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Abstract: Anhedonia, which is defined as markedly diminished interest or pleasure, is a prominent symptom of psychiatric disorders,
most notably major depressive disorder (MDD) and schizophrenia. Anhedonia is considered a transdiagnostic symptom that is
associated with deficits in neural reward and aversion functions. Here, we review the characteristics of anhedonia in depression and
schizophrenia as well as shared or disorder-specific anhedonia-related alterations in reward and aversion pathways of the brain. In
particular, we highlight that anhedonia is characterized by impairments in anticipatory pleasure and integration of reward-related
information in MDD, whereas anhedonia in schizophrenia is associated with neurocognitive deficits in representing the value of
rewards. Dysregulation of the frontostriatal circuit and mesocortical and mesolimbic circuit systems may be the transdiagnostic
neurobiological basis of reward and aversion impairments underlying anhedonia in these two disorders. Blunted aversion processing in
depression and relatively strong aversion in schizophrenia are primarily attributed to the dysfunction of the habenula, insula, amygdala,
and anterior cingulate cortex. Furthermore, patients with schizophrenia appear to exhibit greater abnormal activation and extended
functional coupling than those with depression. From a transdiagnostic perspective, understanding the neural mechanisms underlying
anhedonia in patients with psychiatric disorders may help in the development of more targeted and efficacious treatment and
intervention strategies.
Keywords: anhedonia, reward pathway, aversion circuit, depression, schizophrenia

Introduction
Anhedonia, which is characterized by a loss of interest or pleasure, reflects deficits in hedonic capacity and is closely related to
the constructs of reward valuation, decision making, anticipation, and motivation.1 Anhedonia is considered a transdiagnostic
symptom that is associated with deficits in reward and aversion processing and is especially present in patients with major
depressive disorder (MDD) and schizophrenia.2–4 In addition, anhedonia is linked to greater severity of clinical symptoms,
poorer treatment response, and poorer clinical outcomes in patients with these two disorders.5–7 Anhedonia is
a multidimensional construct that includes anticipatory anhedonia (inability to anticipate rewards), consummatory anhedonia
(impairments in hedonic response to rewards), and motivational anhedonia (diminished motivation to pursue rewards).8 The
constructs of anhedonia have common and dissociable neural underpinnings.9

Anhedonia is a core feature of MDD.10 Patients with MDD have deficits in motivation for rewards owing to low anticipatory
pleasure and reduced ability to modulate behavior in response to intermittent rewards.11,12 In contrast, anhedonia in patients with
schizophrenia is one of the cardinal negative symptoms and is independent of positive, disorganized, and depressive
dimensions.13 As defined in the “Schizophrenia Spectrum Anhedonia Paradox”, hedonic capacity is impaired in individuals
with schizotypy and youth at clinical high-risk, whereas it appears intact in patients with schizophrenia. Moreover, a higher
frequency of anhedonia is detected during the chronic phase of schizophrenia than during the early phase of illness.14 Anhedonia
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in schizophrenia may stem from deficits in integrating and maintaining representations of hedonic values, which results in
impairments in anticipatory pleasure and goal-directed behavior.15

Previous findings suggest that a common neural basis and genetic factors underlie anhedonia, which transcends the
disorder categories of depression and schizophrenia.16–18 Consistent with the Research Domain Criteria initiative focused
on transdiagnostic dimensions of psychopathology, there is a crucial need for a more detailed approach to investigate
specific properties at the symptom level.19 A better understanding of the precise psychopathological and neurobiological
underpinnings that are highly relevant to anhedonia is a necessary step to develop more effective treatment plans for
psychiatric disorders.15 The transnosographic method is a promising approach for revealing the overall neurobiological
framework that contributes to clinical symptomology and may help improve targeted treatment strategies.20 Notably,
neuroimaging can be a powerful tool for investigating the neurobiological mechanisms of anhedonia. Numerous studies
have provided evidence for the neurobiological reward and aversion systems underlying anhedonia.19,21–23 Investigating
the reward and aversion pathways of the brain may help improve our understanding of the neurological substrates
underlying the clinical transdiagnostic symptomatology of anhedonia. In this context, developing interventions to treat
anhedonia across different psychiatric disorders could be targeted according to the shared neural abnormalities of critical
brain circuits.23,24

Anhedonia is a prominent symptom in patients with MDD and schizophrenia. The characteristics of anhedonia across
these two disorders, as well as anhedonia-related reward and aversion neural circuits, have not been extensively explored
from a transdiagnostic perspective. Therefore, this review aimed to summarize the neurobiological mechanisms under-
lying anhedonia based on the reward and aversion neural pathways in depression and schizophrenia. Furthermore, we
highlight recent findings of aversion circuits associated with anhedonia in these two disorders.

Brain Reward and Aversion Circuits
Reward and aversion are two major components of motivational control.25 Impaired reward and aversion processing is
relevant to anhedonia.1,25,26 Anhedonia comprises behavioral deficits in three reward processing subtypes: reward liking,
reward wanting, and reward learning.9 Previous findings have indicated that reward processing involves the prefrontal
cortex (PFC), anterior cingulate cortex (ACC), striatum, ventral pallidum, ventral tegmental area (VTA), substantia nigra
(SN), amygdala, and insula.1,26 Moreover, abnormal dopaminergic and glutamatergic functions within the VTA and nucleus
accumbens (NAc), which are key regions of the reward neural pathway, are associated with anhedonia.27 Low ventral
striatum activation during reward anticipation related to anhedonia can predict the transition to depression in previously
healthy adolescents.28 In addition, inflammation and cytokines may reduce neural activity and dopamine release in reward-
related corticostriatal regions in association with anhedonia and reduced motivation.29,30 Furthermore, early and chronic
life adversities may downregulate mesolimbic dopamine signaling and frontostriatal activity linked with anhedonia.21,31

Aversion is derived from an internal feeling of avoidance behavior to avoid potentially harmful stimuli.32 Emerging
evidence indicates that the key brain regions of the aversion pathway include the lateral habenula (LHb), medial PFC
(mPFC), ventral pallidum, periaqueductal gray matter, VTA, amygdala, and insula.33–36 The LHb is regarded as an anti-
reward center of the brain, which is involved in aversion and mood regulation via the modulation of the dopamine and
serotonin systems.37,38 During aversive events, healthy individuals exhibit increased activity of the habenula–VTA
pathway, coupling of the putamen and mPFC, and reduced activity between the SN and external segment of the globus
pallidus.36 Previous findings from rodents have suggested that glutamatergic neurons in the lateral hypothalamic area
mediate aversive signals via the projections to the LHb.33 Moreover, in rats, photostimulation of dopamine terminals in
the mPFC induced increased signal-to-noise ratio in neurons projecting from the mPFC to the dorsal periaqueductal gray
in response to aversive stimuli.34 Additionally, chronic stress has been shown to trigger social aversion in mice via
glucocorticoid receptors in VTA dopaminoceptive neurons.31 It has been shown that in mice, the activity of neurons that
project from the anterior insula to the basolateral amygdala is responsible for forming and retrieving aversive taste
memory.39 The anterior insula is involved in encoding signals of aversive cues and outcomes in humans,40 and the
sublenticular/extended amygdala is involved in the processing of both aversive and positive stimuli.41 Attenuated
amygdala processing of positive stimuli has been shown to be related to greater anhedonia in patients with MDD.42
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Reward and Aversion Circuits and Anhedonia in MDD
MDD is a disorder with considerable heterogeneity with a broad constellation of presentations and symptoms.
Anhedonia, which is defined as reduced interest or pleasure in all or almost all previously enjoyed activities, is
a hallmark symptom of MDD.10 It affects more than half of individuals with current MDD.13,43 In patients with
MDD, anhedonia is characterized by impairments in anticipatory pleasure and integration of reward-related information
from past experiences22 and is related to greater severity of clinical symptoms and poorer treatment response.5,7

Anhedonia has emerged as a key dimension that predicts recovery and is related to a longer time to remission, especially
in young adults with depression.5

Reward Circuits and Anhedonia in MDD
Previous research has demonstrated that structural and functional alterations in the reward pathways of the brain are
highly relevant to anhedonia and aberrant reward-related perception and memory in depression.9,44 The key brain areas
of the reward pathway related to anhedonia in depression include the ventral and dorsal striatum, ventromedial PFC
(vmPFC), orbitofrontal cortex (OFC), and ACC.30,45,46 Structural magnetic resonance imaging (MRI) studies have
reported that anhedonia in depression is associated with reduced gray matter volume in the OFC and caudate
nucleus.18,19 In addition, diffusion tensor imaging studies have reported that abnormal structural connectivity of the
reward network is related to anhedonia in patients with depression.47,48 Microstructural alterations in the segment of the
superolateral medial forebrain bundle connecting the VTA with the medial OFC are related to anhedonia and depression
severity.47 Moreover, aberrant white matter microstructural integrity of the cingulum and uncinate fasciculus is nega-
tively correlated with anhedonia in patients with depression.49–51 Furthermore, disrupted structural connectivity between
the bilateral anterior thalamic radiation and the left corticospinal tract is significantly linked to the severity of anticipatory
anhedonia in MDD patients.48

Previous findings suggest that the frontostriatal and mesocorticolimbic circuit systems are involved in anhedonia-
related reward processing in patients with depression.9,16,52 Resting-state functional MRI (fMRI) research has revealed
that a biotype of depression that is characterized by hyperconnectivity of the frontostriatal and thalamic networks is
associated with anhedonia and psychomotor retardation.53 In addition, reduced functional connectivity (FC) and regional
homogeneity within the ventral striatum and vmPFC are correlated with greater anhedonia in MDD patients,30,54 and
decreased functional coupling between NAc subregions and frontoparietal areas is also linked to anhedonia in patients
with depression.45 Moreover, the constructs of anhedonia in depression appear to have dissociated neural underpinnings;
increased intrinsic function of the left dorsal ACC and reduced cortical thickness of the left rostral ACC and lateral OFC
are respectively correlated with anticipatory and consummatory anhedonia.55

Task fMRI research has demonstrated that when encountering pleasurable stimuli, the aberrant connectivity between
the posterior vmPFC and the mesolimbic reward system is negatively correlated with anhedonia in patients with MDD.56

When individuals with depression receive an unexpected reward, they exhibit abnormal frontostriatal hypoactivation,
especially in the OFC and ventral striatum.46 Moreover, reduced activation in the ventral striatum during reward
anticipation is correlated with anhedonia and depression severity in patients with MDD.16,52 Reward anticipation is
assessed by measuring prediction error, which is defined as the response to the discrepancy between anticipated and
received rewards.57 NAc activity is associated with an inverse correlation between reward anticipation and prediction
error in healthy controls, and a lower correlation may predict greater anhedonia in individuals with MDD.58 In addition,
reduced neural reward prediction-error signaling in the medial OFC and ventral striatum is inversely correlated with
anhedonia severity, which reflects reward processing deficits in MDD.59 During reward processing tasks, reward liking
and reward wanting in depression is associated with striatal hypoactivation, alongside mPFC and dorsolateral PFC
hyperactivation and OFC hypoactivation, whereas reward learning is related to blunted frontostriatal sensitivity to
positive feedback.9 Mapping activation and connectivity patterns of reward networks may help understand the neural
basis of reward deficits associated with anhedonia in patients with MDD.23 The identification of brain functional circuits
linked to anhedonia may enable a better understanding of the heterogeneity of MDD and help track one of its core
symptoms.56
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Aberrant metabolite status of neurotransmitters in reward processing regions has also been implicated in reward deficits
and anhedonia.54,60,61 In depression, dysfunction of the ACC in the reward neural circuitry is highly relevant to
anhedonia.60,62,63 Reduced glutamine and γ-aminobutyric acid (GABA) levels in the pregenual ACC are associated with
anhedonia in adolescents with depression.60,62 Additionally, glutamine/glutamate imbalance in the rostral ACC is associated
with anhedonia in depression patients.63 Moreover, a subtype of depression, characterized by increased peripheral inflam-
mation and glutamate level in the left basal ganglia, has been reported to be associated with anhedonia and reduced network
integrity within reward processing regions.54 Neuroinflammation and oxidative stress likely contribute to reductions in
glutathione in the occipital cortex, which results in glutamate and dopamine dysregulation; this, in turn, affects the reward
circuitry and induces anhedonia in patients with MDD.61 Thus, reward deficits, alongside functional and neurochemical
alterations within and beyond the reward circuitry, may give rise to anhedonia in depression patients.

Aversion Circuits and Anhedonia in MDD
The neural basis of anhedonia is closely related to dysfunctional aversion circuits. LHb is a key brain structure for
mediating behavioral responses to aversive stimuli.64 In rodents, increased expression of a specific calcium protein kinase
in the LHb mediates depressive behaviors, such as anhedonia and despair behavior.65 Stimulation of LHb neurons
establishes connections with distinct subpopulations of VTA neurons and triggers aversion-associated behavior in mice;
thus, the dysregulation of the LHb–VTA pathway may be a key mechanism underlying aversion processing deficits and
depression pathogenesis.4 Additionally, individuals with MDD have larger habenula volumes and greater left habenula
activation, which correlate with the severity of depressive symptoms and anhedonia.66

The brain circuits that mediate aversive processing in depression patients include the PFC, amygdala, and
caudate.42,67,68 Patients with MDD show greater amygdala activation in response to negative than positive facial
expressions, and reduced amygdala responsiveness to positive stimuli is associated with higher physical anhedonia
scores.42 Patients who have recovered from depression have abnormal neural responses, whereby activation in the
caudate nucleus while viewing aversive stimuli is increased, and neural responses in the PFC to both pleasant and
aversive conditions are diminished.68 Moreover, adolescents at a high risk of depression show attenuated neural
responses to aversive stimuli, with a decrease in activation of the vmPFC and pregenual ACC.67 In line with the emotion
context insensitivity theory of depression, blunted aversion observed both before depression onset and during the residual
phase may be a trait marker of the illness.67–69

Treatments for Anhedonia in Patients with MDD
Anhedonia and cognitive deficits are typically resistant to first-line antidepressant treatments.7 Previous clinical studies
have suggested that selective serotonin reuptake inhibitors are ineffective for anhedonia.5,70 Vortioxetine is a multimodal-
acting antidepressant that may be effective in ameliorating anhedonia, especially in female patients with MDD.71

Ketamine may rapidly alleviate anhedonia in depression patients because of its direct effect on mitochondrial energy
metabolism.72 In addition, kappa-opioid receptor antagonists that target the ventral striatum, one of the core hubs of the
reward system, may improve the rate of reward learning and alleviate anhedonia.73 Bupropion is a dopaminergic and
noradrenergic reuptake inhibitor and has been offered as a treatment for reward-related deficits and blunted affect in
patients with MDD and may increase neural responses to anticipation, effort and consummation of rewards, and aversive
stimuli.74 However, despite the growing number of studies on treatments, the efficacy of interventions remains
unsatisfactory. Besides, new psychological treatments such as positive affect treatment and positive affect stimulation
and sustainment that target the Positive Valence Systems are providing promise for anhedonia.75 Abnormal neural
responses to rewards and aversion that are associated with anhedonia may be potential targets for intervention and
prevention strategies for depression. Moreover, understanding the neural substrates of anhedonia in depression patients is
vital for identifying neurobiological treatment markers.

Reward and Aversion Circuits and Anhedonia in Schizophrenia
Anhedonia is considered a biological vulnerability marker of schizophrenia spectrum pathology.13 In schizophrenia,
anhedonia has been reported to vary in prevalence from 41%, using questionnaires, to more than 80%, when assessed via
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clinical interviews.76,77 Anhedonia has a detrimental effect on the functioning and quality of life in individuals with
schizophrenia.13 The negative symptoms of schizophrenia, particularly anhedonia and avolition, may reflect a difficulty
in representing the value of rewarding experiences in cognition and working memory.78 Investigating the neural
correlates of anhedonia in patients with schizophrenia may provide valuable insight into the pathophysiology of negative
symptoms.79

The anhedonia phenotype in schizophrenia reflects a degree of “disorganization” within the reward system due to
disrupted cognition and aberrant stimulus processing.22 In schizophrenia, there is a synergistic interaction between
deficits of neurocognition and reward processing.80 Anhedonia in schizophrenia may be driven more by neurocognitive
impairments in representing reward valuation than by hedonic deficits in response to savoring rewards in the moment.21

In addition, motivational deficits in schizophrenia are linked to a compromised ability to form adaptive representations of
expected value.17 While effort expenditure deficits in depression are associated with reduced reward responsivity.2 From
the perspective of consummatory anhedonia, patients with schizophrenia appear to have unaltered reward liking, which is
in contrast to those with depression.43

Reward Circuits and Anhedonia in Schizophrenia
Anhedonia in patients with schizophrenia is associated with dysregulation of the dopaminergic system and neural reward
circuitry.17,80,81 Previous reports have shown that disruption of microstructural integrity of the cingulum bundle, which
mediates dorsal limbic system integration, is related to anhedonia in individuals with psychosis.82,83 Additionally,
fractional anisotropy values of the superior longitudinal fasciculus II, a major frontoparietal white matter tract, are
correlated with trait anhedonia in patients with schizophrenia.83 It has also been reported that aberrant properties of fiber
tracts connecting the medial OFC to the rostral ACC are associated with greater anhedonia in patients with
schizophrenia.84 Similar to the functional coupling observed in patients with schizophrenia, healthy controls with social
anhedonia show decreased FC between the retrosplenial cortex, a region of default mode network (DMN), and the right
fusiform gyrus.85 Moreover, anhedonia is negatively correlated with the basal cerebral blood volume of the OFC in
individuals at clinical high risk of psychosis.86 Furthermore, a positron emission tomography study found that medial
prefrontal default-mode hypoactivity is correlated with physical anhedonia in schizophrenia patients.87

Previous studies have revealed that anhedonia in patients with schizophrenia is attributed to the dysregulation of the
frontostriatal circuit and mesocortical and mesolimbic circuit systems.17,22,46,79 Reduced OFC and putamen/ventral
striatum activity during reward anticipation is linked to greater anhedonia and depressive symptoms in patients with
schizophrenia.79,88 Additionally, activation of the ACC and mPFC during receipt of an unexpected reward predicts task-
related motivation, which is associated with the severity of anhedonia in patients with schizophrenia.46 The motivational
deficits of schizophrenia are thought to result from a reduced ability to differentiate between signal gains and instances of
loss-avoidance, which are associated with the dysfunction of the frontostriatal pathway, including the vmPFC, dorsal
ACC, anterior insula, and ventral striatum.17 Furthermore, patients with schizophrenia exhibit an inverse correlation
between anhedonia-asociality and posterior cingulate and precuneus activity, a key part of the DMN, during an auditory
oddball task.89 Dysfunction of the striatum, cortex, and limbic regions and impaired integration of the reward networks
may also lead to anhedonia in patients with schizophrenia.80

Aversion Circuits and Anhedonia in Schizophrenia
Aversion circuits play an important role in the development of anhedonia in patients with schizophrenia. Patients with
first-episode schizophrenia exhibit more prominent impairments in emotion–behavior coupling for aversion-avoidance
behavior than healthy controls.90 In addition, schizophrenia patients show increased aversion to angry faces during
a reward learning task using emotional face stimuli.91 Moreover, patients with schizophrenia exhibit relatively strong
aversive emotions toward stimuli considered pleasant or neutral by others.92 In a neuroimaging study, schizophrenia
patients have lower gray matter volume in the bilateral habenula and enhanced functional coupling between the right
habenula and subcortical regions related to the dopaminergic reward pathways, which include the left ventral striatum,
caudate, and putamen.93 Aberrant habenula activity in response to unexpected negative outcomes has also been shown to
be associated with the mediation of feedback-processing deficits in patients with schizophrenia.64,94
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In patients with schizophrenia, ventral limbic regions show attenuated deactivation in response to target versus
aversive events, and activation of the ACC in response to aversive images is inversely correlated to the severity of
anhedonia and avolition symptoms.95 Additionally, functional coupling of the striatal-amygdala network is positively
correlated with the severity of anhedonia-asociality and negatively associated with oxytocin receptor-gene methylation in
female patients with schizophrenia.96 Furthermore, patients with schizophrenia exposed to unpleasant odors fail to
activate limbic regions, which include the insula, parahippocampal gyrus, and NAc, and abnormalities in these regions
are associated with the neural substrates of anhedonia in patients with schizophrenia.97

Treatments for Anhedonia in Patients with Schizophrenia
Clinical research findings indicate that patients with schizophrenia are less responsive than those with depression to
treatments for anhedonia.13 For schizophrenia, atypical antipsychotics are superior to typical antipsychotics in reducing
negative symptoms, such as anhedonia; however, none of them have achieved the threshold for clinically significant
improvement.98 Intermittent theta-burst stimulation over the dorsomedial PFC has also been shown to have little effect on
ameliorating anhedonia in patients with schizophrenia.99 Thus, anhedonia in schizophrenia patients cannot be effectively
treated with current treatments, which highlights the crucial need for more effective interventions.22 Anhedonia is
considered a trait-marker of schizophrenia and is highly relevant to the dysfunction of reward and aversion
systems.22,91,95 Therefore, elucidating the neurobiological mechanisms underlying anhedonia may help in the identifica-
tion of potential treatment targets for schizophrenia.

Transdiagnostic Brain Alterations in MDD and Schizophrenia
Anhedonia is recognized as a transdiagnostic symptom of depression and schizophrenia and is linked to deficits in the
reward and aversion systems (Figure 1). Anhedonia shares common neurobiological alterations of the frontostriatal
network and mesocorticolimbic circuits for reward and aversion processing in both patients with MDD and
schizophrenia.1,22,24,46,100,101 A transdiagnostic meta-analysis reported that consummatory anhedonia is associated with
decreased activation of the ventral basal ganglia region in both disorders, and anticipatory anhedonia is linked to areas of the
frontostriatal circuitry, which include the ventral striatum, dorsal ACC, middle frontal gyrus, and medial frontal gyrus.24

Additionally, in MDD and schizophrenia patients, reward deficits are associated with hypoconnectivity between the NAc
and the DMN and hyperconnectivity between the NAc and the cingulo-opercular network (CON); moreover, reward
responsivity impairments are associated with DMN hyperconnectivity and diminished connectivity between the DMN and
CON.102 Volumetric abnormalities in the putamen and cerebellum have been reported to negatively correlate with
anhedonia scores in both MDD and schizophrenia patients, which suggests that volumetric alterations within the puta-
men–cerebellum network mediate reward-related goal-directed behaviors in both disorders.103 Inflammation and cytokines
may affect dopamine neurotransmission, which mediates several aspects of anhedonic behavior.29 In addition to the
dysfunction of dopaminergic signaling, dysregulation of glutamate and serotonin are also involved in anhedonia.58,80,89

Furthermore, anhedonia has shared genetic influences across multiple diagnostic categories, and the genetic risk of
anhedonia also influences brain structure, especially regions associated with reward and pleasure processing.18,104 Thus,
the shared genetic and inflammation factors may contribute to the common alterations in the reward and aversion pathways,
which results in the manifestation of anhedonia in patients with depression and schizophrenia.

Dissociable or disorder-specific alterations in brain pathways are also linked to anhedonia among different clinical
diagnostic categories.23 The spatial distribution of reward processing regions differs between depression and schizo-
phrenia patients during reward learning; patients with MDD exhibit reduced prediction error signaling in the striatum and
midbrain, whereas those with schizophrenia show reduced prediction signaling in the dorsal striatum, thalamus, and
limbic regions.105 Moreover, abnormal prediction error encoding in MDD patients gives rise to anhedonia symptoms by
attenuating reward learning events, whereas disturbed signal encoding in schizophrenia patients contributes to psychotic
symptoms by driving aberrant salience toward external and internal stimuli.105,106 Depression and schizophrenia likely
reflect illness-specific neural valuation and incentive salience formation associated with reward and aversion
processing.105,106 Both depression and schizophrenia groups show reduced activation in the mPFC in response to
unexpected rewards, with activation being significantly more aberrant in schizophrenia patients than in depression
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patients.46 The severity of depressive symptoms in patients with schizophrenia negatively correlates with ventral striatum
activation during the receipt of a reward, which indicates that impaired hedonic reward processing contributes to the
development of depressive symptoms in schizophrenia.81,88 Furthermore, from a cellular perspective, dopaminergic
neurons are reclassified according to specific projection subtypes and thus may contribute uniquely to the processing of
rewards and aversion.32 In addition to the heterogeneous cellular structure, dopaminergic, GABAergic, and glutamatergic
neurons engage in complex interactions to modulate network activity.35 Thus, adaptations of both dopaminergic and
glutamatergic functions within the VTA and NAc may differ in directionality according to cell type and stress
paradigm.27

Figure 1 Anhedonia-associated reward and aversion pathways. The figure displays key regions of the frontostriatal network and mesocorticolimbic circuits that are linked to
the reward and aversion processing underlying anhedonia in patients with depression and schizophrenia. (A) The red curve represents the reward circuit, and the blue curve
represents the aversion circuit. Purple dots represent major depressive disorder (MDD). Green dots represent schizophrenia (SCZ). Yellow dots represent healthy controls
(HC). PFC, prefrontal cortex. The upward arrow indicates increases, and the downward arrow indicates decreases. (B) Key regions of the reward circuit from lateral and
axial views. (C) Key regions of the aversion circuit from lateral and axial views.
Abbreviations: OFC, orbitofrontal cortex; ACC, anterior cingulate cortex; NAc, nucleus accumbens; VTA, ventral tegmental area; SN, substantia nigra; FC, functional
connectivity; ReHo, regional homogeneity; CT, cortical thickness; GMV, gray matter volume; L, left; R, right.
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Future Directions and Conclusion
Anhedonia is a prominent symptom of depression and schizophrenia. A transnosographic approach is a promising
method for revealing the overall neurobiological framework on and beyond reward and aversion circuits relevant to
anhedonia.20 Taking into account the heterogeneity of individual differences, identifying biologically homogenous
subtypes tied to multi-faceted anhedonia will be a method to differentiate depression from schizophrenia and improve
the early diagnosis and treatment in these two disorders.54 In addition, to define symptomology related neuroimaging
biomarkers, it is significant to investigate the shared brain circuits and specific alterations between anhedonia and other
negative symptoms and depressive symptoms in psychiatric disorders, especially in schizophrenia. Moreover, the future
studies require to define the neuroimaging biomarkers and peripheral phenotype features which have the ability to
represent anhedonia and suggest specific treatment options, such as medication, transcranial magnetic stimulation,
transcranial direct current stimulation and psychotherapy.

Previous research has reported that environmental stressors contribute to the development of anhedonia, and it also holds
a significant role to disentangle the influences of key dimensions of stress on specific aspects of reward processing in
schizophrenia and depression.31,107 Besides, neuroinflammation and peripheral inflammation associated with glutamate and
dopamine dysregulation that affects the reward circuitry and induces anhedonia.54,61 Inflammation cytokines interact with
tryptophan kynurenine pathway and also affect the formation of neopterin and tetrahy-drobiopterin, which are associated with
dysregulation of neurotransmitters and may impede the function of neural circuits related to anhedonia.29 Future research is
needed to better understand how inflammation and cytokines regulates reward and aversion circuits through its effects on the
dopamine and glutamate systems and leading to anhedonia in schizophrenia and depression. In addition, genetic predisposition
to anhedonia also influences brain structure and function associated with reward and aversion processing.18,104 The future
studies will enhance the possibility of combining genetic factors, peripheral measures and neuroimaging-based biomarkers
relevant to anhedonia in the pathophysiology of depression and schizophrenia.

In this review, we summarized characteristics of anhedonia in depression and schizophrenia, as well as anhedonia-
related reward and aversion neural circuits across these two disorders. Symptom-based studies to identify a biomarker
may help understand the precise mechanisms of the discrepancies of anhedonia and the underlying reward and aversion
pathway deficits in both disorders. The dysfunction of the frontostriatal and mesocorticolimbic circuit systems involved
in reward and aversion processing play a critical role in the development of anhedonia in both patients with depression
and schizophrenia. Establishing transdiagnostic and/or specific neurobiological alterations in anhedonia and investigating
circuit dysregulation in depression and schizophrenia may facilitate the development of more targeted and effective
treatment and intervention strategies.
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