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Purpose: Urinary tract infections (UTIs) can evoke a rapid host immune response leading to bladder inflammation and epithelial
damage. Neuroimmune interactions are critical for regulating immune function in mucosal tissues. Yet the role of nociceptor neurons
in bladder host defense has not been well defined. This study aimed to explore the interaction between nociceptor neurons and bladder
immune system during UTIs.
Methods: In this study, whether uropathogenic Escherichia coli (UPEC) and lipopolysaccharide (LPS) can directly stimulate
nociceptor neurons was detected. Female C57BL/6J mice were treated with high dose of capsaicin, a high-affinity TRPV1 agonist,
to ablate nociceptor neurons. Bladder inflammation, barrier epithelial function and bladder immune cell infiltration were assessed after
UPEC infection. The level of neuropeptide calcitonin gene-related peptide (CGRP) in infected bladder was detected. Furthermore, the
effects of CGRP on neutrophils and macrophages were evaluated both in vitro and in vivo.
Results: We found that UPEC and its pathogenic factor LPS could directly excite nociceptor neurons, releasing CGRP into infected
bladder, which suppressed the recruitment of neutrophils, the polarization of macrophages and the killing function of UPEC. Both
Botulinum neurotoxin A (BoNT/A) and BIBN4096 (CGRP antagonism) blocked neuronal inhibition and prevented against UPEC
infection.
Conclusion: The present study showed a novel mechanism by which UPEC stimulated the secretion of CGRP from nociceptor
neurons to suppress innate immunity.
Keywords: UTIs, CGRP, nociceptor neurons, UPEC, innate immune cells

Introduction
Urinary tract infections (UTIs) are one of the most common bacterial infections, infecting >150 million people
per year.1 Most of UTIs are caused by uropathogenic Escherichia coli (UPEC).2,3 Bacterial infection evokes strong
host responses of bladder, releasing powerful cytokines and recruiting extensive neutrophils and macrophages into the
bladder.4–7 The host response of bladder also induces a large area of bladder superficial epithelium to fall off, which
is regarded as a defense mechanism to reduce the infecting bacterial load.8,9 Despite the strong host response to
bacteria, the urinary tract is highly vulnerable to infection and the incidence of infection recurrence is also very high.
Clinically, UPECs are resistant to many antibiotics.10 Until now, there are still many unknowns about the regulating
mechanism of host responses to UTIs. The underlying reasons for the insufficient host response to bacterial infection
are unclear.
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The urinary tract is one of the most abundantly innervated tissues and possesses complex afferent and efferent reflex
pathways.11 Nociceptors are sensory neurons that protect organisms from dangers by evoking pain.12 In addition to
signaling pain, it is increasingly clear that nociceptor sensory neurons are closely associated with the function of immune
system in response to infection.13 It has been found that nociceptor neurons can modulate the function of macrophages,
neutrophils, T cells and dendritic cells by altering gene expression, cytokine production, immune cell recruitment and
immunophenotypic change.13 Specifically, S. pyogenes stimulate nociceptor neurons releasing CGRP, which suppresses
neutrophils recruitment and bactericidal activity, thereby enhancing S. pyogenes survival in the skin.14 In S. aureus skin
infection, activation of nociceptor neurons decreases TNF-α production from macrophages.15 In the lung, activation of
nociceptor neurons limits neutrophils and γδT cells in Staphylococcus aureus infection, and this effect is mainly mediated
by CGRP.16 By contrast, nociceptor neurons affect IL-23 production from CD301b+ dermal dendritic cells and IL-17a
production from γδT cells to promote the clearance of skin C. albicans.17 These recent studies demonstrated both
protective or harmful effects of nociceptor neurons on immune responses depending on the specific context of infection.

Until now, the role of the nociceptor neurons in bladder host defense has not been well defined. Here, we aim to
uncover the crosstalk between nociceptor neurons and host immune response during UPEC infection. We hypothesized
that UPEC could directly stimulate nociceptor neurons and affect the bladder immune microenvironment. In the present
study, the inflammation, bladder urothelial barrier function and bacterial load were investigated after ablation nociceptor
neurons. We determined whether nociceptor neurons limited the recruitment and function of neutrophils and macro-
phages. And we want to figure out the underlying mechanisms.

Materials and Methods
Mice and Nociceptor Neuron Ablation Model
Four-week-old female C57BL/6J mice were purchased from the Shandong University Experimental Animal Center. All
mouse experiments were conducted according to protocols approved by Laboratory Animal Ethical and Welfare
Committee of Shandong University Cheeloo College of Medicine (No. 20085) and in accordance with the guidelines
of the Care and Use of Laboratory Animals (National Institutes of Health, Bethesda, MD, USA).

Four-week-old female C57BL/6J mice were anesthetized with isoflurane and injected intrathecally at L4-L5 with
capsaicin (10 μg, Meilunbio #MB6186) or vehicle (10% Tween 80, saline) for 2 days by a luer-tipped Hamilton syringe
in a volume of 5 μL with a 30-gauge needle. TRPV1+ nerve terminals were ablated after 24 hours by intrathecal
capsaicin injection, and this effect could sustain for at least 8 weeks.18,19 Mice were bred in the animal facility of
Shandong University until experiments.

Eight-week-old female C57BL/6J mice were anesthetized with isoflurane and injected intrathecally at L4-L5 with
capsaicin (0.5 μg, Meilunbio #MB6186) or vehicle (10% Tween 80, saline) for once by a luer-tipped Hamilton syringe
with a 30-gauge needle.

Bacterial Strain, Culture and Mouse UTI Model
Uropathogenic wild-type E. coli strain CFT073 (American type culture collection, 700,928) was grown at 37 °C with 5%
CO2 in Luria-Bertani broth for 24 hours and resuspended in PBS to an optical density at 600 nm of 0.6. To induce
cystitis, mice were anesthetized with isoflurane, then given 5 × 107 E. coli strain CFT073 in 60 μL PBS by transurethral
inoculation via a 0.28 mm catheter. CO2 inhalation was used for euthanasia.

Bacterial Load Assessment
A total of 22–24 mouse urine in each group were collected at 24 hours post-infection and underwent serial dilution in
PBS for 8 times. Ten microlitres of diluted sample was plated on Difco MacConkey agar plates. After incubation
overnight at 37 °C, the number of urine colony-forming units (CFUs) was counted.

https://doi.org/10.2147/JIR.S356960

DovePress

Journal of Inflammation Research 2022:153338

Gao et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Ex vivo Gentamicin Protection Assays
A total of 12 mouse bladders in each group were collected at 24 hours post-infection and cultured in DMEMmedium containing
gentamicin (100 μg/mL) for 1 hour to kill extracellular bacteria. Add two sterile 3mm grinding beads to the bladder tissue and
grind the tissue with a tissue grinder (Servicebio, China) for 90s at a frequency of 120 Hz, twice (representing invaded bacteria,
the intracellular fraction). The next steps were the same as those of CFUs. The number of invaded bacteria was counted.

Western Blotting
Five mouse bladders of each group were homogenized with RIPA buffer (Beyotime Biotechnology, P0013B). Following 30 min
reaction on ice, the tissue debris was pelleted by centrifugation (14,000g, 15 min, 4 °C). The supernatant was collected, and its
concentration was determined by using bicinchoninic acid (BCA, BeyotimeBiotechnology, P0010). Protein samples were heated
for 10 min to 99 °C with loading buffer. Protein samples were separated to SDS-PAGE and were transferred to polyvinylidene
difluoride membranes. The membranes were blocked with 5% skim milk for 1.5 hours at room temperature and incubated
overnight at 4 °C with primary antibodies (TRPV1, 1:1,000, Abcam #ab203103). GAPDH (1:2,000, Abways #AB0037) was
used as the referenced protein. After three washing times with Tris-buffered saline with tween-20 (TBST) for 10 min each,
membranes were incubated with HRP-conjugated secondary antibodies (1:5,000, Cell Signaling Technology, #7076) for 1 hour
at room temperature and washed three times with TBST. Signaling was detected with Amersham ImageQuant 800.

Histological Examination
Five to six mice of each group were sacrificed by CO2 inhalation. Bladders were immersed in 4% paraformaldehyde,
embedded in paraffin and sectioned. Bladder tissue slides were stained with hematoxylin and eosin (H&E). Stained slides
were imaged by an Olympus microscope digital camera.

Immunofluorescence Analysis
Five L5-S1 DRG samples of each group and 4 bladders of each group were collected and sectioned. Paraffin sections were
deparaffinized and heated to retrieve antigens. Next, the samples were removed endogenous peroxidase and blocked by 5%
serum in 1% BSA for 1 hour at room temperature. The TRPV1 primary antibody (1:500, Abcam #ab203103) was incubated
overnight at 4 °C with DRG tissue sections. The F4/80 antibody (1:400, Cell Signaling #30325) was incubated overnight at 4
°C with bladder tissue sections. The next day, the sections were placed at room temperature for 1 hour, followed by washing
three times with phosphate buffered saline (PBS). Antigen–antibody complexes for DRG samples were detected with Alexa
Fluor 594 goat anti-mouse IgG (1:200, Yeasen # 33212ES60) and antigen–antibody complexes for bladder samples were
detected with Alexa Fluor 594 donkey anti-rabbit IgG (1:200, Yeasen # 34212ES60) at 37 °C for 1 hour. After DAPI staining
to reveal the nuclei, the images were captured under fluorescence microscope (Olympus, Japan).

WGA
WGA staining was modified from previous research.9 Four bladder samples of each group were collected and sectioned.
Bladder paraffin sections were processed as described above. After blocking, WGA-FITC (1:200, GeneTex #GTX01502)
was incubated for 1 hour at room temperature with bladder tissue sections. After DAPI staining, the images were
captured under a fluorescence microscope.

Trypan Blue
Trypan blue assay was modified from previous research.20 At 24 hours post-infection, 4 mice of each group were
anesthetized with isoflurane, then slowly given 1% trypan blue in PBS (60 μL) by transurethral delivery into bladder.
Thirty minutes after trypan blue given, bladders were collected, washed with PBS and taken images.

Dorsal Root Ganglia Neuron Collection and Calcium Imaging
DRG from 8-week-old mice were dissected and transferred into neurobasal medium (Thermo Fisher), dissociated in collagenase
type 4 (1mg/mL, Biochem #LS004188) and dispase II (25mg/mL, Solarbio #D6430) in HEPES-buffer saline (sigma) for 30min
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at 37 °C. After supernatant were removed, dissociated DRGwere washed with DMEM (10% FBS) and centrifuged for 3 min at
500g at room temperature. Cells were resuspended in neurobasal medium (Thermo Fisher) and plated on 14 mm cell climbing
dishes (Solarbio #YA0350) treated with poly-D-Lysine (2.5 mg/mL, Beyotime) in advance. For calcium imaging, cells were
treated with 10 μM Fura-2 AM (Thermo Fisher) for 30 min in neurobasal medium at 37 °C and washed. Fura-2 AMwas excited
by alternating 340/380 nm and imaged by inverted microscope and camera (Nikon, Princeton Instruments). Images of 340/380
ratio were processed and analyzed by NIS-software (Nikon). Capsaicin (1 μM,Meilunbio #MB6186), live CFT073, LPS (10 ng/
mL, sigma #L2630) were applied in calcium imaging.

Enzyme-linked immunosorbent assays (ELISA) 3 bladders of each group were collected at 0, 8, 24 hours post-
infection and homogenized with PBS. Bladder tissue debris was transferred into a centrifuge tube and incubated with
shaking (500rpm) for 15min at 4 °C. The supernatant from bladder tissue debris was collected after shake and quantified
by a CGRP ELISAkit (Elabscience #M0215c) according to manufacturer’s instructions.

PCR
Total RNAwas extracted by using TRAzol (Invitrogen #15596018) according to themanufacturer’s instructions. Extracted RNA
was synthesized into cDNA using PrimeScript RT Master Mix (Accurate Biology). Synthesized cDNAwas used for RT-PCR
with SYBR Green Pro Taq Mix (Accurate Biology, AG11701) following the manufacturer’s instructions. The result of mRNA
relative expression levels was analyzed by the 2−ΔΔCt method. GAPDH was used as the referenced gene. The following primers
were used: mus-IL1β-F: 5’-AATGCCACCTTTTGACAGTGATG-3’, mus-IL-1β-R: 5’-AGCTTCTCCACAGCCACAAT-3’;
mus-IL6-F: 5’-ACAAAGCCAGAGTCCTTCAGA-3’, mus-IL6-R: 5’-TGTGACTCCAGCTTATCTCTTG-3’; mus-IL10-F:
5’-GTAGAAGTGATGCCCCAGGC-3’, mus-IL10-R: 5’-CACCTTGGTCTTGGAGCTTATT-3’; mus-Arg1-F: 5′-CTCC
AAGCCAAAGTCCTTAGAG-3′, mus-Arg1-R: 5′-AGGAGCTGTCATTAGGGACATC-3′; mus-Trpv1-F: 5’-
TTCTCGTGGAGCCCTTGAAC-3’, mus-Trpv1-R: 5’-CGATAGTAAGCAGCCGTGGT-3’. mus-GAPDH-F: 5’-
GCCTCGTCCCGTAGACAAAAT-3’; mus-GAPDH-R: 5’-GTGACCAGGCGCCCAATA-3’.

Flow Cytometry
Three to five bladder tissues of each group were dissociated in Liberase TL (0.5 mg/mL, Merck#05401020001) and
dispase II (20 mg/mL, Merck#D4693) in HEPES-buffer saline (sigma) for 120 min at 37 °C. Dissociated tissues were
filtered through 70 mm mesh and resuspended in HBSS buffer with 2% PFA. Cells were centrifuged at 500g for 3 min
and resuspended in HBSS buffer. Immune cells were separated by 40% and 80% Percoll solution before flow cytometry.
Surface antigens were stained and fixated and permeabilized, then stained intracellular proteins. Antibodies used for
staining: anti-CD45.2-AF700 (1:200, Biolegend# 109822), anti-CD11b-APC-CY7 (1:200, Biolegend# 101226), anti-Ly
-6G-FITC (1:200, Biolegend# 127606), anti-F4/80-PE (1:200, Biolegend# 157304), anti-CD86-FITC (1:200, Biolegend#
105110), anti-CD206-APC (1:200, Biolegend# 141708). We excluded dead cells by using a live cell stain (AquaTM
Fixable viability, Biolegend). It was centrifuged at 500g for 3 min and resuspended in HBSS buffer. Flow cytometry was
conducted on Gallios flow cytometry (Beckman). Data were analyzed by FlowJo software.

Neutrophils and Macrophages Culture
Mice were euthanized by CO2 inhalation and dissected femurs and tibias. Bone marrow was collected by PBS flushing. Cells
were centrifuged at 1000rpm for 5 min. Then, supernatant was removed. Cells were resuspended in red blood cell lysis buffer (5
mL, Beyotime #C3702) for 5 min at room temperature. Added PBS (5mL) and centrifuged at 1000rpm for 5 min. Cells were
resuspended and cultured in low glucose DMEM (sigma #D6046) with macrophage colony stimulating factor (MCSF) (25 ng/
mL, Abcam #ab129146) and 10% FBS. After 3 days of cell culture, the fresh culture mediumwas replaced, and then cultured for
4 days, bone marrow-derived macrophage (BMDM) could be used for subsequent experiments.

For neutrophil culture, peripheral blood of mice was collected and centrifuged at 500g for 5 min to separate serum.
Added the same volume of 0.9% NaCl solution and mixed. Ficoll neutrophil isolation solution (TBD #LST1077-1) was
used according to the manufacturer’s instructions. Next, layer of red blood cell and neutrophil was collected. Cells were
centrifuged at 1200rpm for 5 min and resuspended in red blood cell lysis buffer (Beyotime #C3702) for 5 min at room
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temperature (the process was repeated three times). Then, cells were cultured in 1640 medium (sigma #R8758) with 10%
FBS and serum.

Neutrophil Bactericidal Activity
Neutrophils were treated with CGRP (1 μM, GenScript #RP11095) or vehicle for 2 hours in advance. Neutrophils (107 cells per
well) were incubated with CFT073 (107 CFU) in 1640mediumwith 10% FBS andmouse serum for 1 hour at 37 °C. The control
group did not add neutrophils but added the same number of CFT073. After 1 hour, cells were centrifuged at 1000rpm for 5 min.
Then, the supernatant was centrifuged at 5000rpm for 5 min to collect extracellular bacteria. Centrifuged cells were resuspended
in 1640mediumwith 10% FBS and gentamicin (100 μg/mL) for 1 hour to kill adherent extracellular bacteria. Used 0.5% Triton-
100 (Beyotime #ST797) to lyse cells and collected intracellular bacteria. Bacteria was undergoing serial dilution in PBS and
incubated overnight at 37 °C. The number of neutrophil bactericidal = the control group’s CFUs-extracellular CFUs-intracellular
CFUs. The number of neutrophil phagocytosis = the control group’s CFUs-extracellular CFUs.

MPO Assay
Neutrophils (106 cells/well) were treated with CGRP (1 μM, GenScript #RP11095) or vehicle and incubated with
CFT073 (105 CFU) immediately in 1640 medium with 10% FBS for 1 hour. Collected supernatant for myeloperoxidase
(MPO) activity analysis by a MPO test kit (Elabscience #K074-S) according to manufacturer’s instructions.

pH Probe
BMDMs were plated on 14 mm cell climbing dishes (Solarbio #YA0350) in advance and treated with CGRP or vehicle
for 24 hours. The pH levels of mouse BMDM were measured by a pH probe (LysoTracker Deep Red, Invitrogen,
L12492).BMDMs were treated with pH probe for 30 min at 37 °C in 5% CO2. After DAPI staining, the images were
captured under a fluorescence microscope.

RNA-Sequencing Experiment Analysis Method
Quality control: Raw data (raw reads) of fastq format were processed with fastp, an ultra-fast FASTQ preprocessor with
useful quality. Clean data (clean reads) were obtained after quality control, adapter trimming, quality filtering and per-
read quality cutting. All the downstream analyses were based on the clean data with high quality.

Read mapping to the reference genome: Reference genome and gene model annotation files were downloaded from
genome website directly. Paired-end clean reads were aligned to the reference genome using HISAT2 v2.1.0 (hierarchical
indexing for spliced alignment of transcripts), which is a highly efficient system for aligning reads from RNA sequencing
experiments. HISAT2 uses an indexing scheme based on the Burrows-Wheeler transform and the Ferragina-Manzini
(FM) index, employing two types of indexes for alignment: a whole-genome FM index to anchor each alignment and
numerous local FM indexes for very rapid extensions of these alignments. HISAT2 is the fastest system currently
available, with equal or better accuracy than any other method. HISAT2 was run with the default parameters.

Quantification of gene expression level: Featurecount was used to count the reads numbers mapped to each gene. The
FPKM of each gene was calculated based on the length of the gene and reads count mapped to this gene. FPKM,
expected number of fragments per Kilobase of transcript sequence per millions base pairs sequenced, considers the effect
of sequencing depth and gene length for the reads count at the same time, and is currently the most commonly used
method for estimating gene expression levels.

Differential expression analysis (for DESeq2 with biological replicates): Differential expression analysis of two conditions/
groups (two biological replicates per condition) was performed using the DESeq R package (1.18.1). DESeq provides statistical.

Raw sequence read files are available in the NCBI Sequence Read Archive (SRA) under BioProject PRJNA783048.

Gene Set Variation Analysis
Gene set variation analysis (GSVA) R package was used to estimate the signaling pathways based on transcriptome sequencing
data of each sample.21 We used Hallmark gene sets and KEGG gene sets as the reference to identify the most relevant pathways
of BMDM with CFT073 infection in CGRP-treated samples compared with vehicle-treated samples.
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BoNT/A and BIBN4096 Treatment
BoNT/A (0.2 U, Lanzhou biology) was systemically administrated by intraperitoneal injection 24 hours before infection
with CFT073, and BIBN4096 treatment (Tocris #4561) was systemically administrated by intraperitoneal injection 2
hours before infection.

Statistical Analysis
Data were analyzed by GraphPad Prism software. A two-tailed unpaired Student’s t-test was used for comparison
between the two groups. P < 0.05 was considered to be significant.

Result
CFT073 Directly Stimulates Nociceptor Neurons That Release CGRP into Infected
Bladder
Calcium imaging technique was used to observe the activation of DRG neurons in vitro. A few minutes after exposure,
a strong calcium influx in DRG neurons was evoked by live CFT073 strain in vitro (Figure 1A). These DRG neurons that
response to CFT073 can be further activated by capsaicin. We next determined whether LPS, a pathogenic factor of
E. coli, could also induce calcium influx in DRG neurons. Similar to what other studies have reported,22 LPS could
sensitize DRG neurons (Figure 1A).

We used high doses of capsaicin to ablate nociceptor neurons according to the previous studies18,19 (Figure 1B). It was
found that high dose of capsaicin (Caph group) led to loss of TRPV1 neurons (Figure 1C) and decreased TRPV1 mRNA and
proteins in the muscular layer of bladder (Appendix Figure 1A and B). It was also found in vivo that CFT073 invasion induced
CGRP release at the infected bladder. A significant increase of CGRP levels was observed at 8 hours and 24 hours after
CFT073 infected. Decreased CGRP was found in the bladder of Caph mice compared to the control group after UPEC
infection (Figure 1D). It indicated that the release of CGRP was associated with TRPV1 neuron activation.

Nociceptor Neuron Activation Increases Bacterial Load and Aggravates
UPEC-Induced Bladder Epithelial Barrier Dysfunction
Histopathologic analysis of bladder showed less tissue edema and inflammation in Caph mice compared to the control mice in
response to UPEC infection (Figure 2A). To evaluate the function of the bladder barrier, we assessed the integrity of superficial
epithelium by used wheat germ agglutinin-fluorescein isothiocyanate (WGA-FITC) as a probe.9 Twenty-four hours post-
infection, WGA layer did not form complete structure and was even absent. This phenomenon was significantly alleviated in
Caph group (Figure 2B). Epithelial integrity can also be assessed by examining barrier function following administration of
trypan blue dye, which only penetrates damaged bladder epithelium.We observed strong trypan blue coloration in infected mice
bladders and limited coloration of trypan blue into the bladder epithelium in Caph mice (Figure 2C). Twenty-four hours after
UPEC infection, the number of urine colony-forming units (CFUs) and invaded bacteria were recorded. The results showed that
Caph mice significantly reduced the number of CFUs and invaded bacteria relative to the vehicle group (Figure 2D and E). To
investigate the activating effect of nociceptor fibers, we treated mice with low doses of capsaicin (CapL mice) at 2 hours before-
infection. We found that the number of invaded bacteria was increased in CapL mice compared to the vehicles (Appendix
Figure 1C). However, there was no statistical difference in CFUs between CapL and vehicle mice (Appendix Figure 1D).

CGRP Released by Nociceptors Suppresses Neutrophil Recruitment and Bactericidal
Activity
A strong innate immune response is a sign of UTIs and necessary to eliminate infection. Neutrophils play a major
bactericidal role during the innate immune response to UTIs.23,24 Flow cytometry analysis showed that more
CD11b+Ly6G+ neutrophils were recruited in the bladder of Caph mice compared to vehicle group after UPEC infection
(Figure 3A). Myeloperoxidase (MPO) is a peroxidase, abundantly expressed in neutrophils and plays an antibacterial
function.25 After CFT073 infection, neutrophils produced a large amount of MPO and this effect was inhibited by CGRP
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Figure 1 CFT073 induces neuron activation and CGRP release (A) Representative Fura-2 ratiometric fields (left) and calcium traces (right) of DRG neurons responding to
CFT073 (5 x 107 CFUs), LPS (10 ng/mL) and capsaicin (1 μM) (n=3). (B) Experimental schematic of TRPV1+ neuron ablation and CFT073-induced UTIs to mice. (C)
Representative images of TRPV1+ (red) neurons by immunofluorescence assays (n=5). (D) Measurement of CGRP release with an ELISA kit. CGRP released from bladder
(0, 8 and 24 hours) after CFT073 infection (5 x 107 CFUs) of vehicle-treated or Caph mice (n = 3; ns, P > 0.05; ***P < 0.001).
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(Figure 3B). The phagocytic function of neutrophils to CFT073 decreased slightly in CGRP-treated group compared with
vehicle-treated group, which was not statistically significant (Figure 3C). We also found that CGRP inhibited mouse
neutrophil killing of E. coli (Figure 3D).

Figure 2 Nociceptor neurons mediate bladder epithelial function and bacterial load during UPEC infection Vehicle-treated mice were randomly divided into uninfected or
infected group. Caph mice were infected equivalent CFT073 (5 x 107 CFUs). (A) H&E Staining of bladders from groups “vehicle-uninfected”, “vehicle-infected” and “Caph-
infected” (n=6). (B) Representative images of WGA-FITC in superficial bladder epithelial cells (n=4). (C) Representative images of trypan blue staining in bladders (n=4). (D)
Bacterial load recovery (log10 CFU) from urine in “Caph-infected” or “vehicle-infected” group (n =22-24; **P < 0.01). (E) Ex vivo gentamicin protection assays representing
invaded bacteria in “Caph-infected” or “vehicle-infected” group (n =12; **P < 0.01).
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CGRP Released by Nociceptor Neurons Causes Macrophage Proinflammatory
Phenotype Polarization
Macrophage plays an important role in the defense of infection and the maintenance of bladder homeostasis.26 Through
analyzing Flow cytometry of UPEC-infected bladders, no difference of CD11b+F4/80+ macrophage recruitment was

Figure 3 Nociceptor neurons suppress recruitment and bactericidal function of neutrophils (A) Representative FACS plots (left) showing neutrophils (CD11b+Ly6G+
gates) in Caph or vehicle-treated mouse bladders. Assessment ratio (right) of Caph or vehicle-treated mice bladder neutrophils by flow cytometry analysis (n=3; *P < 0.05).
Mouse neutrophils were co-cultured with CFT073 in presence of vehicle or CGRP (1μM) for 1 hour (B–D). (B) Myeloperoxidase (MPO) activity of neutrophils (n=5; ***P <
0.001; #P < 0.0001). (C) Bacterial phagocytosis of neutrophils (n=6; ns, P > 0.05). (D) Bacterial killing function of neutrophils (n=6; *P < 0.05).
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observed in Caph mice compared with vehicle-treated mice (Figure 4A). Next, the localization of macrophages in the
UPEC-infected bladder was evaluated. Immunofluorescence staining showed that F4/80-positive cells located close to
bladder epithelium in Caph mice decreased slightly compared with vehicle-treated mice after UPEC infection
(Figure 4B).

We next tested the polarization of macrophages through analyzing flow cytometry of UPEC-infected bladder.
Less CD86+ M1 macrophages and more CD206+ M2 macrophages were found in Caph mice bladders compared to

Figure 4 Continued.
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Figure 4 Nociceptor neurons affect polarization of macrophages (A) Representative FACS plots (left) showing macrophages (F4/80+ CD11B+) in Caph or vehicle-treated mouse
bladders. Assessment ratio (right) of Caph or vehicle-treatedmice bladdermacrophages by flow cytometry analysis (n=5; ns, P > 0.05). (B) Representative images of the locations of F4/
80-positive cell in Caph or vehicle-treatedmice bladders by immunofluorescence assays (n=4). (C) Representative FACS plots (left) showing M1 (F4/80+CD11B+CD86+ gates) andM2
(F4/80+CD11B+CD206+) inCaph or vehicle-treatedmouse bladders. Assessment ratio (right) ofCaph or vehicle-treatedmice bladderM1 andM2by flowcytometry analysis (n=5; *P<
0.05).mRNAexpression frommouseBMDMafter 6 hours post-infectionwithCGRPor PBS-treated (D–G). (D)MeasurementofmRNAofmousemacrophages polarizationmarker by
PCR (n= 3; **P < 0.01; #P < 0.0001). (E) Transcriptome analysis by Hallmark gene sets. (F) Transcriptome analysis by KEGG gene sets. (G) Differentially expressed genes for
transcriptome analysis. (H) Representative images of pH probe (red) for the pH levels of mouse BMDM by immunofluorescence assays (n=6).
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vehicle group (Figure 4C). We hypothesized that the release of CGRP from nociceptor neurons resulted in mouse
macrophage polarization in the UPEC-infected bladder, which may lead to the destruction of bladder epithelium
homeostasis and the aggravation of inflammation. In vitro, experiment using mouse bone marrow-derived macro-
phages (BMDMs) showed that CGRP could increase the expression of M1 proinflammatory genes (IL-1b, IL-6)
and decrease the expression of M2 anti-inflammatory gene (Arg-1) (Figure 4D).

Transcriptome analysis by Hallmark gene sets (Figure 4E) showed that majority of differential genes in
BMDM treated by CGRP were belonging to “inflammatory response” pathway, including “TNFα signaling via
NF-kappa B” pathway, “interferonα response” pathway and “interferonβ response” pathway. It suggested a high
level of inflammation state in the presence of CGRP. Transcriptome analysis also showed that “oxidative
phosphorylation” pathway and “fatty acid metabolism” pathway were more active in vehicle-treated BMDM.
Previous study reported that M2 macrophages had enhanced TCA cycle activity, mitochondrial oxidative phos-
phorylation activity and fatty acid utilization compared to M1 macrophages.27 Meanwhile, we analyzed RNA-seq
data by KEGG gene sets (Figure 4F) and found that genes with increased expression in BMDM treated by CGRP
were belonging to “cytokine–cytokine receptor interaction” pathway and “chemokine signaling” pathway.
Meanwhile, genes with increased expression in BMDM treated by vehicle were belonging to “citrate TCA
cycle” pathway and “lysosome” pathway. This result was also consistent with the result of Hallmark gene sets.
The detailed gene expression of M1 and M2 macrophages showed that more TNF, IL-6, IL-1a, CD40, IL-12a, IL-
12, IL-23a and less Arg1, CD163 were expressed in CGRP treatment group compared to vehicle treatment group
(Figure 4G).

Lysosome plays an important role in the interaction between macrophages and bacteria, which is an acidic organelle,
and low pH value is the key to its normal function.28 Using a fluorescent pH probe, we observed that in the presence of
CGRP, the intracellular pH of macrophages increased (Figure 4H). This finding was also related with the RNA-seq data
analyzed by KEGG database (Figure 4F).

BoNT/A Injection and CGRP Receptor Antagonism Applied in CFT073 Infection
We next investigated the effect of the BoNT/A treatment (inhibition of neural vesicle release) and CGRP receptor
antagonism (BIBN4096) on the host response of bladder. Systemic BoNT/A treatment, when administrated 24
hours before infection, or systemic BIBN4096 treatment, when administrated 2 hours before infection, were
associated with reduced bladder cystitis (Figure 5A), more complete WGA layer (Figure 5B), less epithelium
damage (Figure 5C) and increased bacterial clearance (Figure 5D), compared to mice treated with vehicle alone.

BoNT/A or BIBN4096 treatments increased the recruitment of neutrophils to the infected bladder compared to
untreated mice (Figure 5E). The result also showed less CD86+ M1 macrophages in bladder after BoNT/A or BIBN4096
injections compared to vehicles. CD206+ M2 macrophages were slightly increased in BIBN4096 treatment group
(Figure 5F).

Taken together, our findings suggested that nociceptor neurons inhibited the recruitment and function of neutrophils
and macrophages during UPEC infection (Figure 6).

Discussion
A fundamental role of nociceptor sensory neurons is to protect organisms from danger by detecting stimuli and eliciting
pain. In this study, we treated mice with high dose of capsaicin by intrathecal injection to ablate nociceptors and
identified a crucial role of sensory neurons in host response to UPEC invasion. UPEC and its pathogenic factor LPS
could directly activate nociceptor neurons, which inhibited the recruitment of neutrophils, the polarization of macro-
phages and the killing of UPEC. These inhibitive mechanisms were linked to neuronal release of CGRP, which regulated
neutrophils and macrophage functions both in vivo and in vitro. Notably, it has been found by recent studies that
neuropeptides can have a direct regulatory effect on innate immune cells.29 In the gut muscularis layer, when activated by
bacterial infection, norepinephrine released from extrinsic sympathetic innervation mediated alternative activation of
muscularis macrophages and induced fast tissue protection.30 Neuropeptide neuromedin U activates ILC2 and causes
type 2 inflammation to promote worm expulsion in enteric mucosal sites.31 The present study indicated an important role
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Figure 5 BoNT/A and BIBN4096 treatment block neural signal (A–C) Representative images show bladder inflammation and uroepithelium damage for groups “vehicle-
infected”, “BoNT/A-infected” and “BIBN4096-infected”. (A) H&E staining (B) WGA-FITC and (C) trypan blue staining (n=3–5). (D) Bacterial load recovery (log10 CFU)
from urine for each group (n =9/group; **P < 0.01). (E) Representative FACS plots (left) showing neutrophils (CD11b+Ly6G+ gates) in Caph or vehicle-treated mouse
bladders. Assessment ratio (right) of Caph or vehicle-treated mice bladder neutrophils by flow cytometry analysis (n=5; **P < 0.01; ***P < 0.001). (F) Representative FACS
plots (left) showing M1 (F4/80+CD11B+CD86+ gates) and M2 (F4/80+CD11B+CD206+) in Caph or vehicle-treated mouse bladders. Assessment ratio (right) of Caph or
vehicle-treated mice bladder M1 and M2 by flow cytometry analysis (n=5; ns, P > 0.05; *P < 0.05; **P < 0.01).
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of CGRP in the host response to UTIs. Previous studies have shown that CGRP acts variously, including on vascular
endothelial cell to mediate vasodilation32 and on epithelial cells to regulate inflammation.33 In addition, CGRP receptor is
highly expressed in neutrophils, monocytes and macrophages.15 According to the results of the present study, blocking
neuro-immune suppressive effect through CGRP may be a potential strategy to treat UTIs.

The present study found that UPEC and LPS could directly stimulate nociceptor neurons. LPS is the most important
ligand for Toll-Like Receptor 4 (TLR4) and promotes the intracellular progression of UPEC in urinary tract.34 Toll-like
receptors (TLRs) are key molecules in the immune system.35 The other study found that LPS could sensitize trigeminal
sensory neurons via TLR4.22 It would be interesting to know if the LPS stimulates nociceptor neurons through TLR4 or
if some other structures of UPEC cloud are exacerbating the immune response through nociceptor neurons.

The present study found that nociceptor neuron activation influenced the polarization of macrophages.
Specifically, the neuropeptide CGRP promoted the polarization of M1 in the context of UPEC infection. In the
presence of CGRP, UPEC-induced macrophages also expressed more pro-inflammation factors and fewer anti-
inflammatory factors. Abundant macrophages are located in the urinary tract submucosa.4 Macrophages have
bactericidal activity, but this activity seems to be less critical for killing bacteria than that for neutrophils.23,24

However, macrophages do play an important role in inflammation resolution after bacteria are cleared.36,37

Traditionally, macrophage polarization has been broadly divided into two groups: M1 and M2 macrophages.
Whereas M1 macrophages are highly inflammatory by producing inflammatory mediators, M2 macrophages are
less inflammatory and participate in tissue repair. Meanwhile, it is widely believed that M1 macrophages are
microbicidal and M2 macrophages are poorly microbicidal.38 Inflammation can be a double-edge sword for
infections. Uncontrolled or prolonged M1 polarization can be deleterious for the host causing tissue damage and
further bacterial development.39 In patients with severe sepsis, a substantial existence of M1-phenotype cytokines
was positively correlated with high mortality.40 In our study, the release of CGRP during UPEC infection induced
excessive M1 polarization, which led to tissue injury and disposed the bladder to further infections. M1 polarization
induced by CGRP was supposed to play a negative role in the host defense of UPEC.

The present study also found that nociceptor neuron activation suppressed neutrophil recruitment and function in the
progression of UPEC infection. Neutrophils are the most potent bactericidal phagocytes and represent the most
population of circulating leukocytes in the blood.27 In UTIs, neutrophils are the first immune cells to be recruited to
the infected bladder. A rapid and strong neutrophilia is a feature of innate immune activation. The number of neutrophils
is closely related to the bacterial burden in UTIs. With the increase of the bacterial number, neutrophils also increase
accordingly.4,23 Neutrophil activation is a mechanism of the body defense to infection. However, excessive and dramatic
neutrophilia is also harmful to surrounding bladder tissues due to reactive oxidants and other toxic substance releasing.
Thus, we consider that neural suppression of neutrophils during bacterial invasion may be a feedback mechanism for host
self-protection to limit injury from excessive M1 inflammation.

Figure 6 A schematic diagram of the results. UPEC could directly stimulate nociceptor neurons, releasing CGRP into the infected bladder which inhibited the recruitment
of neutrophils, MPO releasing and affected the polarization of macrophages, and finally caused bladder inflammation, epithelial barrier dysfunction and increased bacterial
load.
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The crosstalk between neutrophils and macrophages might be involved in the neuro-immuno-modulation of host
response to UPEC infection. Previous studies demonstrated that an alternatively activated neutrophil can interact with
macrophages to upregulate M2 markers during helminth infection.41 It is assumed that the interaction existed between
macrophages and neutrophils during infections.38,42 It is also well known that macrophages recruit neutrophils in the
early stage of infection and injury7,43 and macrophages phagocytize neutrophils in the late stage of infection to prevent
further injury.44 The present study found that nociceptor neuron activation led to decreased neutrophil recruitment and
increased M1 polarization and decreased expression of M2 markers. There are two possibilities accounting for this result.
Firstly, the inhibitory effect of nociceptor nerve on neutrophils might be greater than the effect of M1 macrophages on
neutrophil recruitment. Secondly, macrophages might begin to phagocytize and clear neutrophils at this stage of
infection.

BoNT/A has been shown to reduce pain by suppressing neuropeptides released from nociceptor sensory
neurons.45 BoNT/A has been widely used in cosmetic dermatology, migraine and interstitial cystitis/bladder painful
syndrome.46–48 In the present study, BoNT/A was used to inhibit the release of CGRP. In addition, BoNT/A also
impacts the release of ATP, acetylcholine, substance P and other neuropeptides.49 CGRP receptor antagonist
BIBN4096 was used to further confirm that the effect of the immune response was mediated by CGRP. The results
demonstrated that both BoNT/A and BIBN4096 can block neuronal suppression of the immune response during
CFT073 infection.

Conclusion
This study revealed that nociceptor neurons are closely involved in the host response to UPEC infection. CGRP might be
a potential therapeutic target for the prevention and treatment of UTIs. Future studies are needed to dissect the exact roles
played by nociceptor neurons in this process. Exploring how neurons modulate immune responses may break fresh
ground for the treatment of UTIs.
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