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Abstract: Silver nanoparticles (Ag-NPs) were synthesized into the interlamellar space of 

montmorillonite (MMT) by using the γ-irradiation technique in the absence of any reducing 

agent or heat treatment. Silver nitrate and γ-irradiation were used as the silver precursor and 

physical reducing agent in MMT as a solid support. The MMT was suspended in the aqueous 

AgNO
3
 solution, and after the absorption of silver ions, Ag+ was reduced using the γ-irradiation 

technique. The properties of Ag/MMT nanocomposites and the diameters of Ag-NPs were studied 

as a function of γ-irradiation doses. The interlamellar space limited particle growth (d-spacing 

[d
s
] = 1.24–1.42 nm); powder X-ray diffraction and transmission electron microscopy (TEM) 

measurements showed the production of face-centered cubic Ag-NPs with a mean diameter of 

about 21.57–30.63 nm. Scanning electron microscopy images indicated that there were structure 

changes between the initial MMT and Ag/MMT nanocomposites under the increased doses of 

γ-irradiation. Furthermore, energy dispersive X-ray fluorescence spectra for the MMT and Ag/

MMT nanocomposites confirmed the presence of elemental compounds in MMT and Ag-NPs. 

The results from ultraviolet-visible spectroscopy and TEM demonstrated that increasing the 

γ-irradiation dose enhanced the concentration of Ag-NPs. In addition, the particle size of the 

Ag-NPs gradually increased from 1 to 20 kGy. When the γ-irradiation dose increased from 20 to 

40 kGy, the particle diameters decreased suddenly as a result of the induced fragmentation of 

Ag-NPs. Thus, Fourier transform infrared spectroscopy suggested that the interactions between 

Ag-NPs with the surface of MMT were weak due to the presence of van der Waals interactions. 

The synthesized Ag/MMT suspension was found to be stable over a long period of time (ie, more 

than 3 months) without any sign of precipitation.

Keywords: nanocomposites, silver nanoparticles, montmorillonite, γ-irradiation, powder X-ray 

diffraction

Introduction
Recently, metal nanoparticles (NPs) have stimulated worldwide investigation 

because of their remarkable physical and chemical properties relative to their bulk 

solid counterparts, due to their large proportion of high-energy surface atoms.1 As a 

 consequence, the production of NPs has attracted an enormous amount of attention in 

recent years. Silver NPs (Ag-NPs) have a number of superior properties and are widely 

used in different fields such as in medicine because of their antibacterial properties, 

in electronics as thick-film conductor conductivities, in surface-enhanced resonance 

Raman scattering, in optical biosensors, and in oxidative catalysis, photocatalysis, 

and chemical analysis.2–9 In addition, nanosized silver colloid ink has recently been 

used for inkjet printing.10 Recently, the investigation of the attractive antibacterial 

activities of Ag-NPs has reclaimed importance due to an increase of bacterial resistance 
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to  antibiotics caused by their overuse. Presently,  Ag-NPs 

 displaying antibacterial activity are being synthesized. Anti-

bacterial activity of the silver-containing materials can be 

used, for example, in medicine to reduce infections as well 

as to prevent bacterial colonization on prostheses, dental 

materials, vascular grafts, catheters, human skin, and stain-

less steel materials.11 The Ag-NPs are normally short lived 

in aqueous solution as they agglomerate quickly. A sequence 

of elementary works by Henglein disclosed the reaction of 

colloidal silver in aqueous solutions.12–14 Numerous methods 

have been utilized for the synthesis and stabilization of Ag-

NPs. Problems with the stability of the produced colloidal 

Ag-NPs dispersions have been solved by the addition of poly-

mers and surfactants.15,16 Such complications do not occur if 

the NPs are deposited on a stable inert carrier. Ag-NPs have 

been deposited on glass,17,18 alumina,19 activated carbon,20,21 

glass fibers,22 titanium nitride layers,23 inorganic solid sup-

ports, and phyllosilicate clay as solid supports.24–27 Thus, the 

preparation of Ag-NPs on solid supports such as phyllosili-

cate clays is a suitable way to prepare practically applicable 

supported particles as well as to control the particle size.15,24 

Phyllosilicate clays have an excellent swelling and adsorption 

ability, which are especially interesting for the impregnation 

of catalytically active nanosized metals in the interlamellar 

space of clay.28,29 Therefore, exploring the possibility of using 

clays in developing metal supported catalysts is one of the 

main objectives of further efforts on clay investigation. As 

lamellar clay, montmorillonite (MMT) has intercalation, 

swelling, and ion exchange properties. In particular, its inter-

layer space has been used for the synthesis of material and 

biomaterial NPs as the support for anchoring transition metal 

complex catalysts and as adsorbents for cationic ions.30,31 In 

addition, various production methods have been described for 

the synthesis of Ag-NP colloids using silver salt as the initial 

materials; for instance, chemical reduction,32–35 aerosol spray-

ing technique,36 reverse micelle,37 lamellar liquid crystal,38 

microemulsion,39 micelle,40 capping agent method,41 and 

photochemical reduction (ie, microwave,42 electron beam,43 

ultraviolet (UV)-irradiation,44,45 and γ-irradiation).46–48 Of 

these techniques, the use of γ-irradiation in the prepara-

tion of Ag-NPs has been demonstrated to have a number of 

highly advantageous properties compared with conventional 

 chemical and photochemical methods, namely:

•	 The controlled reduction of silver ions can be carried out 

devoid of using surplus reducing agents or producing any 

undesired oxidation products from the reductants.

•	 The method provides Ag-NPs in completely reduced, 

extremely pure, and very stable states.

•	 The reducing agent is generated uniformly in the 

solution.

•	 The process is uncomplicated and uncontaminated.

•	 The γ-ray irradiation is harmless.

•	 No undesirable impurities similar to silver oxide are 

introduced.

Hence, based on our previous works, Ag-NPs in the 

interlayer space of MMT were synthesized by utilizing three 

different methods, ie, the chemical and physical reduction 

techniques by using β-D-glucose, NaBH
4
, and the UV-

irradiation method as the reducing agents.15,24,32,44,45 Here, 

this article reports a simple γ-irradiation reduction method 

to synthesize the Ag-NPs in the interlayer space of MMT. 

This novel method in comparison to our other works, con-

sist of controlled reduction without any undesired oxidation 

 products, extremely stable colloids, very pure silver ions 

reduced to NPs in the high γ-irradiation doses. The Ag-NPs 

were intercalated into the lamellar space of phyllosilicate 

clay (MMT) utilizing γ-irradiation reduction in the absence 

of heat treatment or chemical reducing agents. Instead, MMT 

was used as the protective colloid, preventing the Ag-NPs 

from aggregation. Subsequently, it was found that MMT also 

assisted in the γ-reduction process of the Ag-NPs. At differ-

ent γ-irradiation doses, both  reduction and fragmentation 

of large Ag-NPs were found to have occurred simultane-

ously, and the particle size of the Ag-NPs decreased at high 

irradiation doses. Using this method, the researchers were 

able to obtain Ag-NPs of different sizes by controlling the 

γ-irradiation dose.

Materials and methods
Materials
All reagents in this work were of analytical grade and used 

as received without further purification. AgNO
3
 (99.98%) 

was used as the silver precursor, which was obtained from 

Merck (Darmstadt, Germany). The MMT powder, applied 

as a solid support for Ag-NPs, was purchased as Kunipia-F 

(Kunimine Kogyo Co, Yamagata, Japan). All these aqueous 

solutions were used with double distilled water.

Synthesis of Ag/MMT nanocomposites  
by using γ-irradiation
For the synthesis of Ag/MMT nanocomposites, 5.0 g of 

MMT was dispersed in 400 mL double distilled water and 

 vigorously stirred for 1 hour. One hundred milliliters of 

 aqueous solution of AgNO
3
 (0.2 mol/L) was added to the 

MMT aqueous suspension, and the mixture was further stirred 

for 1 hour. The mixture was then divided into five equal parts, 
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purged by N
2
 for 30 minutes, and sealed. The  suspension, 

which contained AgNO
3
/MMT (A0), was  irradiated under 

γ-irradiation source 60Co with absorbed doses of 1, 5, 10, 

20, and 40 kGy (A1–A5) at room temperature (ie, the dose 

rate at 67 Gy/min was calibrated using the Fricke dosimetry 

standard method). The produced Ag/MMT nanocomposite 

suspensions were brown and dark brown, depending on the 

absorbed doses. The suspensions of the Ag/MMT nanocom-

posites were then retrieved by centrifugation at the speed of 

15,000 rpm for 20 minutes, washed with double distilled 

water twice to remove residue AgNO
3
, and dried overnight 

under vacuum.

characterization methods  
and instruments
The prepared Ag/MMT nanocomposites were characterized 

by using powder X-ray diffraction (PXRD),  transmission 

 electron microscopy (TEM), scanning electron microscopy 

(SEM), energy dispersive X-ray fluorescence (EDXRF) 

spectrometry, UV-visible spectroscopy, and Fourier transform 

infrared (FT-IR) spectroscopy. The changes in the  interlamellar 

spacing of MMT and Ag/MMT nanocomposites were also 

studied using PXRD in the angle range of 2°	, 2θ , 12°. 

In addition, the interlamellar space was  calculated based on 

the PXRD peak positions using Bragg’s equation. A wave-

length (λ) of 0.15418 nm was used for these measurements. 

The PXRD patterns were recorded at a scan speed of 2° 

per minute. The structures of the produced Ag/MMT nano-

composites were examined using PXRD-6000 (Shimadzu, 

Kyoto, Japan). TEM observations were carried out using 

the H-7100  electron microscope (Hitachi, Tokyo, Japan), 

and the particle size distributions were determined using 

UTHSCSA Image Tool software (version 3.00; UTHSCSA 

Dental Diagnostic  Science, San Antonio, TX). The SEM was 

performed using the XL-30 instrument (Philips, Amsterdam, 

The Netherlands) to study the morphology of MMT and 

Ag/MMT nanocomposites (A1–A5). EDXRF was carried out 

on a EDX-700HS  spectrometer ( Shimadzu). The UV-visible 

spectra were recorded over the range of 300–700 nm using the 

H.UV.1650 PC UV-visible spectrophotometer (Shimadzu). The 

elemental analysis of as-synthesized  Ag-NPs was quantified 

by using an inductively coupled plasma-optical emission 

spectrophotometer (ICP-OES) model Optima 2000DV (Perki-

nElmer, Waltham, MA). The FT-IR spectra were recorded 

over the range of 400–4000 cm−1 using a Series 100 FT-IR 

1650 spectrophotometer ( PerkinElmer). After the reactions, 

the samples were centrifuged by using a high-speed  centrifuge 

machine (Avanti J25; Beckman, Brea, CA).

Results
The synthesis of Ag/MMT nanocomposites from AgNO

3
/

MMT produced by γ-irradiation reduction is depicted 

 schematically in Figure 1. During the γ-irradiation, both 

reduction and fragmentation of large Ag-NPs were found 

to have occurred simultaneously. The small Ag-NPs 

were  intercalated into the lamellar space of MMT using 

γ-irradiation reduction in the absence of chemical reduc-

ing agents or heat treatment. The color of the prepared 
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Figure 1 Schematic illustration of the synthesis of the silver nanoparticles on montmorillonite suspension by γ-irradiation doses.
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samples at different γ-irradiation doses gradually changed 

from colorless for AgNO
3
/MMT suspension (A0) to brown 

(A1, A2), and finally to dark brown (A3–A5), depending on 

the absorbed doses, indicating the formation of Ag-NPs in the 

MMT suspension (Figure 2). The comparison between the 

PXRD patterns of the MMT and Ag/MMT nanocomposites 

(A1–A5) in the small angle range of 2θ (2° , 2θ , 12°) 

indicated the formation of the intercalated Ag-NPs structure 

(Figure 3). The PXRD peaks in the wide angle range of 

2θ (30° , 2θ , 80°) ascertained that the peaks in 38.34°, 

44.41°, 64.37°, and 77.65° related to the 111, 200, 220, and 

311 crystalline structures of the face-centered cubic (fcc) syn-

thesized silver nanocrystal, respectively (Figure 4). The TEM 

images and their size distribution of Ag-NPs demonstrated 

that with the increased γ-irradiation doses, the mean diam-

eters of Ag-NPs gradually increased to 21.57, 24.75, 27.70, 

and 30.63 nm for 1, 5, 10, and 20 kGy, but then decreased 

to 28.56 nm in 40 kGy due to the large size fragmentation of 

Ag-NPs at a high dose of γ-irradiation  (Figure 5). The SEM 

images indicated that there were surface structure changes 

between the initial MMT and Ag/MMT nanocomposites 

under different doses of γ-irradiation. Moreover, with the 

increased γ-irradiation doses in the exterior morphology 

of Ag/MMT nanocomposites, large flakes of layered MMT 

changed to small flakes with increased holes in the surfaces 

of Ag/MMT layers. Additionally, the EDXRF spectra for the 

MMT and Ag/MMT nanocomposites (with 1, 10, 20, and 

40 kGy, respectively) confirmed the presence of elemental 

compounds in MMT and Ag-NPs without any other impurity 

peaks (Figure 6). The formation of Ag-NPs was also fol-

lowed by the measurement of the surface plasmon resonance 

(SPR) bands of the AgNO
3
/MMT and Ag/MMT nanocom-

posite suspensions at the wavelengths ranging from 300 to 

700 nm (Figure 7). The chemical characterizations of the 

as-synthesized Ag-NPs in MMT were done using the ICP-

OES analyzer. The results from the ICP-OES analysis showed 

that the formation of Ag-NPs increased at higher γ-irradiation 

doses (Table 1). Furthermore, the FT-IR spectra (Figure 8) 

showed the existence of van der Waals interactions between 

the silicate layers and Ag-NPs in the Ag/MMT nanocom-

posites. The stability of the synthesized MMT suspensions 

containing Ag-NPs was analyzed by storing the samples at 

room temperature (∼25°C) for more than 3 months. The 

absorbance at 360–415 nm was monitored at a period of 

24 hours to check for agglomeration. No significant change 

in the absorbance was noticed during storage, representing a 

good stability of Ag-NPs in the MMT suspension.
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Figure 4 Powder X-ray diffraction patterns of montmorillonite (MMT) and Ag/MMT 
nanocomposites at the different γ-irradiation doses: 1, 5, 10, 20, and 40 kgy  
(A1–A5).
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Figure 2 Photograph of AgNO3/MMT (A0) and Ag/MMT nanocomposite 
suspensions at different γ-irradiation doses: 1, 5, 10, 20, and 40 kgy (A1–A5). 
Abbreviation: MMT, montmorillonite.
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-Ray • • +

2 3 2 2 2
,H O +H +OH +H O +H +H O +γ −→ aqe  (1)

AgNO
3
 separated to Ag+ and NO

3
− ions in the aqueous 

solution as shown in Equation 2. The solvated electrons, ie,
eaq

−
, and H atoms are strong reducing agents; therefore, in the 

following step, they easily reduced silver ions down to the 

zero-valent state (Equations 3 and 4):51

 AgNO Ag +NO+
3 3→ −

 (2)

 
Ag Ag+ reduction+ eaq

−  → 0  (3)

 
reduction+ • 0 +Ag +H Ag +H→  (4)

Silver atoms formed by the irradiation tended to coalesce 

into oligomers (Equation 5), which progressively grew into 

large clusters (Equation 6). The aqueous electrons reacted 

with the Ag+ clusters to form the relatively stabilized Ag 

clusters (Equation 7).52,53

 Ag +Ag Ag+
2
+0 →  (5)

 n nAg +Ag (Ag)+
2
+ +→  (6)

 
(Ag) Ag)+

n aq nne+ → (  (7)

γ-induced fragmentation of Ag nanocluster [(Ag)
n
] 

occurred at a high dose of γ-irradiation (40 kGy).54,55 This 

can be summarized through a biphotonic process, as shown 

in Equations 8 and 9.

 
( ) ( )Ag Ag +-Ray +

n n aqneγ → −  (8)

 ( ) ( ) ,Ag Ag +Ag-induce fragmentation +
n n
+

− →γ
1  (9)

where (Ag)
n 

is the silver nanocluster containing n silver 

atoms, and eaq
−  is the aqueous electron. After the γ-irradiation 

of the aqueous suspension of AgNO
3
/MMT, a large amount 

of aqueous electrons (eaq
−

) was produced, and the Ag+	ions 

were reduced into Ag-NPs.

X-ray diffraction
The original d-spacing (d

S
) of MMT (1.24 nm) in the 

Ag/MMT nanocomposites (A1–A5) was increased to 1.25, 

1.27, 1.31, 1.36, and finally 1.42 nm at the 2θ angles of 7.12°, 

7.12°, 7.10°, 7.08°, and 7.06°, respectively (Figure 3). These 

d
S
  values were direct proof of the nanosilver intercalation 

 structures between the interlayer spaces of MMT. Meanwhile, 

the Ag-NPs formed at the latter location were the causes 

of the increase in the basal spacing. In these samples, the 

intensities of the reflections were significantly lower, whereas 

Figure 5 TeM images and their corresponding particle size distributions of Ag/MMT 
nanocomposites at the different γ-irradiation doses: 1 kgy (A, B), 5 kgy (C, D), 
10 kgy (E, F), 20 kgy (G, H), and 40 kgy (I, J). 
Abbreviations: MMT, montmorillonite; TeM, transmission electron microscopy.
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Discussion
There have been numerous studies on the γ-induced reduction 

of Ag-NPs in aqueous and other solutions. In this method, 

AgNO
3
/MMT aqueous suspensions were exposed to γ-rays 

creating hydrated electrons and primary radicals and mol-

ecules as described in Equation 1.49,50
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their half-widths were larger than the undoped clay minerals, 

whereby the highly ordered parallel lamellar structure of 

the mineral was disrupted by the metal NP formation.26 In 

addition, all the Ag/MMT nanocomposites (A1–A5) had 

a similar diffraction profile, and the PXRD peaks at 2θ 

of 38.34°, 44.41°, 64.37°, and 77.65° (Figure 4) could be 

attributed to 111, 200, 220, and 311 crystallographic planes 

of the fcc silver crystals, respectively.56 For all the samples, 

the main crystalline phase was silver, while no obvious 

other phases (impurities) were found in the PXRD patterns 

(PXRD Ref. No. 01-087-0718). Moreover, the PXRD peak 

broadenings of Ag-NPs were mostly due to the existing 

nanosized particles in the nanocomposites.57 In addition, there 

was also a characteristic peak at about 2θ = 62.02°, which 

related to the MMT clay (PXRD Ref. No. 00-003-0010) 

as a stable substrate. The intensities of 111, 200, 220, and 

311 reflections due to the Ag NP phase were also found to 

increase along with the increased Ag NP content in several 

γ-irradiation doses.

Morphology
The TEM images and their corresponding particle size distribu-

tions of Ag-NPs in MMT suspensions at different γ-irradiations 

are shown in Figure 5. When the AgNO
3
/MMT suspension was 

irradiated under γ-ray with 1 kGy dose, γ-reduced Ag-NPs were 

formed with a (mean diameter and standard deviation of about 

21.57 ± 7.54 nm) (Figure 5A and 5B). When the γ-irradiation 

doses were increased to 5, 10, and 20 kGy, the mean diam-

eter and standard deviation of Ag-NPs gradually increased to 

24.75 ± 12.94 nm, 27.70 ± 14.96 nm, and 30.63 ± 15.99 nm 

(Figure 5C–5H). Due to the presented layer structure of MMT, 

as a solid support, and the absorption of silver ions between 

these layers, large Ag-NPs were gradually obtained in these 

interlayer spaces with the increase of γ-irradiation doses from 

1 kGy to 20 kGy. However, the observation was consistent with 

earlier findings by other researchers who had reported that 

small Ag-NPs were obtained under further γ-irradiation doses 

at 40 kGy, with the mean diameter and standard deviation of 

28.56 ± 9.58 nm for A5 (Figure 5I and 5J).58 The result showed 

a narrow size distribution of the  Ag-NPs, indicating that the 

particles after 40 kGy were highly homogeneous (Table 1). This 

result also indicated that the interlayer structure of the MMT 

suspension, with the increased γ-irradiation doses, gradually 

solvated eaq
−  electron concentration, which were increased in 

the solvent.51  Therefore, Ag-NPs between the layers of MMT 

slowly prepared and increased the particle size and standard 

deviation from 1 to 20 kGy. When the dose of irradiation was 

increased to 40 kGy, the γ-induced fragmentation of large 

flakes of MMT layers and large Ag-NPs gradually commenced. 

The SEM images of MMT and Ag/MMT nanocomposites 

(A1, A3, A4, and A5) are presented in Figure 6. Moreover, the 

surface morphology of MMT demonstrated a layered surface 

with some large flakes, which is a typical structure of MMT 

(Figure 6A). The exterior morphology of Ag/MMT nanocom-

posites demonstrated short flakes and big holes in the exterior 

surface of the Ag/MMT nanocomposites, which increased 

with increasing γ-irradiation dose (1–40 kGy). Furthermore, 

with the increase of irradiation, the external surfaces of the 

Ag/MMT nanocomposites were shiny due to the presence of 

Ag-NPs (Figure 6A, 6C, 6E, 6J, and 6H). The EDXRF spectra 

for MMT and Ag/MMT nanocomposites are demonstrated in 

Figure 6B, 6D, 6F, and 6H. The peaks around 1.7, 2.6, 2.8, 3.6, 

4.5, 6.4, and 7.1 keV were related to the binding energies of 

MMT, whereas the peaks around 1.2, 1.4, 3.1, 3.2, 3.4, 3.5, and 

3.7 keV related to the silver elements in A1, A3–A5, respec-

tively.59 Additionally, the EDXRF spectra for MMT and the Ag/

MMT nanocomposites confirmed the presence of elemental 

compounds in MMT and Ag-NPs without any impurity peaks. 

The results indicated that the synthesized nanocomposites were 

composed of high-purity Ag-NPs.

UV-visible spectroscopy
The UV-visible absorption spectra of MMT based on 

Ag-NPs prepared by γ-irradiation are shown in Figure 7. 

Notably, the characteristic of the silver SPR bands were 

detected in the range of 360–415 nm. These absorption 

bands were presumably corresponding to the Ag-NPs 

smaller than 30 nm.60 However, there was no characteristic 

of UV-visible absorption of Ag-NPs before the γ-irradiation 

for the AgNO
3
/MMT suspension (A0). The UV-visible 

spectra of the samples showed that after irradiation at 

1 kGy, a low-intensity peak appeared at 360 nm, indicat-

ing the formation of Ag-NPs with low concentration (A1). 

With the increased dose of γ-irradiation from 5 to 10 and 

20 kGy, the intensity of the absorption band increased 

significantly with their position doses changed noticeably at 

390, 408, and 415 nm, respectively. These absorption bands 

were broad and red-shifted to high wavelengths (A2–A4). 

It was also observed that, at higher doses of γ-irradiation, 

the γ-induced fragmentation of NPs in the solid support 

matrix had increased (Table 1). Therefore, the SPR band 

absorption peak tended to undergo a blue-shift to 413 nm, 

with continuously increasing the dose of γ-irradiation to 

40 kGy.58 The increase of the absorbance with increased dose 
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Table 1 Physical properties of Ag-NPs in Ag/MMT nanocomposites synthesized at different γ-irradiation doses in a constant 
concentration (0.2 mol/L) of AgNO3

Sample γ-irradiation 
dose (kGy)

λmax
a Absorbanceb Approximated  

efficiency (%)
Ag NP particle  
sizec (nm)

A1 1 360 0.68  8.31 ± 0.42 21.57 ± 7.54
A2 5 390 0.83 19.05 ± 0.47 24.75 ± 12.94
A3 10 408 1.06 37.35 ± 0.51 27.20 ± 14.96
A4 20 415 1.45 45.54 ± 0.68 30.64 ± 15.99
A5 40 413 2.08 56.15 ± 0.71 28.56 ± 9.58

Notes: aThe experiments were repeated three times, and they were averaged to give the data in this table; bThe data were obtained by multiplying the absorbance of the 
corresponding diluted solutions by their dilution factors when diluted solutions were used for the data; cThe size of the Ag-NPs was determined by measuring diameters of 
about 100 NPs in TeM image and averaging them.
Abbreviations: MMT, montmorillonite; NP, nanoparticle; TeM, transmission electron microscopy.
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Figure 7 UV-visible absorption spectra for AgNO3/MMT (A0) and Ag/MMT 
nanocomposites suspension at the different γ-irradiation doses: 1, 5, 10, 20, and 
40 kgy (A1–A5). 
Abbreviations: MMT, montmorillonite; UV, ultraviolet.

of γ-irradiation indicated that the concentration of Ag-NPs 

also increased.61

Inductively coupled plasma-optical 
emission spectroscopy
To determine the approximate efficiency of AgNO

3
/MMT 

suspension of γ-induced reduction to Ag/MMT nano-

composites, the ICP-OES analyzer was used in this study. 

A modified digestion method was used to quantify the amount 

of Ag NP conversion to Ag+ in the MMT. An air-dry mass 

of each Ag/MMT nanocomposite (A1–A5) was submerged 

in a solution of 10 mL of ultrapure reagent-grade nitric acid 

(.90%, 364576; Sigma-Aldrich, St. Louis, MO) and 10 mL 

of double  distilled water. After an observation glass was 

placed over the digestion beaker, the solution was heated 

to approximately 80°C for 15 minutes and allowed to react. 

The digestion solution was allowed to cool and then filtered 

through a glass fiber filter (Qualitative #2; Whatman, Flo-

rham Park, NJ) and diluted to 100 mL in a volumetric flask.62 

Using ICP-OES spectroscopy to detect the silver ions, the 

approximate efficiency gradually increased from 8.31% to 

19.05%, 37.35%, 45.54%, and finally 56.15% after 1, 5, 10, 

20, and 40 kGy of γ-irradiation, respectively (Table 1). The 

increase of the approximate efficiency with increasing doses 

of γ-irradiation demonstrated that the yield of Ag-NPs also 

increased.

FT-Ir chemical analysis
Figure 8 shows the comparison of FT-IR spectra for the 

silicate structure of MMT and Ag/MMT with different doses 

of γ-irradiation. The position of vibration bands in the region 

of 3635 cm−1 corresponded to O–H stretching, 3442 cm−1 due 

to the interlayered O–H stretching (H bonding) at 1650 and 

1526 cm−1 for H–O–H bending. The bands at 1127, 1010, 

and 910 cm−1 were also assigned to the stretching vibration 

of Si–O, which was usually taken as evidence for a three-

dimensional amorphous silica phase.63 The band at 628 cm−1 

was due to Al–OH, and 910 cm−1 was due to (Al, Mg)–OH. 

The band at 521–433 cm−1 was assigned to Si–O–Si  bending 

vibration.64 The FT-IR spectra indicated the rigidity of sili-

cate layers and nonbond chemical interaction between the 

silicate layers and Ag-NPs in Ag/MMT nanocomposites. The 

interactions between the silicate layers of MMT and Ag-NPs 

were associated with the peak at 3442 cm−1. Broad peak was 

due to the presence of van der Waals interactions between 

the hydroxyl groups of MMT layers and the partial positive 

charge on the surface of Ag-NPs.65 These peaks, with the 
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Abbreviation: FT-Ir Fourier transform infrared.

enhanced Ag-NPs, as a result of the increased γ-irradiation 

doses for all samples, shifted to low wave numbers, and the 

peak intensity was decreased.

Conclusion
In summary, the Ag-NPs were successfully prepared from 

the AgNO
3
/MMT suspension by using the γ-irradiation 

induced method with the absorbance doses of 1–40 kGy 

in the interlamellar space of MMT at room temperature 

without any reducing agent. These Ag-NPs were found to be 

stabilized by the interlayer space of MMT as a solid support. 

The PXRD patterns in the small angle range of 2θ (2° , 2θ 

, 12°) showed that the interlamellar space limited the 

particle growth for the formation of the intercalated Ag-NP 

structures. In the wide angle range of 2θ (30° , 2θ , 80°), 

the PXRD patterns ascertained that the crystalline structures 

of Ag-NPs for all samples were fcc. The results from TEM 

demonstrated that with the increased γ-irradiation doses, 

the particle diameters of the Ag-NPs gradually increased 

from 1 to 20 kGy; however, after higher doses at 40 kGy, 

the particle diameters decreased suddenly as a result of the 

increased γ-induced fragmentation in Ag-NPs. The SEM 

images demonstrated large-layered surface of the MMT and 

short-flaked surface with big holes in the exterior surface of 
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Ag/MMT nanocomposites, which increased with increasing 

γ-irradiation dose. Moreover, the EDXRF spectra for the Ag/

MMT nanocomposites confirmed the presence of elemental 

compounds in MMT and Ag-NPs without any contamina-

tion peaks. The UV-visible absorption spectra showed the 

peak characteristic of the SPR bond of Ag-NPs, which were 

detected in the ranges of 360–415 nm for 1–20 kGy and 

413 nm for 40 kGy because the γ-induced fragmentation 

of Ag-NPs had increased. Therefore, the maximum absor-

bance shifted to low wavelength (blue-shift). In addition, the 

increase of the absorbance with further γ-irradiation doses 

indicated that the concentration of Ag-NPs also increased. 

The ICP-OES analysis demonstrated that the formation of 

Ag-NPs in MMT increased at higher γ-irradiation doses. 

Moreover, FT-IR suggested that the interactions between 

Ag-NPs with the surface of MMT were weak due to the 

presence of van der Waals interactions. The synthesized 

Ag/MMT suspensions were found to be stable over a long 

time without any sign of precipitation.
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