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Abstract: The Covid-19 pandemic driven by the SARS-CoV-2 virus continues to exert extensive humanitarian and economic stress
across the world. Although antivirals active against mild disease have been identified recently, new drugs to treat moderate and severe
Covid-19 patients are needed. Sphingolipids regulate key pathologic processes, including viral proliferation and pathologic host
inflammation. Opaganib (aka ABC294640) is a first-in-class clinical drug targeting sphingolipid metabolism for the treatment of
cancer and inflammatory diseases. Recent work demonstrates that opaganib also has antiviral activity against several viruses including
SARS-CoV-2. A recently completed multinational Phase 2/3 clinical trial of opaganib in patients hospitalized with Covid-19
demonstrated that opaganib can be safely administered to these patients, and more importantly, resulted in a 62% decrease in mortality
in a large subpopulation of patients with moderately severe Covid-19. Furthermore, acceleration of the clearance of the virus was
observed in opaganib-treated patients. Understanding the biochemical mechanism for the anti-SARS-CoV-2 activity of opaganib is
essential for optimizing Covid-19 treatment protocols. Opaganib inhibits three key enzymes in sphingolipid metabolism: sphingosine
kinase-2 (SK2); dihydroceramide desaturase (DES1); and glucosylceramide synthase (GCS). Herein, we describe a tripartite model by
which opaganib suppresses infection and replication of SARS-CoV-2 by inhibiting SK2, DES1 and GCS. The potential impact of
modulation of sphingolipid signaling on multi-organ dysfunction in Covid-19 patients is also discussed.
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Covid-19 Overview
As of June 2022, Covid-19 has caused the deaths of more than 1,000,000 people in the United States and over 6,300,000
people worldwide (https://covid19.who.int). Beyond these mortality figures, the economic and social hardships caused by
the pandemic reach virtually every country and person. Although outstanding work on the development, manufacturing
and distribution of vaccines targeting SARS-CoV-2 is reducing the impact of Covid-19 in many countries, the ability of
the virus to mutate into potentially unresponsive variants, as well as the lack of global access to vaccines and the
certainty of breakthrough infections in many vaccinated individuals make it imperative that effective and easily
administered drugs are available for the treatment of Covid-19 patients. Therapeutic antibodies against SARS-CoV-2
proteins have some efficacy in the very early stages of Covid-19, but their high cost and the need for intravenous
administration reduce their broad application.1 Additionally, recent viral variants are less responsive to the existing
monoclonal antibody drugs. Similarly, the antiviral drug remdesivir requires intravenous administration and clinical trials
have reported either modestly positive (25% reduction in mortality)2 or negative (WHO Solidarity trial)3 results in
hospitalized Covid-19 patients. More recent clinical trial data show the efficacy of two new oral antivirals (the nucleoside
analog Molnupiravir and the protease inhibitor Paxlovid) in SARS-CoV-2-infected individuals if the drugs are given very
shortly after infection (3–5 days). However, Molnuporavir lacks efficacy in Covid-19 patients with moderate or severe
disease4 and Paxlovid is untested in this population. Consequently, it is essential that additional drugs be identified for
use in hospitalized Covid-19 patients.
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Development of Opaganib
Because sphingolipids regulate key pathologic processes, including tumor cell proliferation and pathologic inflammation
(recently reviewed in5–8), we and others sought to identify inhibitors of sphingosine kinases (SK1 and SK2) that may have
efficacy as anticancer and anti-inflammatory drugs. Opaganib (Figure 1) is an orally active, isozyme-selective inhibitor of SK2
that is competitive with respect to sphingosine.9,10 Opaganib depletes sphingosine 1-phosphate (S1P) and elevates ceramides
in tumor cells, thereby suppressing signaling through pERK and pAKT and promoting autophagy and/or apoptosis in tumor
cells.9–15 Opaganib also down-regulates the expression of c-Myc in a variety of cancer cell lines.14,16–19 Because it acts as
a sphingosine mimetic, opaganib also inhibits dihydroceramide desaturase (DES1), which accounts for the substantial
increases in dihydroceramides in cells treated with the drug.9,16 Additionally, opaganib reduces levels of hexosylceramides
in cells, presumably by inhibition of glucosylceramide synthase (GCS). Therefore, opaganib has the unique ability to
simultaneously target three key enzymes in the sphingolipid metabolism pathway (Figure 1).

Opaganib has antitumor activity in a wide range of mouse models,9,13,14,16,17,20–26 as well as anti-inflammatory activity in
several rodent models.27–31 A Phase 1 clinical trial with opaganib administered to patients with advanced solid tumors was
conducted to assess the drug’s safety and tolerability when given orally on a twice-daily continuous schedule to fasted patients.32

This trial demonstrated that opaganib is well tolerated, with 2 patients receiving more than 40 weeks of drug treatment, including
a patient with refractory cholangiocarcinoma who experienced a prolonged Partial Response. Overall, 64% of patients who
completed 2 cycles of opaganib treatment had Stable Disease or better, suggesting that the drug has activity in many cancer
patients. Although the Maximum Tolerated Dose was not formally defined in this study, the recommended phase 2 dose was
established as 500mg twice-daily. A subsequent food–effect study of opaganib given to healthy volunteers indicated that adverse
events were milder in fed subjects than in fasted subjects. Therefore, in a following trial in patients with refractory multiple
myeloma, opaganib was escalated to 750 mg twice-daily. In this trial, 58% of the evaluable patients achieved Stable Disease or
better, and one developed a Very Good Partial Response that was associated with marked decreases in plasma levels of TNFα,
EGF and VEGF. Opaganib is currently in Phase 2 clinical testing in patients having cholangiocarcinoma (NCT03377179) or
prostate cancer (NCT04207255). To date, more than 400 people have been treated with opaganib in oncology and Covid-19
clinical trials (summarized in Table 1), demonstrating the safety and efficacy of the drug.

Anti-Viral Activity of Opaganib
Several studies have demonstrated that SKs and S1P enhance the replication of influenza, measles and hepatitis B viruses
(reviewed in33). We have previously shown that SK2 maintains the latency of Kaposi’s sarcoma-associated herpesvirus
(KSHV)-infected endothelial cells,13 and opaganib therefore suppresses KSHV-induced tumor growth in vivo.13,34,35 Reid
et al demonstrated that opaganib inhibits the replication of chikungunya virus (CHIKV), which contains a +single-stranded
RNA genome as does SARS-CoV-2.36 In recent studies by Xia et al, opaganib suppressed the replication of influenza Avirus
in A549 cells in vitro with an EC50<2 µM,37 which is well below the Cmax for opaganib in cancer patients.32 Furthermore, two
oral doses of opaganib markedly reduced the viral load in the lungs of mice exposed to influenza Avirus, and this substantially
improved the survival of infected mice.37 Combined activity against the influenza virus and SARS-CoV-2 could be very
important for individuals with Covid-19 during the flu season. To evaluate the in vitro effects of opaganib on SARS-CoV-2
replication, opaganib was studied in a 3D tissue model of human bronchial epithelial cells (EpiAirway™) which

Figure 1 Multitargeting of sphingolipid metabolism by opaganib. Opaganib (aka ABC294640; Yeliva®; 3-(4-chlorophenyl)-N-(pyridin-4-ylmethyl)-1-adamantanecarboxamide,
hydrochloride salt) inhibits SK2 decreasing S1P synthesis, DES1 elevating dihydroceramides, and GCS reducing hexosylceramides.

https://doi.org/10.2147/DDDT.S367612

DovePress

Drug Design, Development and Therapy 2022:162200

Smith et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 Clinical Studies of Opaganib

Study Code and Title Country Subjects
Treated
with

Opaganib

Primary Objective

ABC-101: A Phase I, Open-Label, Dose-Escalation,
Safety, Pharmacokinetic and Pharmacodynamic Study of

ABC294640 in Patients with Advanced Solid Tumors

[NCT01488513]32

USA 21 To assess safety and determine the maximum
tolerated dose (MTD) and the dose limiting

toxicities (DLT) of opaganib in patients with solid

organ tumors.

ABC-103: A Phase Ib/II Safety and Efficacy Study of

ABC294640 in Patients with Refractory or Relapsed
Multiple Myeloma Who Have Previously Been Treated

with Proteasome Inhibitors and Immunomodulatory

Drugs [NCT02757326]

USA 13 Assess overall treatment response rate and overall

survival in patients with relapsed or refractory
multiple myeloma treated with single-agent

opaganib.

ABC-107: A Phase II Study of the Addition of Opaganib
to Androgen Antagonists in Patients with Prostate

Cancer Progression on Enzalutamide or Abiraterone

[NCT04207255]

USA 61 To measure the proportion of patients with disease
control during opaganib (plus abiraterone or

enzalutamide) therapy, using a composite metric

based on PSA, bone scan, and RECIST
measurements per Prostate Cancer Working Group

3 (PCWG3) criteria. For purposes of this study,

disease control is defined as stable disease or better
after four cycles (16 weeks) of treatment.

ABC-108: A Phase I/IIA Study of ABC294640 Alone
and in Combination with Hydroxychloroquine Sulfate

in the Treatment of Patients with Advanced,

Unresectable Intra-hepatic, Perihilar and Extra-Hepatic
Cholangiocarcinoma [NCT03377179]

USA 65 Part 1: determine the Response Rate (RR) of
cholangiocarcinoma defined as objective responses,

ie complete and partial responses plus stable disease

(SD) of at least 4 months to treatment with
opaganib.

Part 2: determine Durable Disease Control Rate

(DCCR) of cholangiocarcinoma, defined as a DCR
of at least a period of ≥4 4 months of treatment

with opaganib and HCQ.

ABC-109: A Phase 1, Single-Dose, Open-Label,

Randomized, Three-Period Crossover Study to

Evaluate the Effect of Food and Nasogastric
Administration on the Pharmacokinetics of

ABC294640 in Healthy Subjects [RedHill Biopharma

unpublished data]

USA 23 healthy

subjects

Assessment of the effect of a standardized meal on

the absorption and bioavailability of opaganib.

ABC-110: Opaganib, a Sphingosine Kinase-2 (SK2)

Inhibitor in COVID-19 Pneumonia: a Randomized,
Double-blind, Placebo-Controlled Phase 2a Study, in

Adult Subjects Hospitalized With SARS-CoV-2 Positive

Pneumonia [NCT04414618]39

USA 22 Phase 2a Proof of concept study. To assess the

safety and tolerability of opaganib administered
orally at 500 mg Q 12 hours, for up to 14 days, in

patients with COVID-19 pneumonia and to assess

to evaluate the total oxygen requirement (area
under the curve) using daily supplemental oxygen

flow (L/min) over 14 days (Day 1 to Day 14) as

primary efficacy.

ABC-201: Opaganib, a Sphingosine Kinase-2 (SK2)

Inhibitor in COVID-19 Pneumonia: a Randomized,
Double-blind, Placebo-Controlled Phase 2/3 Study, in

Adult Subjects Hospitalized With Severe SARS-CoV-2

Positive Pneumonia [NCT04467840]40

Italy, Poland,

Russia, Brazil,
Mexico, Israel,

Colombia

230 A phase 2/3 multi-center randomized, double-blind,

parallel arm, placebo- controlled study in Adult
Subjects Hospitalized with Severe SARS-CoV-2

Positive Pneumonia to determine the potential of

opaganib to improve and/or stabilize the clinical
status of the patient.

Drug Design, Development and Therapy 2022:16 https://doi.org/10.2147/DDDT.S367612

DovePress
2201

Dovepress Smith et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


morphologically and functionally resembles the human airway.38 Opaganib treatment of cells infected with SARS-CoV-2
resulted in a dose-dependent inhibition of virus production at pharmacologically relevant concentrations (IC50~0.5 μM) 72
hours after infection without compromising cell viability. SARS-CoV-2 replication was completely blocked by <3 μM
opaganib. This first study used the alpha (Washington) strain of SARS-CoV-2, and subsequent similar studies demonstrated
that opaganib also inhibits the replication of the beta, gamma, delta and omicron SARS-CoV-2 variants. Because opaganib
targets host proteins instead of viral proteins, mutation of the SARS-CoV-2 virus is not expected to generate opaganib-resistant
variants as commonly occurs with virus-directed antivirals. Furthermore, opaganib is relatively easy to synthesize and
manufacture into capsules and has exceptional chemical stability, making it a very suitable drug for global use. These
preclinical studies demonstrating the anti-inflammatory and antiviral efficacies of opaganib in multiple models (summarized
in Table 2) support the potential for opaganib to help mitigate the current Covid-19 pandemic, as well as potentially
successfully treat other viral diseases.

Safety and Efficacy of Opaganib in Covid-19 Patients
Testing for opaganib efficacy in Covid-19 patients was originally rationalized based on its ability to suppress pathologic
inflammation in multiple preclinical models, its preclinical antiviral activity, and its safety in oncology clinical trials.
However, the direct demonstration of the ability of opaganib to inhibit SARS-CoV-2 replication in vitro38 provided
compelling support for testing opaganib for the treatment and/or prevention of Covid-19. A Phase 2a proof-of-concept
study of opaganib administered to hospitalized patients with severe Covid-19 pneumonia requiring supplemental oxygen
was conducted in the USA in 2020. In addition to the Standard of Care treatment, patients received opaganib (n = 23) or
placebo (n = 19) for up to 14 days and were followed for 28 days after their last dose. There were no material differences
in adverse events between the opaganib and placebo treatment groups, indicating that opaganib can be safely adminis-
tered to these patients.39 Although the small study size precluded definitive demonstration of safety and/or efficacy,
patients who received oral opaganib required less supplemental oxygen and achieved earlier hospital discharge than the
placebo control patients.39 This positive outcome supported the conduct of a Phase 2/3 multinational randomized,
double-blind, parallel arm, placebo-controlled study to evaluate the ability of opaganib to improve the clinical status
of hospitalized patients with severe Covid-19.40 The study enrolled 475 adult patients who were randomized to either
500 mg oral opaganib every 12 hours or matching placebo, in addition to Standard of Care for 14 days. Patients were
followed for 42 days from their first dose of opaganib. As with the Phase 2a study, adverse events were similar in both
treatment groups, further demonstrating the safety of opaganib for Covid-19 patients. More specifically, in the setting of
a 14-day course of treatment, opaganib had a favorable safety profile with mostly low-grade nausea, insomnia and
anxiety being clearly treatment related adverse events, all occurring in less than 10% of patients. The pre-specified
analyses for the primary clinical outcome (the proportion of patients breathing room air without oxygen support by Day
14) did not demonstrate a statistically significant treatment benefit in the entire patient population. However, the
subpopulation of patients (54%) requiring at or below the median oxygen supplementation (median fraction inspired
oxygen (FiO2) at baseline was 60%) demonstrated a clear clinical benefit with opaganib treatment.40 Most importantly,
opaganib reduced the incidences of intubation/mechanical ventilation and death by Day 42 by 62% each. Additionally,
a more rapid clearance of the virus was observed in patients treated with opaganib (median = 10 days) compared to
control patients receiving standard of care (median >14 days) for the entire treated population.41 Overall, the data suggest
therapeutic benefit from the treatment of moderately severe Covid-19 patients with opaganib. Although untested to date,
it is likely that the clinical benefit of opaganib would be even greater in less-severe Covid-19 patients including non-
hospitalized individuals at risk for hospitalization or long-term sequelae.

Mechanism for the Antiviral Efficacy of Opaganib
Increasing attention is being paid to the involvement of sphingolipids in viral infection and replication in general
(reviewed in33,42,43) and SARS viruses in particular.44–48 Entry of SARS viruses into target cells is primarily mediated by
binding to angiotensin-converting enzyme 2 (ACE2), followed by proteolytic cleavage by TMPRSS2 and internalization
via endocytosis mediated by lipid rafts, which are cholesterol- and sphingolipid-rich membrane domains.49 McGowan
et al44 provided an excellent review of the roles of sphingolipid metabolism in viral replication, activation of the host
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Table 2 Nonclinical Studies of Opaganib Relating to Covid-19

Pathology Model Key Findings Reference

Inflammation (in vivo studies only)

Ulcerative colitis Dextran sulfate

sodium

Opaganib reduced colon damage and markers of inflammation

including neutrophil infiltration and cytokine induction

[29]

Crohn’s Disease Trinitrobenzene

sulfonic acid

Opaganib reduced colon damage and markers of inflammation

including neutrophil infiltration and cytokine induction

[30]

Colitis-driven colon
cancer

Azoxymethane +
dextran sulfate sodium

Opaganib decreased the incidence and multiplicity of colon tumors [24]

Vascular permeability Intradermal VEGF or
Streptozotocin

Opaganib reduced vascular leakage in skin and retinas [31]

Rheumatoid arthritis Subcutaneous collagen
or Intradermal

adjuvant

Opaganib reduced disease severity and degradation of bone and
cartilage

[28]

Osteoarthritis Monosodium

iodoacetate

Opaganib attenuated knee joint histological damage and pain [27]

Liver transplantation

failure

Cold storage of donor

liver

Opaganib in organ storage solution improved survival following

surgery and decreased damage and markers of inflammation in the

transplanted liver

[94]

Hepatic ischemia-

reperfusion injury

Liver ischemia-

reperfusion surgery

Opaganib reduced hepatic necrosis and markers of inflammation

including iNOS, TNFα and neutrophil infiltration, resulting in
protection against death

[96]

Bacterial pneumonia Pseudomonas
aeruginosa

Opaganib reduced lung damage and markers of inflammation including
cell infiltration and cytokine induction

[118]

Lupus nephritis MRL/lpr transgenic
mice

Opaganib attenuated glomerular pathology but not vascular or
interstitial pathology

[127]

Psoriasis Imiquimod Opaganib reduced psoriatic markers including erythema, scaling and
epidermal thickness, as well as the sizes of the inguinal lymph nodes

and spleen

[128]

Renal fibrosis Unilateral ureteral

obstruction

Opaganib reduced renal fibrosis 62 and RedHill

Biopharma

unpublished data

Acute Kidney Injury Ischemia-reperfusion

or lipopolysaccharide
injection

Opaganib reduced kidney damage and inflammation in both models Apogee

Biotechnology
manuscript

submitted

Atherosclerosis ApoE knockout mice Opaganib reduced the number of aortic plaques and increased survival

duration

Apogee

Biotechnology

unpublished data

Gastrointestinal acute

radiation syndrome

Ionizing radiation Opaganib reduced colon damage and improved survival following

exposure to X-rays

Apogee

Biotechnology
unpublished data

Pulmonary fibrosis Ionizing radiation Opaganib reduced lung fibrosis and increased survival duration
following exposure to X-rays

Apogee
Biotechnology

unpublished data

(Continued)
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immune response and maintaining vascular integrity. The authors also discussed how manipulating the SK-S1P pathway
may be beneficial to Covid-19 patients and provided a brief overview of the potential for repurposing sphingolipid-
directed drugs for the treatment of Covid-19, including opaganib and two other drugs in clinical trials at that time. Since
its publication, clinical testing of opaganib has markedly progressed and the results from the recently completed
multinational Phase 2/3 clinical trial with hospitalized severe Covid-19 patients have been reported.40 Because of the
positive efficacy of opaganib against Covid-19, definition of the biochemical mechanism(s) for this activity requires
further investigation. We herein focus on potential antiviral mechanisms that are directly relevant to the biochemical
actions of opaganib (Figure 2).

Inhibition of Spike Protein-ACE2 Binding
Blocking the ability of the SAR-CoV-2 spike protein to interact with ACE2 is clearly expected to inhibit infection and viral
replication, and this is a likely mechanism for several antibody-based therapeutics, including convalescent plasma. Edwards
et al recently demonstrated that binding of the SARS-CoV-2 spike protein to ACE2 is potently inhibited by sphingosine.50 By
inhibiting sphingosine phosphorylation to S1P by SK2, opaganib at least transiently elevates sphingosine levels that may be
sufficient to disrupt SARS-CoV-2 binding to target cells. Alternatively, because opaganib is competitive with sphingosine for

Table 2 (Continued).

Pathology Model Key Findings Reference

Viral (in vivo and in vitro studies)

Kaposi Sarcoma Herpes
Virus associated

lymphoma

Primary effusion
lymphoma (PEL) cells/

xenografts

Opaganib induced tumor regression and promoted viral lytic gene
expression in PEL cells

[13,34,35]

Arthralgic febrile illness Chikungunya virus

(CHIKV) in cells and

mice

Opaganib inhibited CHIKV replication in HepG2 cells [36]

Influenza Influenza A virus (IAV)

in cells and mice

Opaganib improved viability of mice following IAV infection and

attenuated viral replication in vitro

[37]

Covid-19 SARS-CoV-2 in

EpiAirway model

Opaganib inhibited the replication of multiple SARS-CoV-2 variants

(alpha (Washington), beta (South African), gamma (Brazilian), delta
(Indian) and omicron)

RedHill Biopharma

unpublished data

Figure 2 Model for the therapeutic activity of opaganib against Covid-19. Sphingolipids regulate the ability of SARS-CoV-2 to replicate and thereby cause Covid-19. Firstly,
pro-autophagic dihydroceramide levels are normally maintained at low levels by DES1. Inhibition of DES1 by opaganib elevates dihydroceramides and promotes autophagy
which suppresses viral replication. Secondly, hexosylceramides are necessary for the endocytosis of virus bound to ACE2. Inhibition of GCS by opaganib reduces
hexosylceramides thereby impairing the ability of the virus to enter target cells. Thirdly, SK2 regulates several signaling pathways, as well as the viral replication complex,
that are required for viral replication. Inhibition of SK2 by opaganib therefore has multifaceted suppressive effects on viral infection and replication. Furthermore, opaganib
suppression of inflammation and thrombosis mediated by SK2 may protect against multi-organ dysfunction in Covid-19 patients.
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inhibition of SK2,9,10 ie acts as a “sphingosine mimetic”, it may directly disrupt binding of the spike protein to ACE2 thereby
suppressing the internalization and replication of SARS-CoV-2.

Inhibition of Akt Signaling

A strong body of evidence demonstrates that viruses commonly commandeer host machinery required for viral replication,
including activation of the PI3K/AKT/mTOR signaling pathway (reviewed in51). For example, Mizutani et al demonstrated that
infection of Vero E6 cells by coronavirus activates the AKT signaling pathway,52 and that pAKT is essential for establishing
persistent viral infection of these cells.53 Recent work confirms Akt activation by SARS-CoV-2,54 and further shows that inhibition
of AKT by GSK690693 blocks viral-induction of cytokine and chemokine expression by lung epithelial cells.55 Additionally, the
pan-AKT inhibitor capivasertib was shown to inhibit the entry of SAR-CoV-2 into Vero cells.56 Similarly, the AKT inhibitor MK-
2206 suppressed viral replication, most likely by inducing autophagy.54,57 Together, these results led to the proposal that inhibitors
of the PI3K/AKT/mTOR signaling pathway may be effective for Covid-19 therapy;51,58 however, none of the clinical trials
assessing such drugs have reported positive data to date.51 Beyond direct inhibition of viral replication, AKT inhibitors may
attenuate excessive inflammation, cytokine storm, fibrosis, and thrombosis in Covid-19 patients.58 We and others have demon-
strated that opaganib efficiently inhibits AKT phosphorylation in multiple cell types.9,10,12,14,16,17,20,22–25,59–63 The biochemical
mechanism for reduction of pAKT by opaganib has not been fully defined, but likely involves the stimulation of protein
phosphatase 2A (PP2A)-mediated pAKT dephosphorylation due to reduction of S1P levels (which suppress PP2A activity64)
and/or inactivation of Inhibitor 2 of PP2A (SET) due to elevation of ceramide levels.65,66 It is also possible that opaganib directly
binds to and inhibits SET as has been suggested for fingolimod (FTY720).67 Finally, AKT contains an N-terminal pleckstrin
homology (PH) domain which enables its membrane translocation and subsequent activation by upstream kinases. Because SK2
also contains a PH domain that directs its localization to membranes,68 opaganib may alter potential SK2-AKT co-localization
necessary to allow viral replication. Through one or more of these mechanisms, inhibition of AKT phosphorylation may underlie
the ability of opaganib to suppress infection by SARS-CoV-2.

Induction of Autophagy
The primary roles of autophagy in normal cells are to recycle intracellular materials and to eliminate intracellular pathogens.
Viruses, including coronaviruses, suppress autophagy to promote their own replication, and consequently activation of
autophagy can effectively limit viral replication.69–72 SARS-CoV-2 blocks autophagy, leading to the suggestion that autop-
hagy-inducing agents may overcome infection by reactivating intracellular viral destruction.73–79 Supporting this concept,
SARS-CoV-2 was shown to promote Beclin-1 degradation,80 and several autophagy-modifying compounds suppress SAR-
CoV-2 replication in vitro (reviewed in75). It is established that: dihydroceramides induce autophagy;81–87 that opaganib
elevates dihydroceramides by inhibition of DES1;16,88,89 and that opaganib promotes autophagy.11,15,34 Therefore, inhibition
of DES1 may be involved in the ability of opaganib to suppress infection by SARS-CoV-2 through the induction of
protective autophagy in the host cells.

Induction of Apoptosis
One mechanism that limits viral spread is the induction of apoptosis of infected host cells, and consequently viruses frequently
suppress apoptosis to facilitate their replication. Coronavirus infection modulates both the extrinsic and intrinsic apoptosis
pathways via the Death Domain (DD) superfamily of proteins and the Bcl-2 family of proteins, respectively.90 For example,
Zhong et al demonstrated that the avian coronavirus infectious bronchitis virus (IBV) induces the expression of Mcl-1 (which
inhibits apoptosis) and Bak (which promotes apoptosis), and that genetic ablation of Mcl-1 accelerates IBV-induced apoptosis.91

Furthermore, viruses, including SARS-CoV-2, activate signaling through NFκB which suppresses apoptosis via both pathways.
Sphingosine kinase-2 plays important roles in regulating apoptosis and NFκB pathways, and the effects of opaganib on these
processes have been examined. For example, SK2 contains a BH3 domain, and therefore overexpression of SK2 induces
apoptosis.92 Opaganib promotes apoptosis alone and in combination with the DD ligand TRAIL in cancer cells7,93 and
suppresses NFκB activation both in vitro and in vivo.12,94–96 Mechanistically, opaganib promotes apoptosis by suppressing
the expression of Mcl-117,97,98 and survivin.99 Furthermore, we have previously shown that in conjunction with suppressing its
kinase activity, opaganib increases SK2 expression, and this overexpression of the BH3 domain could provide a magnified pro-
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death stimulus.10 Therefore, similar to studies with KSHV-infected cells,13,35 opaganib may suppress Covid-19 through the
induction of protective apoptosis in SARS-CoV-2-infected host cells.

Inhibition of Endocytosis
Entry of SARS-CoV into cells occurs via ACE2-mediated, pH-dependent endocytosis that does not involve clathrin or
caveolae, but does require sphingolipid-containing membrane lipid rafts.49 More specifically, glycosphingolipids are
abundant components of the extracellular surface of the plasma membrane that are essential for endocytosis,100–103 and
so play major roles in the penetration of target cells by viruses. For example, exposure of cells to influenza virus elevates
levels of sphingomyelin and glucosylceramide,104,105 and inhibition of GCS suppresses influenza virus infection106 and
maturation.107 More specifically, GCS activity is required for the entry of influenza virus108 and thrombocytopenia
syndrome virus109 via endocytosis. This concept was extended by Vitner et al who demonstrated that SARS-CoV-2
infection of Vero E6 cells significantly elevated glycosphingolipid and sphinganine levels, and that similar increases
occurred in mice infected with the virus.110 Importantly, two GCS inhibitors strongly suppressed an early step in the
replication of influenza virus and SARS-CoV-2 in Vero E6 cells,111 demonstrating that GCS is a potential new target for
anti-Covid-19 drugs. Therefore, the ability of opaganib to inhibit GCS may be involved in the ability of opaganib to
suppress replication of SARS-CoV-2.

Association with the Viral Replication-Transcription Complex (RTC)
SARS-CoV-2 RNA synthesis is conducted using RTC, which is anchored by the transmembrane viral proteins Nsp3,
Nsp4 and Nsp6. The importance of sphingolipids in determining the structure and function of membrane domains such as
lipid rafts is well established, and consequently, alteration of sphingolipids by opaganib may disrupt the ability of SARS-
CoV-2 to efficiently establish functional RTCs. Furthermore, Reid et al demonstrated that SK2 is a host factor that co-
localizes with the RTC of CHIKV by interaction with Nsp3.36 This appears to be essential for optimal function of the
RTC because inhibiting SK2 by opaganib or genetic knockout inhibited CHIKV transcription.36 Conversely, over-
expression of SK2 in response to opaganib may further suppress viral replication by competing with G3BP binding to
the RTC.112 Nsp3 plays a parallel membrane anchoring role for SARS-CoV-2 replication,113 and therefore, disruption of
the viral RTC may be involved in the ability of opaganib to suppress replication by SARS-CoV-2.

Potential for Opaganib to Attenuate Multi-Organ Dysfunction in Covid-19
Patients
Sphingolipid metabolism is critically involved in the pathogenesis of lung damage, including pulmonary failure in Covid-
19 patients (reviewed in114). Therefore, beyond the focused antiviral effects discussed above, the ability of opaganib to
suppress pathologic inflammation is expected to benefit Covid-19 patients by limiting multi-organ damage due to
excessive cytokine production and activity. For example, several studies have examined the role of SK2 in a murine
Pseudomonas aeruginosa (PA)-induced pneumonia lung inflammation model. Genetic deletion of SK2, but not SK1,
suppressed NADPH oxidase 4 induction,115 and decreased levels of inflammatory cytokines, proteins and cell counts in
bronchoalveolar lavage, as well as neutrophil infiltration into the alveolar space, in mice exposed to intratracheal PA.116

This was associated with reduced expression of NFκB-regulated inflammation-associated genes in the lung tissue.117

Most importantly, the administration of opaganib to mice nearly completely ameliorated PA-induced lung injury,118

specifically by decreasing inflammatory cell infiltration on histologic examination, markedly reducing infection-induced
increases in TNFα, IL-6, and H2O2 in bronchoalveolar lavage fluids, and improving survival of infected mice.
Additionally, opaganib inhibits IL-6 secretion from human bronchial epithelial cells in vitro (RedHill Biopharma
unpublished data). Consequently, opaganib may suppress Acute Respiratory Distress Syndrome and subsequent pulmon-
ary fibrosis in Covid-19 patients.

Sphingolipids also have critical roles in acute kidney injury (AKI) and renal fibrosis (reviewed in119,120). For
example, Park et al demonstrated that genetic knockout of SK2 decreased AKI following ischemia-reperfusion, whereas
knockout of SK1 increased injury.121 Additionally, Bajwa et al showed that the SK2 inhibitor SLP120701 reduced folic
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acid-induced renal fibrosis in mice,122 and Zhu et al demonstrated that opaganib inhibits extracellular matrix deposition
in human kidney fibroblasts.62 Furthermore, opaganib reduced fibrosis and decreased inflammatory cell infiltration in the
kidneys of mice subjected to unilateral ureteral obstruction (RedHill Biopharma unpublished data). Therefore, opaganib
may suppress AKI and subsequent renal failure in patients with severe Covid-19.

Finally, the roles of sphingolipids in thrombosis have been studied since 1995, when Yatomi et al demonstrated that
S1P promotes platelet aggregation.123 Interestingly, genetic knockout of SK2, but not SK1, markedly reduced S1P levels
in platelets, and strongly attenuated platelet aggregation in vitro and in vivo thrombus formation in ferric chloride-treated
mice.124 This is consistent with preliminary studies that demonstrate that opaganib administration reduces in vivo
thrombus formation in the ferric chloride model (RedHill Biopharma unpublished data). Additionally, tissue factor-
mediated coagulation following SARS-CoV-2 infection has been linked to stimulated sphingolipid metabolism.125

Consequently, opaganib treatment may provide an anticoagulant benefit to Covid-19 patients resulting in a lower risk
of thrombosis.

Conclusion
Clinical experience with opaganib demonstrates that it can be safely administered to severely compromised patients
with cancer or Covid-19. Data from the completed Phase 2/3 clinical trial indicate efficacy of opaganib in a subset of
severe Covid-19 patients. Antiviral and anticancer therapy usually involve multiple drugs targeting different key
proteins to achieve clinical benefit. Opaganib appears to be uniquely situated to simultaneously inhibit three sphingo-
lipid-metabolizing enzymes in human cells, ie SK2, DES1 and GCS (Figure 2). While additional studies are needed to
elucidate which of these enzymes mediate its antiviral activity, opaganib has the potential to suppress a range of viruses,
including SARS-CoV-2. Because of this tripartite targeting, it is unlikely that viral resistance to opaganib will be
encountered either through adaptive mutation during therapy or by random mutation to generate additional viral
variants.

Currently, the primary treatments available for patients with a score of 5 on the WHO Ordinal Scale for Clinical
Recovery are dexamethasone and remdesivir. Dexamethasone is an anti-inflammatory medication that was shown in the
RECOVERY study to be most effective for patients who are on mechanical ventilation, with a smaller effect for
hospitalized patients on oxygen but not mechanically ventilated.126 Remdesivir is an anti-viral nucleoside analogue
that was initially shown to be most effective in time to recovery in patients with the equivalent of WHO 4 status with
little to no effect in patients with the equivalent of WHO 5.2 In the larger WHO SOLIDARITY trial, there was a small
effect on mortality in the combined WHO 4 and 5 groups receiving remdesivir.3 It is also important to note that
remdesivir is only given by intravenous infusion. Opaganib would present an oral alternative with both anti-viral and
anti-inflammatory properties for patients in the WHO 5 category. In addition, in a prespecified substrata analysis, when
given on top of dexamethasone and remdesivir standard of care, opaganib was nominally superior to placebo. Overall,
opaganib may provide an important oral drug for the treatment of patients with severe Covid-19.
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