-IL−12-/-) and endoplasmic (ER) 
stress-CHOP−/− mice (db−/db−CHOP-/-). We performed a glucose tolerance test (GTT) to determine the effect of IL-12 and ER stress 
CHOP on glucose metabolism. We assessed the endothelial function and determined the phosphorylation level of eNOS, Akt, AMPK, 
and the expression of ER stress (CHOP, BIP), and oxidative stress (Nox2 and Nox4 and NADPH oxidase activity).
Results: The results showed that GTT was improved in db-/db−p40-IL−12-/- and db−/db−CHOP-/- suggesting IL-12 and CHOP as parts of 
a mechanism involved in the development of type 2 diabetes. The microvascular endothelial dysfunction in db−/db− mouse is 
associated with decreased phosphorylated eNOS, Akt, AMPK, and increased CHOP, BIP, Nox2, and Nox4 expressions. 
Interestingly, disrupting IL-12 and ER stress CHOP in db−/db− mice significantly improved endothelial function, increased survival 
markers expression and decreased ER and oxidative stress.
Conclusion: Using a genetic approach, these findings provide evidence that IL-12 and ER stress CHOP play a significant role in 
microvascular endothelial dysfunction in type 2 diabetes.
Keywords: type 2 diabetes, interleukin-12, ER stress, microvascular endothelial dysfunction, oxidative stress

Introduction
Diabetes has affected lives for thousands of years. Type 2 diabetes is a complex metabolic disease that fundamentally 
arises from the loss of functional pancreatic beta cell mass associated with a significant damage to the cardiovascular 
system. Microvascular endothelial cell dysfunction is a clinically significant problem in patients with type 2 diabetes as it 
causes myocardial infarction, stroke, peripheral artery disease, retinopathy, nephropathy, cardiomyopathy and delaying 
wound healing.1–9 Moreover, complications of the microcirculation often lead to hypertension, which substantially 
aggravates the health of diabetic patients. As a result, the concomitant cardiovascular complications are mainly 
responsible for the high morbidity and mortality in patients with type 2 diabetes. Despite decades of extensive biomedical 
research in this area, current therapies neither halt nor reverse microvascular complications that occur in type 2 diabetes. 
Thus, there is a critical need for the identification of mechanism-based, treatable targets to improve the microvascular cell 
function and limit the progression of this disease. Inflammation is a key component in the pathogenesis of type 2 diabetes 
and cardiovascular diseases (CVD).10 Type 2 diabetes is associated with an increase of cytokines and adipokines 
secretion11–17 capable of affecting microvascular cell function and structure.4–7 Excessive microvascular inflammation 
evokes endothelial dysfunction seen in patients and mimicked in animal models with type 2 diabetes.5–9,18–21 IL-12 is 
a class-I helical cytokine produced mostly by macrophages, neutrophils, and dendritic cells.22–24 It consists of a light 
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chain (p35 subunit) and a heavy chain (p40 subunit) that both are covalently linked forming the p70 unit.25,26 IL-12 helps 
in the differentiation of T helper 1 immune cells and induces the secretion of pro-inflammatory cytokines.25 Specifically, 
the level of the pro-inflammatory cytokine interleukin-12 (IL-12) is increased in adolescent and adult T2D patients and 
could be involved in the development of insulin resistance and vascular complications such as atherosclerosis.26–28 

However, it is unknown whether the inhibition of IL-12 protects microvascular function in type 2 diabetes. Furthermore, 
the mechanism by which increased IL-12 might cause vascular endothelial dysfunction is still unknown. We previously 
reported that endoplasmic reticulum (ER) stress is an important factor associated with cardiovascular complications in 
hypertension and diabetes.6,29,30 It has been reported that ER stress signaling increases oxidative stress causing apoptosis 
induction associated with vascular endothelial dysfunction.31 ER stress-CHOP was proven to increase protein synthesis 
leading to protein misfolding and induction of oxidative stress contributing to cell damage.32 In the present study, we 
determined whether the genetic deletion of IL-12 and ER stress CHOP in type 2 diabetic mice could rescue the 
microvascular endothelial function.

Materials and Methods
Animals and Research Design
All procedures involving animals followed the NIH Guide for the Care and Use of Laboratory Animals and were 
approved by the institutional animal care and use committee (IACUC) at EVMS, VA, USA. Eight weeks old male 
C57BL/6J, db−/db−, IL-12−/− and CHOP−/− mice were purchased from Jackson Laboratory (Bar Harbor, ME, USA). We 
generated double knockout mice between db−/db− and p40IL- 12−/− mice (db−/db−p40-IL−12-/-) and ER Stress-CHOP−/− 

mice (db−/db−CHOP-/-). Mice were housed under pathogen-free conditions at a temperature of 23°C with 12 hr light/dark 
cycles with unrestricted access to food and water. Body weights were measured weekly throughout the experiment. After 
1 week of acclimatization, mice were divided into the following groups: Group 1: Wild type controls (C57/Bl6), Group 2: 
Mice with type 2 diabetes (db−/db−), Group 3: IL-12 knockout mice (IL-12−/−), Group 4: IL-12 double knockout mice 
(db−/db−IL−12-/-), Group 5: ER stress CHOP knockout mice (CHOP−/−) and Group 6: CHOP double knockout mice (db−/ 
db−CHOP-/-). Mice were sacrificed, and the mesenteric resistant arteries (MRAs) were immediately harvested. The MRAs 
were divided for vascular reactivity assessment, which was performed immediately, Western blot analysis, and NADPH 
oxidase assay.

Glucose Tolerance Test
After overnight fasting, blood samples were obtained by lancing the mouse-tail vein, and the blood glucose level was 
measured using an Ultra Touch glucometer (True test; Trividia Health Inc, Fort Lauderdale, FL, USA). Mice then 
received an IP injection of 2 g/kg glucose. Blood glucose levels were measured at 10-, 20-, 30-, 60-, 90-, and 120- 
minutes following glucose injection.

Microvascular Reactivity
Microvascular reactivity was performed as reported previously33 in MRA isolated from male C57BL/6J, db−/db−, IL-12−/ 

−, db−/db−IL−12-/-, CHOP−/−, and db−/db−CHOP-/- mice. The MRAs were immediately placed in PSS solution, pH=7.4 
(NaCl 118 mM; KCl 4.7 mM; KH2PO4 1.2 mM; CaCl2 2.5 mM; NaHCO3 25 mM; MgSO4x7H2O 1.2 mM and glucose 
11 mM). MRAs were cleaned from fat and connective tissue and cut into 2 mm rings. Then rings were mounted in 
a small vessel dual chamber myograph for isometric tension measurements. After a 30 min calibration period in PSS 
solution bubbled with carbogen at 37°C, arteries were stretched to their optimal lumen diameter for active tension 
development. After 60 min incubation, cumulative concentration response curves to phenylephrine (PE, 10−8-10−4 M) 
were obtained. Rings were washed, then pre-constricted with PE (10−5 M) and when a steady maximal contraction was 
reached, cumulative concentration responses were obtained for acetylcholine (ACh, 10−9-10−5 M) and sodium nitroprus-
side (SNP, 10−9-10−5 M). All chemicals were purchased from Sigma-Aldrich, MO, USA.
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Western Blot Analysis
Western Blot was used to detect specific proteins in lysates of MRA tissue as previously described.34 Mice were 
sacrificed then MRA were immediately harvested and frozen in liquid nitrogen and stored at −80°C. Tissue lysates were 
prepared by homogenizing in ice cooled Tissue protein Extraction Reagent (Prod# 78510, Thermo Scientific, MA, USA), 
sonicated for 5 seconds and centrifuged for 15 min at 13,000 rpm. Protein quantification was performed according to 
Pierce™ BCA Protein Assay Kit (Product No. 23225, Thermo scientific, MA, USA). Specific antibodies against Anti- 
Phospho-Akt (ser473, Cat #9271, Cell Signaling, MA, USA), Anti-total-Akt (Cell Signaling, #9272), Anti-Bip (C50B12, 
Cell Signaling, #3177), Anti-CHOP (Cell Signaling, #2895), Anti-Phospho-AMPKa (Thr172, Cell Signaling, #2351), 
Anti-AMPKα (Cell Signaling, #2352), Anti-Phospho-eNOS (Ser1177, Cell Signaling, #9571), Anti-NOX2/gp91phox 
(Cat #ab80508, Abcam, MA, USA), Anti-NADPH oxidase 4 (#ab133303), Anti-eNOS/NOS Type III (Cat #610296, BD 
biosciences, CA, USA) and β-actin (Santa Cruz Biotechnology, TX, USA) were purchased and used. All dilutions were 
prepared according to manufacturer recommendations. Membranes were developed using odyssey-imaging system 
(LICOR, NE, USA), and band quantification was performed using image J software. Data are expressed after normal-
ization to β-actin as % compared to control.

NADPH Oxidase Activity Assay
Superoxide anion levels generated by NADPH oxidase were measured in lysates of mice MRA using lucigenin chemilu-
minescence as previously described.29,34 MRA were homogenized in iced sucrose buffer containing KH2PO4 50 mM; EGTA 
1 mM, sucrose 150 mM; pH=7.0 and the “Complete-C mini” protease inhibitor cocktail (Roche Diagnostics, IN, USA). The 
aliquots of the homogenates were used immediately. About 100 μL of each lysate was added to PBS buffer preheated at 
37°C, containing lucigenin (5 μM) and NADPH (100 μM) to a total volume of 1 mL. Blank samples were prepared using 100 
μL of sucrose buffer. Lucigenin activity was measured every 30 seconds till enzymatic activity reached a plateau in 
a luminometer (Turner Biosystems 20/20, single tube luminometer, Turner BioSystems, Sunnyvale, CA, USA). The 
NADPH oxidase activity was performed in the presence or absence of Apocynin and L-NAME inhibitors (Sigma-Aldrich, 
USA). Data were normalized to protein content and are expressed as % compared to control.

Statistical Analysis
Data are expressed as mean ± SEM. Concentration–response curves were analyzed using the GraphPad Prism 8.0 
software (GraphPad, USA). Statistical calculations for significant differences were performed using one-way followed by 
Post-Hoc test or two-way ANOVA as appropriate. Comparisons are considered significant when p <0.05.

Results
Body weights of C57/Bl6, IL-12−/− and CHOP−/− mice are identical. The deletion of IL-12 and ER stress CHOP in db−/ 
db− mice did not affect the body weight, suggesting that IL-12 and the ER stress CHOP are not involved in obesity 
development in type 2 diabetes (Figure 1A). The disruption of IL-12 and ER stress CHOP in db−/db− mice significantly 
improved the glucose test tolerance (GTT) indicating that IL-12 and ER stress CHOP are playing a significant role in the 
glucose metabolism disorder in type 2 diabetes (Figure 1B).

We previously reported that ER stress induction in db−/db− mice is associated with microvascular endothelial 
dysfunction.35,36 The relaxation of MRA in response to exogenous nitric oxide donor (sodium nitroprusside: SNP) is 
similar in all groups (Figure 2A) indicating that the endothelial dysfunction is mainly related to the lack of endothelial 
cell to release enough vaso-relaxing factors. Figure 2B shows endothelial dysfunction in db−/db− compared to C57/Bl6, 
IL-12−/−, and ER stress CHOP−/− mice. Interestingly, the disruption of IL-12 and the ER stress CHOP in db−/db− mice 
significantly improved MRA endothelial function (Figure 2B) suggesting that IL-12 and ER stress CHOP are parts of 
mechanisms involved in endothelial dysfunction in type 2 diabetes. Mesenteric resistance artery (MRA) constriction 
induced by phenylephrine was similar between all groups (C57/Bl6, db−/db−, IL-12−/−, CHOP−/−, db−/db−IL−12-/-, db−/ 
db−CHOP-/-) (Figure 2C). The endothelial dysfunction, assessed by a reduction in MRA relaxation in response to 
acetylcholine, is an important event involved in cardiovascular diseases.
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These functional studies are further supported by the assessment of signaling pathways (phosphorylated (P) AMPK, 
eNOS, and Akt) involved in the endothelial function (Figure 3). Western blot analysis of MRA tissue shows a decrease in 
phosphorylated-AMPK, eNOS, and Akt in db−/db− compared to C57/Bl6, IL-12−/−, CHOP−/−, db−/db−IL−12-/-, and db−/ 
db−CHOP-/- mice (Figure 3A-C). These data indicate that IL-12 and ER stress CHOP are drivers of microvascular 
endothelial dysfunction in type 2 diabetes likely through eNOS, Akt, and AMPK signaling.

In addition, Western blot data illustrate an increase in ER stress CHOP and BIP expression in db−/db− compared to 
C57/Bl6, IL-12−/−, CHOP−/−, db−/db−IL−12-/-, and db−/db−CHOP-/- mice (Figure 4). The data also showed that IL-12 
disruption in db−/db− mice significantly reduced ER stress CHOP and BIP induction, suggesting that IL-12 is an 
upstream mechanism for the induction of the ER stress in type 2 diabetes (Figure 4).

Furthermore, NADPH oxidase activity was significantly increased in db−/db− compared to C57/Bl6, IL-12−/−, 
CHOP−/−, db−/db−IL−12-/-, and db−/db−CHOP-/- mice (Figure 5A). To study the involvement of eNOS coupling in vascular 
function, NADPH oxidase activity was performed in the presence of a direct inhibitor of nitric oxide synthase (L-NAME) 
or an inhibitor of NADPH oxidase (Apocynin). Our data showed that the addition of L-NAME or Apocynin inhibited 
NADPH oxidase activity, indicating the involvement of both uncoupled eNOS and NADPH in the production of ROS. 
Furthermore, Western blot analysis showed an increase in Nox4 and Nox 2 expression in db−/db− compared to C57/Bl6, 
IL-12−/−, CHOP−/−, db−/db−IL−12-/-, and db−/db−CHOP-/- mice (Figure 5B and C) supporting the augmented NADPH 
oxidase activity in db−/db− mice.

Discussion
Type 2 diabetes is associated with chronic inflammation where a variety of cytokines, adipokines and stress pathways are 
increased11–17,37,38 and could affect vascular function and structure.5–8 Significantly, IL-12 is increased in adolescent and 
adult patients with type 2 diabetes,28,39 in addition to animal models of type 2 diabetes.40–42 Moreover, IL-12 

Figure 1 (A) Body weights measured at the end of experiment for C57/Bl6, IL-12−/−, CHOP−/−, db−/db−, db−/db−IL−12-/-, and db−/db-chop-/- mice. Data are expressed as mean 
± S.E.M. One way ANOVA was used for comparison between the groups followed by Tukey’s post-hoc test. *p<0.05 for db−/db− vs C57/Bl6, IL-12−/−, and CHOP−/−. #p<0.05 
for db−/db−chop-/- vs C57/Bl6, IL-12−/−, and CHOP−/−. &p<0.05 for db−/db−IL12-/- vs C57/Bl6, IL-12−/−, and CHOP−/− mice. (B) Glucose tolerance test (GTT) of C57/Bl6, IL- 
12−/−, CHOP−/−, db−/db−, db−/db−IL−12-/-, and db−/db-chop-/- mice. Data are expressed as mean ± SEM. Two-way ANOVA was used for comparison between the groups 
followed by Tukey’s post-hoc test. *p<0.05 for db−/db− vs C57/Bl6, IL-12−/−, CHOP−/−, db−/db−IL−12-/-, and db−/db-chop-/.
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administration to non-obese mice leads to diabetes,43 liver fibrosis,44 kidney damage,45 and atherosclerosis46 supporting 
a detrimental role of IL-12 in the etiology of diabetes and abnormalities of multiple tissues and organs. Furthermore, 
a previous study showed a correlation between elevated levels of serum IL-12 and vascular endothelial dysfunction in 
type 2 diabetes.27 These studies suggest that IL-12 is a key player involved in type 2 diabetes-induced cardiovascular 
complications. However, the mechanism by which increased IL-12 in type 2 diabetes causes microvascular endothelial 
dysfunction is not completely understood. It is well established that type 2 diabetes is associated with endoplasmic 
reticulum (ER) stress induction and increase in oxidative stress.47 We and other laboratories previously reported 
endothelial dysfunction associated with ER stress induction in type 2 diabetic mice.48,49 We also elucidated the 
involvement of the ER stress and oxidative stress in vascular endothelial dysfunction in type 2 diabetic mice.48

The present study aimed to determine whether IL-12 and ER stress CHOP play a key role in obesity, glucose 
metabolism, and microvascular endothelial dysfunction. Our results showed that disruption of IL-12 and ER stress CHOP 
in db/db mice did not affect the body weight, however significantly reduced glucose test tolerance, suggesting that IL-12 
and ER stress CHOP in this genetic type 2 diabetic (db/db) model play a significant role in controlling glucose 
homeostasis. Previous study reported that mice lacking IL-12 and fed a high fat diet for 16 weeks showed no 
improvement in glucose tolerance test.50 This difference in results could be related to the genetic deletion of IL-12 in 
db/db in addition to the severe hyperglycemia in db/db mice (550 mg/dL of blood glucose) compared to moderate 
hyperglycemia (300 mg/dL of blood glucose) induced by high fat diet.

Interestingly, our data showed that the microvascular endothelial function was significantly improved in db−/db−IL 

−12-/- compared to db−/db− mice. These data provide evidence that increases in IL-12 in type 2 diabetes causes 
microvascular endothelial dysfunction. At this stage, we do not know whether the effect of IL-12 on microvascular 

Figure 2 Mesenteric resistance arteries reactivity showing (A) endothelium-independent relaxation in response to sodium nitroprusside (SNP). (B) endothelium-dependent 
relaxation in response to acetylcholine (ACh). (C) contractility in response to sympathetic stimulation by phenylephrine (PE) in C57/Bl6, IL-12−/−, CHOP−/−, db−/db−, db−/ 
db−IL−12-/-, and db−/db-chop-/- mice. Data are expressed as mean ± SEM. Two-way ANOVA was used for comparison between the groups followed by Tukey’s post-hoc test. 
*p<0.05 for db−/db− vs C57/Bl6, IL-12−/−, CHOP−/−, db−/db−IL−12-/-, and db−/db-chop-/- mice.
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endothelial dysfunction is a direct effect on endothelial cells or through immune cells infiltrated into microvessels wall 
that release factors and compromise endothelial cell function. It is well known that immune cells, such as macrophages 
and dendritic cells release IL-12 and respond to IL-12 by releasing a variety of factors.51 Moreover, type 2 diabetes is 
associated with activated macrophages and dendritic cells.52 Therefore, it is possible that in type 2 diabetes, macrophages 
and dendritic cells increase the production and release of IL-12, which in turn acts on macrophages and dendritic cells 
leading to vascular endothelial dysfunction. Further studies are required to confirm this hypothesis.

In the present study, we examined the mechanism that triggers ER stress and oxidative stress in type 2 diabetes. Data 
showed that increased IL-12 augmented ER stress CHOP and BIP in microvessels, together with elevating oxidative 
stress markers. Importantly, disruption of IL-12 protects against the induction of ER and oxidative stress, suggesting that 
IL-12 is an upstream mechanism that dictates the regulation of the ER stress and oxidative stress in type 2 diabetes. Our 
data are supported by the fact that disrupting the ER stress CHOP in db/db mice significantly improved microvascular 
endothelial function. Our findings are supported by previous studies showing that deletion of ER stress CHOP alleviates 
ER stress, corrects hepatic steatosis, beta cell viability, and participates in islet amyloid polypeptide-induced beta cell 
apoptosis.53–55 Prospectively, future research should determine how IL-12 is increased in type 2 diabetes and what are the 
cellular and molecular targets that compromise the cardiovascular system in type 2 diabetes.

Figure 3 Western blot analysis of survival markers (A) Phosphorylated and total AMPK. (B) Phosphorylated and total eNOS. (C) Phosphorylated and total Akt. β-actin was 
used as a loading control. Data are expressed as % compared to control. One way ANOVA was used for comparison between the groups followed by Tukey’s post-hoc test. 
*p<0.05 for db−/db− vs C57/Bl6, IL-12−/−, CHOP−/−, db−/db−IL−12-/-, and db−/db-chop-/- mice.
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Figure 4 Western blot analysis of ER markers (A) CHOP. (B) BIP. β-actin was used as a loading control. Data are expressed as % compared to control. One way ANOVA 
was used for comparison between the groups followed by Tukey’s post-hoc test. *p<0.05 for db−/db− vs C57/Bl6, IL-12−/−, CHOP−/−, db−/db−IL−12-/-, and db−/db-chop-/- mice.

Figure 5 (A) NADPH oxidase activity with and without incubation with L-NAME and Apocynin (APO) in mesenteric resistance arteries from C57/Bl6, IL-12−/−, CHOP−/−, 
db−/db−, db−/db−IL−12-/-, and db−/db-chop-/- mice. Data were normalized to protein content and are expressed as % compared to control. One way ANOVA was used for 
comparison between the groups followed by Tukey’s post-hoc test. *p<0.05 for db−/db− vs C57/Bl6, IL-12−/−, CHOP−/−, db−/db−IL−12-/-, and db−/db-chop-/- mice. Western blot 
analysis of oxidative stress markers (B) Nox 4. (C) Nox 2. β-actin was used as a loading control. Data are expressed as % compared to control. One way ANOVA was used 
for comparison between the groups followed by Tukey’s post-hoc test. *p<0.05 for db−/db− vs C57/Bl6, IL-12−/−, CHOP−/−, db−/db−IL−12-/-, and db−/db-chop-/- mice.
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Limitation
The limitation of this study is the sole use of the db−/db− genetic model mouse. This model has a mutation in the gene 
encoding the leptin receptor, causing obesity, insulin resistance, and T2D. However, human diabetes is more complicated 
with several interplaying factors, including obesity, bad dietary habits, and sedentary lifestyle. Therefore, further 
evaluation of the role of IL-12 signaling in other animal models as diet-induced diabetes is of relevance.

Conclusion
In the present study, we determined that the increase in IL-12 is a significant mechanism responsible for microvascular 
endothelial dysfunction in type 2 diabetes. We also delineated that the ER stress and oxidative stress are mechanisms by 
which IL-12 causes vascular endothelial dysfunction in type 2 diabetes. The disruption of IL-12 in db−/db− mice 
significantly reduced ER stress and oxidative stress, which improved vascular endothelial function. Furthermore, the 
disruption of the ER stress CHOP in db−/db− mice also improved vascular endothelial function supporting the role of the 
ER stress CHOP induction in endothelial dysfunction. Our genetic approach (disrupting IL-12 and the ER stress CHOP 
in db−/db− mice) provides clear evidence that the IL-12 in type 2 diabetes causes microvascular dysfunction through the 
ER stress CHOP and oxidative stress mechanisms. Overall, the present study uncovered the importance of IL-12 cytokine 
in regulating microvascular endothelial function through a mechanism involving the ER stress CHOP and oxidative 
stress. Understanding the mechanism by which IL-12 causes microvascular endothelial dysfunction and determining 
a cause-and-effect relationship will help in the design of additional new therapeutic tools to protect from type 2 diabetes 
and its microvascular complications.
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