
## MicroRNA-212 inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting FOXAI

Huahua Tu<sup>1,\*</sup> Gang Wei<sup>2,\*</sup> Qinghe Cail Xianxiang Chen<sup>1</sup> Zequn Sun<sup>2</sup> Caitao Chengi Linfei Zhang<sup>1</sup> Yong Fengl Huadong Zhou<sup>1</sup> Bo Zhou<sup>1</sup> Tiancai Zengi

Department of Hepatobiliary Surgery, <sup>2</sup>Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, People's Republic of

\*These authors contributed equal



nicroRNA-212, hepatocellular carcinoma, proliferation, apoptosis, FOXA1

### Introduction

MicroRNA-212 (miR-212) has been considered as a novel tumor-related miRNA and is found to be significantly deregulated in human cancers. The miR-212 expression was reduced in human primary gastric cancer, 1-3 lung cancer, 4,5 colorectal cancer, 6 and acute myeloid leukemia (AML).7 Furthermore, decreased miR-212 expression was correlated with adverse clinicopathological features of cancer, aggressive tumor phenotype,<sup>6</sup> and poor prognosis of patients with malignancies.<sup>7</sup> Importantly, miR-212 has been considered as a tumor suppressive miRNA by regulating cellular processes such as proliferation and apoptosis in human cancers. Upregulation of miR-212 induced decreased growth of gastric cancer cells by targeting methyl-CpG-binding protein MeCP2.<sup>1,2</sup> Ectopic expression of miR-212 increased tumor necrosis factor-related apoptosis-inducing ligand-induced cell death in non-small-cell lung (NSCLC) cells by targeting the antiapoptotic protein PED/PEA-15 (PED).5 miR-212 was associated with the cetuximab resistance of head and neck squamous cell carcinoma.8 And the cell proliferation, migration, and invasion of ovarian cancer were found to be modulated by miR-212 through targeting heparin-binding epidermal growth factor (HBEGF).9 However, the oncogenic role of miR-212 was confirmed in other cancer types. miR-212



Correspondence: Tiancai Zeng Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, No 39 Chaoyang Middle Road, Shiyan 442000, People's Republic of China Tel +86 719 880 1652 Fax +86 719 880 1652 Email ztc\_shiyan@sina.com

was upregulated in pancreatic ductal adenocarcinoma (PDAC)<sup>10,11</sup> and oral tumors.<sup>12</sup> It was found to exert oncogenic function in PDAC by targeting protein patched homolog 1 (PTCH1) and pRb.<sup>10,11</sup> Therefore, the functional significance of miR-212 in cancer initiation and development seems to be cancer-type specific. However, the clinical significance of miR-212 and its related molecular pathways involved in the progression of hepatocellular carcinoma (HCC) remains poorly investigated.

Here, we demonstrate that reduced miR-212 expression is observed in HCC tissues. The low expression of miR-212 is correlated with poor prognostic features and reduced survival of HCC patients. Furthermore, miR-212 inhibits HCC cell proliferation and induces apoptosis in vitro. Forkhead box protein A1 (FOXA1) is identified as a functional target of miR-212. Mechanistically, our results demonstrate that miR-212 functions as a tumor suppressive miRNA by inhibiting FOXA1 in HCC.

### Materials and methods

## Clinical samples and cell lines

Eighty-six HCC samples were collected from patients including 69 males and 17 females, who underwent the resection of their primary HCC in the Department of Hepatobiliary Surgery at the People's Hospital affiliated to Hubei University of Medicine during January 2006 to December 2008, with a median follow-up time of 29.5 months. The clinicopathological data are shown in Table 1. Informed consent was obtained from all patients. No patients received preoperative chemotherapy or embolized. The study was approved by the Hubei University of Medicine, thics Committee according to the Declaration of Helsinki is revised in Tokyo 2004).

The human HCC cellanes, Hc G2 and V n7 (the Institute of Biochemistry and Cell Gology, Chinese Academy of Sciences, Sharghai, People's Remodic of China), were cultured in company Dulbecco Modified Eagle's Medium

Table I Clinical correlation of miR-212 expression in HCC

| Clinicopathologic features | Total number of patients, n=86 | Numer of patient | P            |        |
|----------------------------|--------------------------------|------------------|--------------|--------|
|                            |                                | Low n R-212      | High miR-212 |        |
| Age (years)                |                                |                  |              |        |
| <50                        | 27                             |                  | 13           | 0.816  |
| ≥50                        | 59                             | 29               | 30           |        |
| Sex                        |                                |                  |              |        |
| Male                       | 69                             | \$               | 33           | 0.417  |
| Female                     | 17                             |                  | 10           |        |
| HBV                        |                                |                  |              |        |
| Absent                     | 30                             | 17               | 13           | 0.365  |
| Present                    | 56                             | 26               | 30           |        |
| Serum AFP level (ng/mL)    |                                |                  |              |        |
| <400                       | 34                             | H                | 23           | 0.008* |
| ≥400                       | 52                             | 32               | 20           |        |
| Tumor size (cm)            |                                |                  |              |        |
| <5                         |                                | 9                | 21           | 0.007* |
| ≥5                         | 56                             | 34               | 22           |        |
| Number of tumor            |                                |                  |              |        |
| 1                          |                                | 31               | 35           | 0.307  |
| ≥2                         | 20                             | 12               | 8            |        |
| Cirrhosis                  |                                |                  |              |        |
| Absent                     | 37                             | 20               | 17           | 0.514  |
| Present                    | 49                             | 23               | 26           |        |
| Venous infiltration        |                                |                  |              |        |
| Absent                     | 42                             | 19               | 23           | 0.388  |
| Present                    | 44                             | 24               | 20           |        |
| Edmondson-Steiner grading  |                                |                  |              |        |
| I+II                       | 49                             | 19               | 30           | 0.017* |
| III+IV                     | 37                             | 24               | 13           |        |
| TNM tumor stage            |                                |                  |              |        |
| I+II                       | 61                             | 25               | 36           | 0.009* |
| III+IV                     | 25                             | 18               | 7            |        |

Note: \*Statistically significant.

Abbreviations: AFP, alpha fetoprotein; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; miR-212, microRNA 212; TNM, tumor-node-metastasis.

Dovepress The role of miR-212 in HCC

(DMEM; Thermo Fisher Scientific, Waltham, MA, USA) containing 10% fetal bovine serum (Thermo Fisher Scientific) with 100 units/mL penicillin and 100 μg/mL streptomycin (Sigma-Aldrich Co., St Louis, MO, USA) in a humidified incubator containing 5% CO<sub>2</sub> at 37°C.

## Real time quantitative reverse transcription-PCR

Quantitative polymerase chain reaction (PCR) primer against mature miRNA hsa-miR-212-3p (HmiRQP0319) and Homo sapiens snRNA U6 quantitative PCR primer (HmiRQP9001) were purchased from GeneCopoeia (Guangzhou, People's Republic of China). The PCR amplification to quantify the miR-212 and U6 was performed using TaqMan miRNA Reverse Transcription Kit (Thermo Fisher Scientific) and TaqMan Human MicroRNA Assay Kit (Thermo Fisher Scientific). The relative expression of miR-212 was shown as fold difference relative to U6.

The following primers were used: FOXA1 sense primer 5'-AAT CAT TGC CAT CGT GTG-3' and antisense primer 5'-CGC GGC TTA AAA TCT GGT AT-3' and GAPDH sense primer 5'-CAA GCT CAT TTC CTG GTA TGA C-3' and antisense primer 5'-CAG TGA GGG TCT CTC TCT TCC T-3'. The PCR amplification to quantify the Fox 1 and GAPDH mRNA was performed using an ABI PR SM 7300 Sequence Detection System (Thermo Fight Scientific and a SYBR® Premix Ex Taq<sup>TM</sup> ii (Perfor Real time) R (Takara Bio, Shiga, Japan), as previous report 113

#### Cell transfection

miRNA vectors, including miR-12 expression vector (HmiR0269-MR04), are control vector for miR-212 (CmiR0001-MR04) miR-213, inhibitor (HmiR-AN0319-AM04), and the negative antrol for the miR-212 inhibitor (CmiR-AN0001-AM04), were pure assed from GeneCopoeia. The target a sequences for Co. Al siRNA duplex (5'-GCA CUG Co. A UAC (ICG CCU U-3') or a nonspecific duplex oligonucle rate as a negative control were synthesized using Sangolo Biotech (Shanghai) Co., Ltd. (Shanghai, People's Republic of China). Cells were transfected with the vectors mentioned above using Lipofectamine 2000, according to the manufacturer's instructions (Thermo Fisher Scientific).

### Cell proliferation and apoptosis detection

For the proliferation assay, HCC cells were seeded into 96-well plates at 5,000 cells per well for 24 hours and assessed using a Cell Proliferation ELISA, BrdU

(5-bromodeoxyuridine) (chemiluminescent) (Hoffman-La Roche Ltd., Basel, Switzerland). Flow cytometric analysis was carried out with fluorescence activated cell sorting Calibur (Becton Dickinson, San Jose, CA, USA) and Cell Quest software (Becton Dickinson). An Annexin-V-FLUOS Staining Kit (Hoffman-La Roche Ltd.,) was used to analyze the level of apoptosis, following the manufacturer's instruction. The percentage of apoptotic cells were calculated using the software in the flow cytometry.

#### Western blot

The following primary anti-odies whe used in the immunoblotting assays: FOx 1 (#3333, Initomics Inc., Burlingame, CA, USA) and GAP, II (G814) United States Biological, Salem, J.A., USA). However, the peroxidase-conjugated seconds a anti-odies (Bio-Rad, Hercules, CA, USA) were used at a 1x 400–1:5 400 dilution and detected using a Warran Blotting Repeated Reagent (sc-2048; Santa Cruz Biotechnology Inc., Dallas, TX, USA), as described in present study. We tern blot results were analyzed using mageJ software (National Institutes of Health, Bethesda, 4D, USA).

### Lucase reporter assay

3'-untranslated region (UTR) sequence of FOXA1 predicted to interact with miR-212 or a mutated sequence within the predicted target sites was synthesized and inserted into the XbaI and FseI sites of the pGL3 control vector (Promega Corporation, Fitchburg, WI, USA). These constructs were named as wild-type (wt) FOXA1-3'UTR or mutant (mt) FOXA1-3'UTR, respectively. For the reporter assay, HepG2 cells were seeded into 24-well plates and transfected with the above constructs and miR-212 expression vector, miR-212 inhibitor, control vector, or negative control. After 48 hours, the cells were harvested, and Renilla luciferase activity was measured using the Dual-Luciferase® Reporter Assay System (Promega Corporation), according to the manufacturer's instructions. Results were obtained from three independent experiments performed in duplicate.

## Immunohistochemical staining

Immunohistochemistry was performed on paraformaldehyde-fixed paraffin sections. FOXA1 (#3333, Epitomics Inc.) antibody was used in immunohistochemistry with streptavidin peroxidase conjugated (SP-IHC) method, and it was performed as previously reported. The percentage of positive cells was graded as per the following criteria: 0, <10%; 1, 10%-30%; 2, 31%-50%; 3, >50%.

OncoTargets and Therapy 2015:8

ubmit your manuscript | www.dovepress.com

2229

### Statistical analysis

Results are expressed as mean  $\pm$  SEM. Significance was established, with the SPSS statistical package for Windows Version 13 (SPSS, Chicago, IL, USA) and GraphPad Prism 5 software (GraphPad Software, Inc, San Diego, CA, USA), using a Pearson chi-squared test, the multivariant Cox regression analysis, a Kaplan–Meier plot, a log-rank test, a Spearman's rank correlation coefficient, or a two-tailed Student's *t*-test when appropriate. Difference were considered significant when P < 0.05.

#### **Results**

## Clinical significance of miR-212 in HCC cases

Initially, we tested the miR-212 expression in a retrospective cohort of 86 HCC tissues and matched adjacent nontumor tissues using quantitative reverse transcription (qRT)-PCR. The miR-212 expression in HCC tissues was significantly lower than that in matched adjacent nontumor liver tissues (P<0.05, Figure 1A). The expression level of miR-212 was considered either low (n=43) or high (n=43) according to the cutoff value, which was defined as the median expression

level of miR-212 in this cohort. As shown in Table 1, miR-212 was expressed at prominently lower levels in HCC patients with high AFP level (P=0.008), large tumor size (P=0.007), high Edmondson-Steiner grading (P=0.017), and advanced tumor-node-metastasis tumor stage (P=0.009). Further, 86 HCC patients with survival information were analyzed using Kaplan-Meier estimation. Low expression of miR-212 was indeed associated with reduced overall survival and disease-free survival of HCC patients (P<0.05, respectively, Figure 1B and C). Furthermore, multivariate Cox regression analysis indicated that miR 210 expression was an independent factor for predicting oth 5-yea disease-free survival of HCC path is (P=0.005)respectively, Table 2). These .ata ind. te that p ognosic of Ho potent biomarker for the

# miR-212 inhibits His cell proliferation and induces poptosis

HepG2 cells were trae duced with the miR-212 expression and control ectors, respectively. As measured by qRT-PCR, the fiR-212 expression was significantly upregulated by mil 212 expression vector (P<0.05, Figure 2A). BrdU

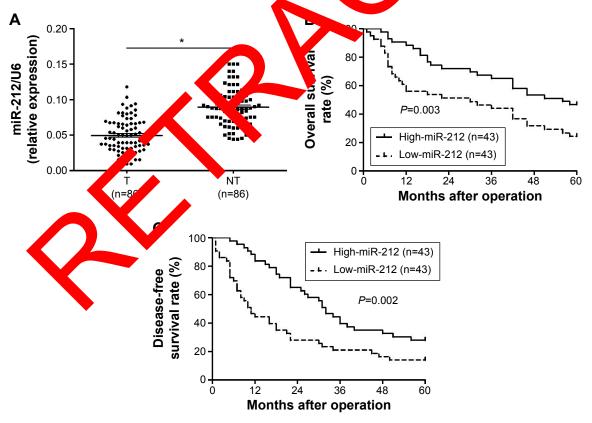



Figure 1 The expression of miR-212 and its prognostic significance in HCC.

Notes: (A) Comparing differences in the expression levels of miR-212 between HCC (T) and matched adjacent nontumor tissues (NT), \*P<0.05. (B and C) According to the level of miR-212 expression, Kaplan–Meier 5-year overall and disease-free survival curves of HCC patients showed that low expression of miR-212 was correlated with poor prognosis. The median expression value obtained for miR-212 of the 86 HCC samples detected by qRT-PCR was chosen as the cut off value.

Abbreviations: HCC, hepatocellular carcinoma; miR-212, microRNA 212; qRT-PCR, quantitative reverse transcription-polymerase chain reaction.

Dovepress The role of miR-212 in HCC

Table 2 Multivariate Cox regression analysis of 5-year overall and disease-free survival of 86 HCC patients

| Variables                 | Overall survival |             |        | Disease-free survival |             |        |
|---------------------------|------------------|-------------|--------|-----------------------|-------------|--------|
|                           | HR               | 95% CI      | P      | HR                    | 95% CI      | P      |
| Serum AFP level           | 1.701            | 0.666-4.342 | 0.267  | 1.064                 | 0.209-5.421 | 0.940  |
| Tumor size                | 1.054            | 0.999-1.112 | 0.056  | 1.067                 | 0.504-2.260 | 0.865  |
| Edmondson-Steiner grading | 2.230            | 0.937-5.308 | 0.070  | 1.971                 | 0.827-4.696 | 0.126  |
| TNM tumor stage           | 1.023            | 1.002-1.044 | 0.032* | 1.055                 | 1.019-1.092 | 0.003* |
| miR-212 expression        | 2.148            | 1.255-3.677 | 0.005* | 3.547                 | 1.644-7.653 | 0.001* |

Note: \*Statistically significant.

Abbreviations: AFP, alpha fetoprotein; Cl, confidence interval; HCC, hepatocellular carcinoma; HR, hazard ratio; miR-212, microRNA 212; TNM, tumor-node-metastasis.

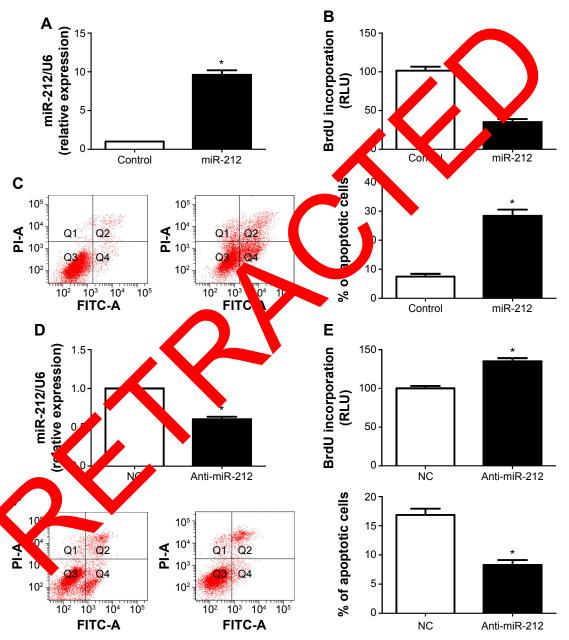



Figure 2 miR-212 reduces cell proliferation and induces apoptosis in HCC cells.

Notes: (A) HepG2 cells that were transfected with miR-control (control) and miR-212, respectively, were subjected to qRT-PCR for miR-212 expression. n=3 independent experiments, \*P<0.05. (B) Cell proliferation as measured by BrdU incorporation assays was inhibited by upregulation of miR-212 in HepG2 cells as compared with control cells. n=3 repeats with similar results, \*P<0.05. (C) miR-212 overexpressing HepG2 cells conferred a larger subgroup of apoptotic cells as compared with control cells. n=3 repeats with similar results, \*P<0.05. (D) Huh7 cells that were transfected with negative control (NC) and miR-212 inhibitor (anti-miR-212), respectively, were subjected to qRT-PCR for miR-212 expression. n=3 independent experiments, \*P<0.05. (E and F) Downregulation of miR-212 promoted cell proliferation and inhibited apoptosis in Huh7 cells. n=3 repeats with similar results, \*P<0.05.

**Abbreviations:** BrdU, 5-bromodeoxyuridine; FITC, fluorescein isothiocyanate; HCC, hepatocellular carcinoma; miR-212, microRNA 212; qRT-PCR, quantitative reverse transcription-polymerase chain reaction; RLU, relative light unit; Pl, propidium iodide.

incorporation assays were performed to test the effect of altering miR-212 levels on HCC cell proliferation. We found that upregulation of miR-212 significantly inhibited HepG2 cell proliferation (P<0.05, Figure 2B). Furthermore, as determined by flow cytometry assays, the percentage of apoptotic HepG2 cells significantly elevated after upregulation of miR-212 (P<0.05, Figure 2C). Next, downregulation of miR-212 in Huh7 cells was performed and was confirmed using qRT-PCR (P<0.05, Figure 2D). As expected, downregulation of miR-212 obviously promoted HCC cell proliferation and inhibited apoptosis (P<0.05, respectively, Figure 2E and F). Thus, miR-212 inhibits cell proliferation and induces apoptosis in HCC cells.

## FOXA1 is identified as a functional target of miR-212

To disclose the molecular mechanisms by which miR-212 inhibits HCC tumor growth, predicted target genes of miR-212 were retrieved and analyzed using publicly available databases (TargetScan 6.2 and MiRanda). FOXA1, an important transcription factor in liver development and cancer progression, <sup>16</sup> was predicted as one of the targets

of miR-212. As measured by qRT-PCR and Western blot, both the levels of FOXA1 mRNA and protein were significantly reduced by upregulation of miR-212 in HepG2 cells (P<0.05, respectively, Figure 3A and B). Next, we investigated whether the miR-212 directly interacted with the 3'-UTR of FOXA1 mRNA using a Dual-Luciferase® Reporter Assay System. As expected, miR-212 significantly inhibited the luciferase activity of FOXA1 containing a wild-type (wt) 3'-UTR but did not suppress the activity of FOXA1 with a mutant (mt) 3'-UTR (P<0.05, Figure 3C and D). When anti-miR-212 was traped, an increase in luciferase activity of wt FOXA -UTR W observed. However, with the mt FOXA13'-L R construct. no relative increase in activi P < 0. Figure C and D). Thus, our data strongly ggest that FO. s a target of miR-212 in HCC.

## miR-212 in thits cell south by targeting FOXA1 m HC cells

The experion of FO A1 was further detected using immenohistochemistry in the previous cohort of 86 HCC specimens. FOX I was demonstrated to be significantly

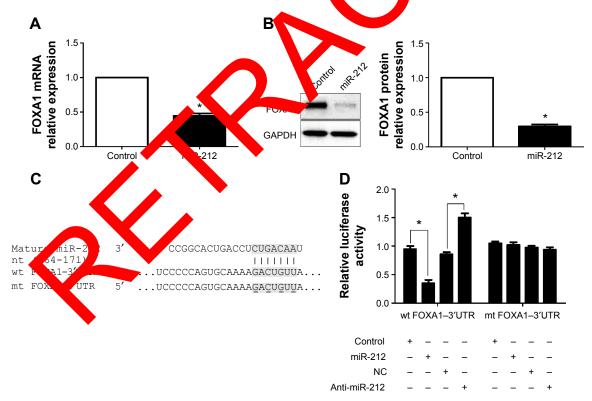



Figure 3 FOXA1 is identified as a functional target of miR-212 in HCC.

**Notes:** (**A**) qRT-PCR and (**B**) Western blot analysis of FOXA1 expression in HepG2 cells with miR-212 or control vectors transfection. n=3 independent experiments, \*P<0.05. (**C**) miR-212 and its putative binding sequence in the 3'-UTR of FOXA1. The mutant miR-212 binding site was generated in the complementary site for the seed region of miR-212 (wt, wild type; mt, mutant type). (**D**) miR-212 significantly suppressed the luciferase activity that carried wt but not mt 3'-UTR of FOXA1. Anti-miR-212 led to a noticeable increase in luciferase activity of wt 3'-UTR of FOXA1. n=3 repeats with similar results, \*P<0.05.

**Abbreviations:** FOXA1, forkhead box protein A1; HCC, hepatocellular carcinoma; miR-212, microRNA 212; qRT-PCR, quantitative reverse transcription-polymerase chain reaction; UTR, untranslated region; NC, negative control; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

Dovepress The role of miR-212 in HCC

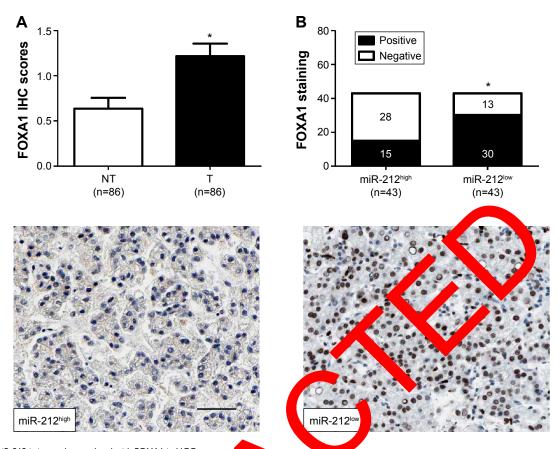



Figure 4 miR-212 is inversely correlated with FOXA1 in HCC.

Notes: (A) Comparing differences in the expression levels of FOXA1 by year 1. (T) and matched adjacent nontumor tissues (NT), \*P<0.05. (B) Representative immunostaining showed negative expression of FOXA1 in miR-212 high-expression (Course and positive expression of FOXA1 in miR-212 low-expressing tumor. A significant inverse correlation between miR-212 and FOXA1 consession was beyond in HCC tissues. Scale bar: 50 μm, \*P<0.05.

Abbreviations: FOXA1, forkhead box protein A1; HCC, to atock par carcilloga; IHC, immunohistochemistry; miR-212, microRNA 212.

higher in HCC tissues as compare with that noncancerous tissues (P < 0.05, Figure 4 e immuno. ctivity of FOXA1 was considered either negative (score 0) or positive (scores 1–3). In these ses, the express of FOXA1 was detected in 69.8% 50/43) the HCC samples with low expression of miR-2 Aereas of 34.9% (15/43) of the ith his expression of miR-212 showed a gnal (P 55, Figure 4B). Furthermore, ysis indicated that miR-212 was inversely contacted with FOXA1 expression in HCC tissues (r=-0.562, P<-0.01).

Next, HepG2 cells that were transfected with scrambled siRNA or FOXA1 siRNA were subjected to Western blot for FOXA1. As assessed by immunoblotting, FOXA1 was knocked down by a specific siRNA (P<0.05, Figure 5A). Furthermore, FOXA1 knockdown inhibited cell proliferation and induces apoptosis in HepG2 cells (P<0.05, respectively, Figure 5B and C). In sum, these data indicate that miR-212 suppresses HCC cell proliferation and induces apoptosis by inhibiting FOXA1.

### **Discussion**

Increasing studies have reported that miRNAs regulates carcinogenesis-related gene expression, indicating a new insight in the initiation and progression of HCC. 17,18 Decreased miR-212 expression has been confirmed in various types of cancers, including gastric cancer, 1-3 lung cancer, 4,5 colorectal cancer,6 and AML.7 Accordingly, our study demonstrated that the miR-212 expression in HCC tissues was significantly downregulated as compared with that in adjacent nontumor tissues. Furthermore, our results showed that reduced expression of miR-212 was associated with poor prognostic features of HCC. Importantly, miR-212 was identified as an independent prognostic marker for predicting 5-year overall survival and disease-free survival of HCC patients. These results indicate that miR-212 plays an important role in the progression of HCC, and may serve as a promising prognostic biomarker for HCC patients.

The prognostic significance of miR-212 expression in human malignancies stimulates scientists to dig out its biological functions and underlying mechanisms. miR-212 has

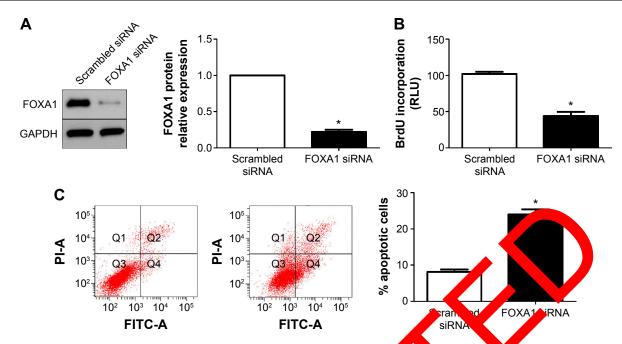



Figure 5 FOXA1 knockdown reduces cell proliferation and induces apoptosis in HCC cells. Notes: (A) HepG2 cells that were transfected with scrambled siRNA and FOXAI siRNA, respectively, were su ted to Western blot for FOXA1 expression. n=3 independent experiments, \*P<0.05. (B) Cell proliferation as measured by BrdU incorporation assays was inhibited by F I knockdown in HepG2 cells as compared with control cells. n=3 repeats with similar results, \*P<0.05. (C) FOXAI downregulating HepG2 cells. ed a larger subgi of apoptotic cells as compared with control cells. n=3 repeats with similar results, \*P<0.05.

Abbreviations: FOXA1, forkhead box protein A1; HCC, hepatocellular carcinoma; BrdU, ; FITC, fluorescein isothiocyanate; PI, propidium iodide; promodeoxyuri GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

been found to inhibit the growth of gastric cancer cells targeting MeCP2 and promote the cell death of non-small-cell lung cells by regulating PED.<sup>1,5</sup> However, in PDAC was found to promote cell growth and invasig ting hedgehog signaling pathway receptor partied-1.1 studies suggest that miR-212 function as a tu suppreswith tumo sive or oncogenic miRNA in accord this study, we evaluated the biological functions of mix-212 through gain- and loss-of-function experiments. Our results demonstrated that miR-2 had are inhibitory exfect on HCC cell growth by suppresing cell proliferation and inducing s effect of miR-212 on HCC apoptosis. Due to se obv further investigated its cells prolifera on and poptos underlying echani in HCC. Deregulation of miRNAs has been consi d as a critical factor in the initiation and by serving as a negative regulator of progression of H oncogenic protein.<sup>19,</sup> The expression of FOXA1 was found to be upregulated in liver cancer cells<sup>21</sup> and promoted the expression of Yes-associated protein and alpha fetoprotein in HCC, <sup>16</sup> suggesting its oncogenic role in HCC. Furthermore, the expression of FOXA1 was found to be a downstream mediator of lncRNA MT1DP, which inhibited cell proliferation and transformative phenotype of liver cancer cells. 16 In this study, we found that miR-212 significantly reduced the levels of both FOXA1 mRNA and protein in HepG2 cells.

dated FOXA1 as a direct functional target of in HCC. Furthermore, the expression of FOXA1 in CC tissues was obviously higher as compared with that in patched normal nontumor tissues. Otherwise, a significant iverse correlation between miR-212 and FOXA1 expression was observed in HCC tissues. Importantly, FOXA1 knockdown showed the same regulatory effect as upregulation of miR-212 in HepG2 cells with decreased cell proliferation and increased apoptosis. Altogether, our results suggest that FOXA1 is a downstream target of miR-212, and miR-212 may suppress cell proliferation and induce apoptosis by targeting FOXA1 in HCC. Moreover, the study by Yu et al suggested that Yes-associated protein was a downstream target of FOXA1.16 It is interesting to mention here that another study by Liang et al showed that the H3K4 demethylase retinoblastoma binding protein 2 was a downstream target of miR-212 in HCC cells and miR-212 inhibited HCC cell proliferation and induced cellular senescence by modulating the expression of retinoblastoma binding protein 2.22 This suggests that FOXA1 is not the only target of miR-212 in HCC and miR-212 can exert its tumor suppressive role by modulating various downstream pathways in HCC cells.

In conclusion, we find that miR-212 is downregulated in HCC tissues. The low expression of miR-212 is correlated with poor prognostic features and reduced survival of HCC

patients. We demonstrate that miR-212 may reduce HCC cell growth by suppressing FOXA1 expression. In sum, we consider that miR-212 may potentially act as a clinical biomarker, and may also be a therapeutic target, in HCC.

### **Acknowledgment**

This study was supported by Educational Commission of Hubei Province (grant D20082405).

#### **Disclosure**

The authors report no conflicts of interest in this work.

### References

- Wada R, Akiyama Y, Hashimoto Y, Fukamachi H, Yuasa Y. miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. *Int J Cancer*. 2010;127(5):1106–1114.
- Xu L, Wang F, Xu XF, et al. Down-regulation of miR-212 expression by DNA hypermethylation in human gastric cancer cells. *Med Oncol*. 2011;28(Suppl 1):S189–S196.
- Wu WY, Xue XY, Chen ZJ, et al. Potentially predictive microRNAs of gastric cancer with metastasis to lymph node. World J Gastroenterol. 2011;17(31):3645–3651.
- 4. Incoronato M, Urso L, Portela A, et al. Epigenetic regulation of miR-212 expression in lung cancer. *PLoS One*. 2011;6(11):e27722.
- Incoronato M, Garofalo M, Urso L, et al. miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-smallcell lung cancer by targeting the antiapoptotic protein PED. *Cancer Res.* 2010;70(9):3638–3646.
- Meng X, Wu J, Pan C, et al. Genetic and epigenetic down-regult on emicroRNA-212 promotes colorectal tumor metastasis via dysregultion of MnSOD. *Gastroenterology*. 2013;145(2):426–436—421–e426.
- 7. Sun SM, Rockova V, Bullinger L, et al. The proceeding levance miR-212 expression with survival in cytogene cally and lolecular heterogeneous AML. *Leukemia*. 2013;27(1): 2–106.
- 8. Hatakeyama H, Cheng H, Wirth P, et al. 2 gular ve deparin-binenig EGF-like growth factor by miR-212 at acquired continuab-resistance in head and neck squamous cell at anoma. *PLoS* 12, 2010;5(9): e12702.

- Wei LQ, Liang HT, Qin DC, Jin HF, Zhao Y, She MC. MiR-212 exerts suppressive effect on SKOV3 ovarian cancer cells through targeting HBEGF. *Tumour Biol*. 2014;35(12):12427–12434.
- Park JK, Henry JC, Jiang J, et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. *Biochem Biophys Res Commun.* 2011;406(4):518–523.
- Ma C, Nong K, Wu B, et al. miR-212 promotes pancreatic cancer cell growth and invasion by targeting the hedgehog signaling pathway receptor patched-1. J Exp Clin Cancer Res. 2014;33:54.
- Scapoli L, Palmieri A, Lo Muzio L, et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. *Int J Immunopathol Pharmacol*. 2010;23(4):1229–1234.
- 13. Huang Y, Guo W, Kan H. TPX2 is a prognostic marker and contributes to growth and metastasis of human hepatocellular carcinoma. *Int J Mol Sci.* 2014;15(10):18148–18161.
- Liu C, Billadeau DD, Abdelhakir AI, et a. OGAP1 suppresses TbetaRII-mediated myofibroblar activation an metastatic growth in liver. *J Clin Invest*. 2013;123(c) 138–1156.
- Tu K, Zheng X, Zan X, E. S, Yat X, Liu Q. Evaluation of Fbxw7 expression and its correction with the pression of c-Myc, cyclin E and p53 in human has tocellular arcinon. *Spatol Res.* 2012;42(9): 904–910.
- Yu W, Qiao Y, Jang X. Tumor surplessor long non-coding RNA, MT1DP is gatively regarded by AP and Runx2 to inhibit FoxA1 in liver on cells. *Cell Sig.* Vo. 14;26(12):2961–2968.
- 17. Kan Guo Wayuang Y, Liu D MicroRNA-520 g induces epithelial-mesenchymal transion and promotes metastasis of hepatocellular arc. oma by targeth. SMAD7. FEBS Lett. 2015;589(1):102–109.
- . Zhu Z, Zhang X, Wang G, Zheng H. Role of microRNAs in hepatocellular carcing a. *Hepat Mon*. 2014;14(8):e18672.
- Liu Z, Tu I Liu Q. Effects of microRNA-30a on migration, invasion and prenosis of hepatocellular carcinoma. *FEBS letters*. 2014; 89–3097.
- 20. Gramantieri L, Fornari F, Callegari E, et al. MicroRNA involvement in atocellular carcinoma. *J Cell Mol Med*. 2008;12(6A):2189–2204.
- Wang J, Park JS, Wei Y, et al. TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPalpha function. *Mol Cell*. 2013;51(2):211–225.
- Liang X, Zeng J, Wang L, et al. Histone demethylase retinoblastoma binding protein 2 is overexpressed in hepatocellular carcinoma and negatively regulated by hsa-miR-212. PLoS One. 2013;8(7):e69784.

#### **OncoTargets and Therapy**

### Publish your work in this journal

OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of management programs and new therapeutic agents and protocols on

**Submit your manuscript here:** http://www.dovepress.com/oncotargets-and-therapy-journal

Dovepress

patient perspectives such as quality of life, adherence and satisfaction. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.