
OR I G I N A L R E S E A R C H

Simulated Night-Shift Schedule Disrupts the
Plasma Lipidome and Reveals Early Markers of
Cardiovascular Disease Risk
Jennifer E Kyle 1, Lisa M Bramer1, Daniel Claborne2, Kelly G Stratton1, Kent J Bloodsworth1,
Justin G Teeguarden1,3, Shobhan Gaddameedhi4, Thomas O Metz 1, Hans PA Van Dongen 5,6

1Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA;
2Computing and Analytics Division, National Security Directorate, PNNL, Richland, WA, 99352, USA; 3Department of Environmental and Molecular
Toxicology, Oregon State University, Corvallis, OR, 97331, USA; 4Department of Biological Sciences and Center for Human Health and the
Environment, North Carolina State University, Raleigh, NC, 27695, USA; 5Sleep and Performance Research Center, Washington State University,
Spokane, WA, 99202, USA; 6Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA

Correspondence: Jennifer E Kyle, Pacific Northwest National Laboratory, PO Box 999, MSIN: K8-98, Richland, WA, 99352, USA, Tel +1-509-375-3679,
Fax +1-509-371-6564, Email jennifer.kyle@pnnl.gov

Introduction: The circadian system coordinates daily rhythms in lipid metabolism, storage and utilization. Disruptions of internal
circadian rhythms due to altered sleep/wake schedules, such as in night-shift work, have been implicated in increased risk of
cardiovascular disease and metabolic disorders. To determine the impact of a night-shift schedule on the human blood plasma
lipidome, an in-laboratory simulated shift work study was conducted.
Methods: Fourteen healthy young adults were assigned to 3 days of either a simulated day or night-shift schedule, followed by a 24-h
constant routine protocol with fixed environmental conditions, hourly isocaloric snacks, and constant wakefulness to investigate
endogenous circadian rhythms. Blood plasma samples collected at 3-h intervals were subjected to untargeted lipidomics analysis.
Results: More than 400 lipids were identified and quantified across 21 subclasses. Focusing on lipids with low between-subject
variation per shift condition, alterations in the circulating plasma lipidome revealed generally increased mean triglyceride levels and
decreased mean phospholipid levels after night-shift relative to day-shift. The circadian rhythms of triglycerides containing odd chain
fatty acids peaked earlier during constant routine after night-shift. Regardless of shift condition, triglycerides tended to either peak or
be depleted at 16:30 h, with chain-specific differences associated with the direction of change.
Discussion: The simulated night-shift schedule was associated with altered temporal patterns in the lipidome. This may be premorbid
to the elevated cardiovascular risk that has been found epidemiologically in night-shift workers.
Keywords: lipidomics, mass spectrometry, circadian disruption, working time arrangements, cardiovascular health, triglycerides

Introduction
Circadian control at the system level coordinates behavioral patterns such as sleep-wake and feeding-fasting cycles.1 The
mammalian circadian clock originates from the central pacemaker in the hypothalamic suprachiasmatic nuclei (SCN),
where it receives light signals from the environment synchronizing it to 24 h light/dark cycles.2 The SCN send signals via
neural and hormonal cues to peripheral clocks throughout the body that regulate physiologic processes. These peripheral
clocks are tightly linked to metabolism, enabling physiological adjustments of metabolic needs.3 Challenges to this
interplay due to altered behavioral cycles, such as in night-shift work, can cause circadian disruption resulting in
metabolic misalignment and increased risk of multiple metabolic diseases including cardiovascular disease (CVD).4,5

Research has shown that negative health impacts of circadian disruption can occur years after altered behavioral cycles.6

As such, long-term night-shift workers are at elevated risk of developing several of the most common chronic diseases.7

Lipids are important biomolecules implicated as contributing factors in many diseases, including those associated with
circadian disruption. Studies have demonstrated that regardless of the type of external stressor to circadian rhythms (eg, light/dark,
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fed/fasted), triglyceride (TG) metabolism is commonly altered.8–12 Specific to studies examining shift work as inducer of altered
circadian rhythms, lipidomics analyses have identified changes to various additional types of lipids, including phosphatidylcho-
line (PC) and ether-based phospholipids, as well as differences in the fatty acid compositions of TGs and phospholipids.9,10,13,14

In a recent simulated shift work study, Skene and colleagues used a limited, targeted panel of 184 molecules
(including 145 lipids) to examine changes in the metabolome and lipidome induced by a 12-h shifted sleep/wake and
feeding/fasting cycle in individuals subjected to 3 days of a simulated day- or night-shift schedule.14 During a subsequent
24-h constant routine protocol designed to investigate endogenous circadian rhythms in the absence of any externally
imposed rhythms,15 many of the metabolites and lipids reversed (43%) or lost (14%) their rhythm after the night-shift
schedule, or only showed rhythmicity after the night-shift schedule but not after the day-shift schedule (14%) – even
though the timing of the central SCN pacemaker, as measured by dim light melatonin onset (DLMO), was not
significantly different between the two conditions at baseline, remained stable after the 3 days of day-shift schedule,
and was merely delayed by less than 2 h after the 3 days of night-shift schedule.14,16

Building on the observations by Skene and colleagues,14 we performed comprehensive lipidomics analyses of the
same cohort to more broadly investigate the effects of simulated shift work on the lipidome and to also quantify detailed
changes in the lipid acyl compositions, which have known roles in metabolic diseases.17–19 Here, we report an in-depth
analysis of the plasma lipidome from individuals measured under constant routine – 24 h of constant environmental
conditions, hourly isocaloric snacks, and sustained wakefulness, under strictly controlled circumstances – after under-
going a simulated night- or day-shift schedule. We show that just 3 days of the simulated night-shift schedule resulted in
endogenous molecular profiles consistent with elevated CVD risk.

Materials and Methods
Subjects
N=14 healthy volunteers (ages 22–34 y, BMI 25.7 ± 3.2 kg/m2) participated in this study (see Table 1), as previously
reported by Skene and colleagues.14

Table 1 Subject Demographics

Subject ID Shift Condition Age Sex Race Weight (lbs) Height (in) BMI (kg/m2)*

E023 Day 22 M White 189 68.25 28.5

E059 Day 23 F Black 187 69 27.6

E072 Day 25 F White 130 67 20.4

E078 Day 23 M White 177 74 22.7

E081 Day 25 M White 190 73 25.1

E109 Day 28 M White 216 71 30.1

E115 Day 22 F White 160 65 26.6

E027 Night 34 F White 138 65.5 22.6

E038 Night 29 M White 230 75 28.7

E066 Night 26 M White 232 80.5 25.1

E068 Night 27 M White 230 75 28.7

E084 Night 26 M White 180 72.5 24.1

E114 Night 27 M White 149 71 20.8

E137 Night 24 M White 239 76 29.1

Abbreviation: *BMI, body mass index.
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Subjects were screened to be physically and psychologically healthy with no medical or drug treatment, as verified by
physical examination, blood chemistry, urinalysis, and questionnaires.14 They reported good habitual sleep, between 6
and 10 h in duration and habitually getting up between 06:00 h and 09:00 h, and were no extreme morning- or evening-
types as assessed by questionnaire (Composite Scale of Morningness). They showed no evidence of any sleep or
circadian disorders as assessed by nocturnal polysomnography and validated questionnaires. They had no history of
drug or alcohol abuse, were free of traces of alcohol and drugs as assessed by drug screen and breathalyzer and did not
smoke. They were not involved in shift work within three months of entering the study and did not travel across time
zones within one month of entering the study. Women were not pregnant as assessed by blood-based assay.

Participants maintained a regular sleep/wake schedule in the week prior to the in-laboratory experiment, with
bedtimes and wake times within 30 min from their self-reported habitual schedule.20 In the week prior to the study,
participants were requested to abstain from alcohol and caffeine.

The study was conducted in compliance with the Declaration of Helsinki and approved by the Institutional Review
Boards of Washington State University and Pacific Northwest National Laboratory. Participants gave written informed
consent. They had to meet defined inclusion criteria to participate in the study.

In-Laboratory Experiment and Sample Collection
The 7-d in-laboratory experiment (Figure 1) was conducted under controlled conditions (constant ambient temperature of
21 ± 1 °C, constant light level of less than 50 lx during all scheduled wakefulness periods) in the Sleep and Performance
Research Center at Washington State University Health Sciences Spokane. The study consisted of a baseline day and
night followed by randomization to either a 3-d simulated day-shift schedule (sleep opportunity: 22:00–06:00 h) or, after
a transition nap (sleep opportunity: 14:00–18:00 h), to a 3-d simulated night-shift schedule (sleep opportunity: 10:00–
18:00 h). During the simulated shift days, breakfast, lunch, and dinner were provided at 1.5, 7.0, and 13.5 h of scheduled
wakefulness, respectively.

Figure 1 Study design. Participants were on a simulated day-shift (top) or night-shift (bottom) schedule for 3 days (yellow = scheduled wake, black = sleep opportunity),
then underwent a 24-h period of wakefulness under constant routine conditions (red), during which blood plasma was collected every 3 h. Clock time is indicated above.
Abbreviation: M, meal.
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Importantly, in both conditions, the 3-d simulated shift schedule was followed by a 24-h constant routine protocol
involving controlled environmental conditions with fixed semi recumbent posture, hourly isocaloric snacks (Snack
ingredients, option 1: peanuts, caramel [dried can syrup, tapioca syrup, water, fractionated palm kernel oil, nonfat
milk, whey protein concentrate, glycerin, butter (cream, salt) natural flavor, sunflower lecithin, salt, sodium citrate,
carrageenan], rolled oats, almonds, flaxseed, cashews, dates, tapioca syrup, natural flavor, chicory root fiber, sea salt,
water, sunflower oil; option 2: peanuts, brown rice syrup, almonds, rolled oats, dried cranberries, pineapple juice syrup,
raisins, tapioca syrup, dried cane syrup, dried blueberries, chicory root fiber, apple juice concentrate, coconut oil, hemp
seeds, flaxseeds, salt, water, natural flavor, sunflower oil, pineapple juice concentrate), and sustained wakefulness to
investigate rhythms free of exogenous factors. During the 24-h constant routine protocol, blood was drawn at 3-h
intervals to measure plasma lipid profiles. The study concluded with a recovery day. The study design was previously
published.14

Total Lipid Extraction
Total lipid extracts (TLEs) were generated from 50 μL of plasma from the blood samples collected during the 24-h constant
routine protocol. Prior to extraction, 10 μL of internal standards (SPLASH™ Lipidomix®, Avanti Polar Lipids, Inc.) was
added to each sample. Lipids were extracted using a modified Folch extraction MPLEx.21,22 Briefly, cold (−20°C)
chloroform/methanol (2:1, v/v) was added in a 4-fold excess to the sample volume. Samples were vortexed for 10s,
incubated on ice for 5 min, and then vortexed again for 10s. The samples were then centrifuged to facilitate separation of
hydrophilic and hydrophobic layers and protein pellets, and the bottom hydrophobic layers containing lipids were
transferred into glass autosampler vials, evaporated to dryness in vacuo, and stored at −20°C in 500 μL of chloroform/
methanol (2:1, v/v) until analysis.

NIST SRM 1950 plasma was used as a quality control (QC) sample and processed along with the study participants’
samples.23 Randomization orders were created for both sample processing and mass spectrometry analysis (Dataset 1).
Samples were randomized based on ethnicity, age, sex, shift condition, and sample collection time.

Mass Spectrometry Analysis
Stored plasma TLEs were again dried in vacuo and reconstituted in 10 μL chloroform and brought to 200 μL with
methanol containing post-extraction internal standards (PE(17:0/14:1) and PI(17:0/14:1) at a final amount of 0.05 μg and
0.01 μg, respectively). TLEs were analyzed as previously described.24 Briefly, a Waters Acquity UPLC H class system
interfaced with a Velos-ETD Orbitrap mass spectrometer was used for liquid chromatography tandem mass spectrometry
(LC-MS/MS) analyses. 10 μL of reconstituted sample was injected onto a Waters CSH column (3.0 mm × 150 mm × 1.7
μm particle size) and separated over a 34-min gradient (mobile phase A: ACN/H2O (40:60) containing 10 mM
ammonium acetate; mobile phase B: ACN/IPA (10:90) containing 10 mM ammonium acetate) at a flow rate of 250
μL/min. Samples were randomized prior to MS run analysis (Dataset 1). TLEs were analyzed in both positive and
negative electrospray ionization modes, and lipids were fragmented using alternating higher-energy collision dissociation
(HCD) and collision-induced dissociation (CID). Lipids were identified using LIQUID (Lipid Quantification and
Identification), where each lipid was identified by matching experimental tandem mass (MS/MS) spectra to predicted
values along with evaluating the precursor mass ppm error, isotopic profile, and retention time.24

Lipid Identification
Lipids were identified using LIQUID.24 Confident identifications were made by manually evaluating the MS/MS spectra
for fragment ions characteristic of the classes and acyl chain compositions of the identified lipids. In addition, the
precursor ion isotopic profile, extracted ion chromatogram, and mass measurement error along with the elution time were
evaluated. A reference library of confident lipid identifications was generated using data from 7 individuals plus the QC
sample. The 7 individuals selected varied per collection time (each time point represented), shift condition (3 night shift,
4 day shift), and sex (5 males, 2 females). All LC-MS/MS data were aligned and gap-filled to this target library for
feature identification using MZmine 2,25 based on the identified lipid name, observed m/z, and retention time. Data from
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each ionization mode were aligned and gap-filled separately. Aligned features were manually verified and peak apex
intensity values were exported for statistical analysis.

Data Preprocessing
LC-MS/MS-based lipidomics data were generated for the 14 participants at each of the 8 time points, for a total of 112
analyses. Negative and positive mode data were preprocessed separately as follows. All observed abundances were first
transformed to log2 scale. A robust Mahalanobis distance analysis was then performed, based on lipid abundance
vectors,26 in order to identify outliers. Two samples were then identified as outliers (p<0.0001) and removed from the
dataset. Finally, median normalization was applied to the data.

Statistical Analysis
Cosinor analysis27 was applied to all samples collected during the 24-h constant routine protocol to investigate 24-h
rhythmicity for each lipid. A mixed-effects regression model of normalized log2 lipid abundance was implemented in R.28

Shift condition, sinusoid time components with 24-h fundamental period, 12-h first harmonic, and 8-h second harmonic, and
the interactions of shift condition with the sinusoid time components were included as fixed effects in the model; a random
effect over individuals was placed on the intercept. For fitting purposes, the linear equivalent (exact transformation) of the
model was used, as previously described.29

The 24-h rhythm was of primary concern for this study, and estimates for mesor (mean normalized log2 abundance),
rhythm amplitude, and acrophase (peak timing) of the 24-h sinusoid were of particular interest. Statistical significance of
rhythmicity was evaluated with one-sided t-test of the amplitude of the 24-h sinusoid with a Benjamini–Hochberg
procedure applied for multiple test correction. To evaluate the consistency of abundance patterns across individuals, for
each lipid the log of the signal-to-noise ratio, logSNR, was calculated based on the variance explained by the regression
model and the error variance,30 for each study condition separately as well as across the two conditions combined.

A lipid with logSNR>0 was deemed to have a consistent temporal pattern across individuals (Figure 2).
To detect any non-specific effect of time awake independent of study condition, the regression analysis was repeated

with the addition of a fixed regression term linear in time awake. The regression coefficient for this linear component was
tested against zero with two-sided t-test using Benjamini–Hochberg adjusted p-value.

To determine the enrichment of statistically significant lipids, an EASE score31 enrichment test was conducted using
Lipid Mini-On.32 Lipid Mini-On performs enrichment analyses of lipidomics data using a text-mining process that bins
individual lipid names into multiple lipid ontology groups based on the classification and other characteristics, such as
chain length and number of double bonds. Enrichment analysis was conducted separately for lipids that increased and
decreased per circadian metric (ie, mesor, amplitude). The “universe” for this analysis consisted of all lipids identified
(see Dataset 2).

Figure 2 Illustration of logSNR values differentiating 3 example lipids in the simulated night-shift condition. Each curve corresponds to one individual’s data plotted over the
24 h of the sample collection period. Left: Cer(d18:1_24:0) has an inconsistent pattern between individuals, as reflected in logSNR<0. Middle and right: CE(18:2) and
especially PC(0:0_18:1)_B have more consistent patterns between individuals, with higher logSNR>0. Break in curves indicates where the constant routine began/ended.
Abbreviations: Cer, ceramide; CE, cholesterol ester; LPC, monoacylglycerophosphocholine.
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Results
In a between-groups, in-laboratory study, we characterized the circadian rhythms of lipids in human blood plasma after
behaviorally induced rhythms were experimentally misaligned (night-shift condition) or aligned (day-shift condition)
relative to the central pacemaker in the SCN. Subjects were assigned to a 3-day simulated night-shift schedule or day-
shift (ie, control) schedule (Table 1). In each condition, this was followed by a 24-h constant routine protocol, during
which blood was drawn at 3-h intervals to measure plasma lipid profiles (Figure 1). Using LC-MS/MS, a total of 405
lipids were identified and quantified over 374 LC-MS/MS features, covering 21 subclasses (Dataset 2).

Investigation of the circadian rhythm in each lipid by means of cosinor-based regression analysis (Figure 3A)
revealed that many of the lipids showed high levels of between-subject variation. We focused on the subset of lipids
that had relatively consistent patterns of abundance across individuals based on the log of the signal-to-noise ratio
(logSNR), using the cut-off logSNR>0 (ie, at least as much signal as noise in the regression model) (Figure 2). Of the
374 lipids thus identified, 92 (24.5%) had logSNR>0 in the day-shift condition, 126 (33.7%) in the night-shift condition,
and 79 (21.1%) in both conditions (Figure 3B).

The 79 lipids with logSNR>0 in both the day- and night-shift conditions comprised primarily TGs but also
monoacylglycerophospholipids (LPLs), mostly LPCs with an 18 carbon chain, as well as lipids containing monounsa-
turated fatty acids (MUFAs), in particular 18:1 (likely oleic acid). Lipids that had logSNR>0 only in the day-shift
condition were dominated by LPCs and TGs (13 lipids); whereas those with logSNR>0 only in the night-shift condition
contained lipids with 18:2 (likely linoleic acid), mostly associated with PCs, TGs with 18:3 (likely linolenic acid),
sphingomyelin (SM), and some ether linked phosphatidylcholines (PCO) (Dataset 3).

We report effects of the simulated night-shift schedule, as compared to the simulated day-shift schedule, in the context of
three quantitative characteristics of circadian rhythmicity derived from the 24-h sinusoid in our regression analysis: mesor
(midline of rhythm, or mean abundance across the 24-h cycle), acrophase (clock time of rhythm peak), and amplitude
(difference between peak and mean abundance) (Figure 3A). Because the blood samples were taken during the 24-h constant

A

B

Figure 3 Overview of circadian rhythm metrics and analyses for the simulated shift work lipidome. (A) Illustration of 24-h rhythm in our cosinor-based regression analysis
and the variables used to describe the circadian rhythm. (B) Overview of the number of lipids with a statistically significant difference (p<0.05) in mesor for the night-shift
condition relative to the day-shift condition; and with significant circadian rhythmicity (amplitude greater than zero, p<0.05) in the day-shift only, night-shift only, and both
day- and night-shift conditions. Only lipids with logSNR>0 were considered.
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routine protocol immediately after the 3 days on the simulated night- or day-shift schedule, the observed effects reflect night-
shift schedule-induced changes in the endogenous circadian rhythmicity of the human lipidome. To account for effects of time
awake independent of shift condition, we performed additional analysis with inclusion of a linear regression term for the time a
participant was awake. A majority of lipid model fits (94.7%) were not improved by the inclusion of the time awake variable
(Dataset 4); thus, time awake was not included in the final lipid models.

Alterations in Mean Abundance Induced by the Simulated Night-Shift Schedule
Of the 79 lipids with logSNR>0 in both the day- and night-shift conditions, 45 also had a statistically significant
difference between the night-shift and the day-shift in mean abundance (mesor) across the circadian cycle. The mesor
was significantly lower (adjusted p<0.05) after the night-shift condition, compared to the day-shift condition, for 32
(71%) out of 45 lipids, and significantly higher for 13 (29%) (Figures 3B and 4A).

To determine the enrichment of lipids with statistically significant mesor, an EASE score enrichment test31 was
conducted using Lipid Mini-On.32 Lipid Mini-On performs enrichment analyses of lipidomics data using a text-mining
process that bins individual lipid names into multiple lipid ontology groups based on the classification and other
characteristics, such as chain length and number of double bonds. Lipids with decreased abundance after night-shift were
enriched in phospholipids (27 out of 32, p=0.013), in particular LPC (19 total, p=0.007), as well as lipids containing the
fatty acid 18:2 (likely linoleic acid; p=0.014) and 18:1 (likely oleic acid; p=0.001) (Dataset 5). Lipids containing fatty acid
18:1 were commonly associated with PE lipids (p=0.011). Lipids with increased abundance after the night-shift were all
glycerolipids and enriched in TGs (11 out of 13; p<0.001), many of which contained odd chained fatty acids (Dataset 5).
Although not statistically significantly enriched, TGs containing 22:6 fatty acids (likely docosahexaenoic acid; DHA) had
increased abundance after the night-shift schedule (p=0.052).

Alterations in Circadian Amplitude Induced by the Simulated Night-Shift Schedule
Almost all lipids with consistent temporal patterns of abundance (logSNR>0 in both day- and night-shift conditions)
were significantly rhythmic based on the amplitude of the 24-h rhythm in the regression model (adjusted p<0.05)
(Figure 3B). Of the 79 lipids with consistent temporal patterns of abundance in both conditions (Dataset 3), 77 had
significant circadian amplitude after both simulated shift schedules and 2 after the night-shift schedule only. An
additional 13 lipids had consistent temporal patterns and significant circadian amplitude after the day-shift schedule
only (Dataset 6), and an additional 49 after the night-shift schedule only (Dataset 7). Twenty-five lipids had significantly
different amplitude between the two conditions (Dataset 8), with 19 showing increased amplitude and 6 showing
decreased amplitude after the night-shift (Figure 4B).

Distinct changes were noted in the 24-h rhythm amplitude of lipid rhythmicity, with TGs strongly affected. Twenty-
two TGs displayed significantly different amplitude after night-shift compared to day-shift (Figure 4B, Dataset 8). Lipids
that had greater amplitude after the day-shift were saturated TGs, specifically TGs containing 16:0 fatty acids (ie,
palmitic acid); whereas lipids that had greater amplitude after the night-shift were TGs that contained 22:0 fatty acids, as
well as MUFAs, such as 18:1 (Datasets 6, 7, 9).

Examining all lipids (regardless of direction of change) that were significantly rhythmic after day-shift with the EASE
score enrichment test, lipids containing long chain fatty acids (LCFAs; defined as chain length of 13–21 carbons) were
enriched, in particular lipids with 14:0 and 16:0 fatty acids. Lipids that were significantly rhythmic after night-shift were
enriched in 18:2 fatty acids and the glycerophospholipids PC and PE (both mono- and diacyl) containing 18:1 (Datasets
6, 9). Lipids that were significantly rhythmic only after the night-shift schedule were enriched in PCs with 18:2 fatty
acids and TGs containing 18:3 fatty acids (Datasets 7, 9).

Alterations in Acrophase Induced by the Simulated Night-Shift Schedule
Twenty-five of the 77 lipids that were identified as significantly rhythmic in both day- and night-shift conditions had
alterations in the acrophase (timing of peak abundance) of the 24-h rhythm after the simulated night schedule, as
compared to after the simulated day schedule (Figure 4C, Dataset 10). All of 14 TGs peaked in the middle of the day in
both conditions, but 13 showed a phase advance after the night-shift schedule (ie, peaked earlier in time compared to
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after the day-shift), with 8 out of these 13 containing an odd chained fatty acid (Figure 4C, Dataset 10). LPCs were also
phase advanced after the night-shift schedule. One similar type of lipid, known as lyso-PAF (platelet activating factor),
PC(O-18:1_0:0) was almost completely reversed.

Triglyceride Dynamics at 16:30 h Independent of Simulated Shift Schedule
TGs tended to peak or dip (ie, be depleted) at 16:30 h regardless of the preceding simulated shift schedule (Figure 5).
Those that peaked were significantly enriched in saturated fatty acids (p=0.001), including 16:0 (p=0.001). Those that

A B

C

Figure 4 Changes in circadian rhythmicity in the plasma lipidome due to a simulated night-shift schedule. (A) Difference in mesor after night-shift compared to day-shift by
lipid. Within each subclass, lipids are organized by increasing number of total chain carbons, then by double bonds. Lipids that have greater mean abundance after the night-
shift compared to the day-shift are color coded pink, and lipids that have less mean abundance after the night-shift are color coded green. Asterisks indicate statistical
significance (p<0.05). Diff = difference as night-shift minus night-shift day-shift. Scale bar, pink = +1, white = 0, green = −1, with values representing difference in log2
normalized abundances. (B) Statistically significant (p<0.05) difference in amplitude after night-shift compared to day-shift by lipid. Lipids that are more rhythmic have a
higher value of the difference (Diff) value, where Diff = difference as night-shift minus day-shift. Color scale, pink = more rhythmic after night-shift, green = less rhythmic
after night-shift, with values representing difference in log2 normalized abundances. (C) Lipids that were significantly phase advanced or delayed after simulated night-shift
compared to simulated day-shift. TGs containing an odd chained fatty acid almost exclusively advanced.
Abbreviations: CE, cholesterol ester; DG, diacylglyceride; PC, glycerophosphocholine (mono- and di-acyl; O-ether linked); PE, glycerophosphoethanolamine (mono- and
di-acyl); PI, diacylglycerophosphoinositol; TG, triacylglyceride.
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dipped were not significantly enriched in any lipid classifiers, but many of these lipids contained VLCFAs and 18:1 fatty
acids.

Discussion
Circadian disruption is linked to dysregulation of lipid metabolism and homeostasis.9–11,14 With our lipidome analysis,
we gained insights into how the temporal dynamics of lipids are influenced by night-shift work. We also expanded upon
the lipidomics/metabolomics analysis of the same samples and study population as in Skene et al (2018).14 While our
results cannot be directly compared to those of Skene and colleagues because of the expanded coverage of the lipidome
(ie, Skene et al used a targeted lipid panel consisting of choline-containing lipid and fatty acids), we found general
agreement in the misalignment and disruptions of circadian rhythmicity of the LPC subclass due to the simulated night
shift schedule.

In the current study, despite high inter-individual variability, which has also been observed in other studies,10,13 we
identified lipid signatures consistent with increased CVD risk after just 3 days on a simulated night-shift schedule. Our
study revealed profound disturbances in the circadian rhythmicity of the human lipidome that persisted after exposure to
a simulated night-shift schedule, indicating that the observed effects were not mere responses to the altered timing of
behavioral cycles but rather indicative of dysregulation of the endogenous rhythms of the biological processes in which
these lipids are involved and the cells and organs that produce them. Our discovery of very early alterations in lipids
known to be associated with long-term health effects of shift work that typically manifest clinically only months to years
later6,33 creates opportunities for early diagnosis, development of biomarkers, and early intervention to reduce health
impacts.

Our simulated shift work study was limited in that it had a between-subjects study design and a relatively small
sample size for which the distribution of males and females was not balanced between groups. This may have constrained

Figure 5 Example time series of TGs that peaked or dipped at 16:30 h regardless of shift condition. Plots on the left are from the day-shift, and plots on the right are from
the night-shift. Each curve corresponds to an individual’s data plotted against clock time. TGs that were elevated at 16:30 h consisted of saturated fatty acids, 16:0 in
particular (top). TGs that were depleted at 16:30 h tended to contain VLCFAs and 18:1 (bottom). Break in curve indicates where the constant routine began/ended.
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our ability to detect and interpret group differences in overall abundance levels of the lipidome. Owing to the use of
powerful mixed-effects regression techniques, though, sample size was not a major limitation with regard to the detection
of group differences in temporal dynamics. It is noteworthy that we found widespread group differences in the lipidome
after just 3 days on a simulated night- versus day-shift schedule, indicating fast reactivity of lipid metabolism to circadian
disturbance. However, our study was not designed to reveal any adaptive or maladaptive mechanisms that may cause
further change in the lipidome after long-term exposure to a night-shift schedule. Furthermore, workers in actual night-
shift operations, as compared to day-shift operations, are exposed to various other factors that may affect lipid
metabolism, including changes in the environment (eg, light exposure) and behavior (eg, food intake). In our study,
such factors were standardized, but they would be expected to play a noticeable role with regard to the impact of shift
work schedules in real-world settings. This may also include differential effects of shift work on other aspects of
metabolism and downstream consequences thereof, such as increased prevalence of obesity and diabetes and a variety of
other medical conditions,34–40 which may interact with the lipidome and contribute further to CVD risk.

Our study did not measure CVD outcomes or evaluate long-term CVD risk. Nonetheless, there are specific
connections of our observations with CVD and CVD risk (Figure 6). Saturated fatty acids, in particular 12:0 (lauric
acid), 14:0 (myristic acid) and 16:0 (palmitic acid), are known to be associated with elevated CVD risk, as these fatty
acids raise low-density lipoprotein cholesterol (LDL-C) levels.41 In our study, TGs containing saturated fatty acids,
including 16:0 and 14:0, showed dampened circadian rhythms after the night-shift condition as compared to the day-shift
condition. The rhythmic regulation of these fatty acids may be important for cardiovascular function, and a dampening of
their rhythms due to night-shift work may ultimately have consequences for human health.

Figure 6 Summary of changes in the endogenous circadian profiles of the lipidome induced by a simulated night-shift schedule. The arrows indicate direction of change for
specific lipids, with additional specificity noted at the end of the arrow, if applicable. Asterisks (*) indicate lipid changes consistent with CVD and/or CVD risk.
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Further, blood plasma lipidomic profiles have recently been shown to be predictive of cardiovascular events. It has
been reported that LPCs have a negative association with cardiovascular death, as do TGs containing 18:2.42 In our study,
we found that in addition to TGs, 18:2 associated lipids decreased (ie, significantly lower mesor) in multiple lipid
subclasses after the simulated night-shift condition (Figures 4A and 6), suggesting a connection with CVD risk. The
decrease in abundance of 18:2 lipids could be due to several factors, one of which is related to diet – 18:2, as linoleic
acid, is the most common PUFA in the human diet.43 However, given that food intake was standardized (hourly
isocaloric snacks) during the 24-h constant routine protocol when the blood samples used for lipidomics were taken,
and dietary options were limited during the preceding simulated shift days, we would expect no substantive difference in
18:2 consumption between the shift conditions. LPCs were also statistically decreased (Figures 4A and 6); however,
these lipids have been shown to have mixed associations with CVD.44

It has also been reported that DG and TG lipids containing saturated fatty acids and MUFA have either no association
or a positive association with cardiovascular death, except for DG(16:1/16:1) and TG(16:1/16:1/16:1), both of which
have a negative association.42 The exception of DG(16:1/16:1) and TG(16:1/16:1/16:1) may be caused by downregula-
tion of stearoyl-CoA desaturase 1 (SCD1), resulting in associated cardiovascular death, as palmitoleic acid (16:1n-7) is a
major product of SCD1. Although we did not observe any significant differences in enrichment with 16:1 containing
lipids in our comparisons between day- and night-shift schedules (Datasets S4-S9), 18:1 was significantly decreased in
multiple lipid subclasses after the night-shift schedule (Datasets S6, S8). As SCD1 also converts 18:0 (stearic acid) to
18:1 (likely oleic acid), and 18:1 decreased in multiple lipid subclasses after night-shift in our study, this is consistent
with downregulation of SCD1.

In addition to the roles of SCD1 in desaturating palmitic acid and stearic acid, SCD1 has recently been shown to
desaturate odd chained fatty acids (OCFAs).45 In our study, OCFAs containing TGs (eg, 15:0 and 17:0) were phase
advanced after simulated night-shift, with many also increasing in abundance. The OCFA-containing TGs (OCFA-TGs)
identified in our study could be linear fatty acid chains (eg, 17:0) and/or branched chained fatty acids (BCFAs) (ie, a linear
C16 chain with a methyl branch, eg, iso-17:0), as they have the same mass to charge fragments in the mass spectrometer.
OCFAs have recently been found to be positively associated with the development of CVD,42 and have been reported to be a
predictor of developing type 2 diabetes (T2D) when the OCFAs 19:1 and 17:0 were associated with PC lipids;46 T2D
commonly coincides with CVD.47 Why the OCFAs would be almost exclusively advanced after simulated night-shift is
unclear, and we do not know the source of the OCFAs in our study. They could be coming from diet (eg, milk products in the
isocaloric snacks consumed hourly during the constant routine; see Supplementary Information), remnants from the
previous days’ meals,48,49 generated de novo from BCAAs50,51 as identified previously,14 formed from the elongation or
desaturation of other fatty acids,45,52 or possibly from the human microbiome.

Investigation of the fatty acid composition of TGs also revealed an unexpected finding: saturated TGs, including those
with 16:0, increased in the 16:30 h sample in the blood plasma, regardless of the prior simulated shift condition and the
number of hours awake during the constant routine. Likewise, TGs with VLCFAs and 18:1 decreased precipitously at
that same time of day, regardless of experimental condition or time awake (Figure 5). The only reasonable explanation
for this finding, given the many controls of the study, is that this effect may be mediated by the central pacemaker in the
SCN, which was only delayed by about 1.5 h after the night-shift condition compared to the day-shift condition.

Previous research has shown that total TGs increase around 16:30 h53,54 and can be impacted by circadian
regulation.55,56 However, the opposing change in abundance based on TG fatty acid composition has not been reported
previously and the biological meaning is unclear. The literature does not readily reveal why, as many studies are based on
free fatty acids or fatty acids that are shorter chained (eg, C14, C16, C18) or examine total TG abundance. Given TGs are
packaged in lipoproteins, one possible explanation for these opposing TG abundances is that the TGs are from different
lipoproteins. TGs transported in the blood are packed into chylomicrons (CM) produced from the intestine (and reflecting
dietary lipid consumption) and very low-density lipoproteins (VLDL) produced from the liver. Most CM are released into
the blood stream about 3–4 h postprandial and VLDLs are released 4–6 h postprandial.48 Given that participants were on
a similar diet, but time-shifted by 12 h depending on study condition for 3 days, and blood was collected subsequently
during constant routine with hourly, small isocaloric snacks, postprandial TGs cannot explain this difference. As such, we
hypothesize that the increase in TGs at 16:30 h may be more reflective of TGs in VLDL from the liver. Previous work
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has found that TG and VLDL abundance is under circadian regulation56 and that TG and liver proteins show endogenous
circadian rhythms that shift in response to combined light and food stimuli.57 Identifying the mechanism controlling the
divergent pattern at 16:30 h is beyond the scope of this study, but circadian regulation of genes or proteins associated
with lipid metabolism within the liver may be responsible.55,58,59

By expanding lipid profiling significantly beyond more common total TG abundance, we demonstrated that deep lipidome
coverage can improve the identification of clinically predictive markers of CVD risk, in particular by accounting for the
detailed fatty acid chemistries of individual TG lipids. For example, based on a clinical blood lipid panel, it has been reported53

that the temporal dynamics of total TGs within a 24-h cycle influence cardiovascular risk assessment. This finding is of
particular importance due to single-point sample collection and measurement that is commonly conducted in clinical labs. Our
study similarly highlights how circadian disruption within a 24-h altered sleep cycles can alter TG dynamics beyond that of
total TG abundance, showing that individual TGs with different fatty acid compositions display distinct and contrasting
circadian dynamics (Figures 4–6). Future studies that can combine and connect the information obtained from lipidomics
analyses with clinical lipid-based lipoprotein panel results will accelerate our power to discover biomarkers and the
mechanisms associated with the short- and long-term health impacts of shift work.60

Conclusion
The findings of this simulated shift work study suggest that blood plasma lipid signatures of CVD risk occur within just 3
days on a night-shift schedule. In addition, our findings provide evidence that TG metabolism is not solely determined by
external environmental factors or behaviors. Our lipidomics approach included the examination of multiple metrics to
evaluate rhythm characteristics, including mesor, amplitude, and acrophase, which revealed several connections with
known lipid-based CVD risk signatures. Our findings highlight that as TGs with different fatty acid compositions (eg,
containing 16:0 fatty acids or OCFAs) exhibit different circadian dynamics, a more comprehensive TG clinical profiling
that can identify the cause of altered TG dynamics may improve CVD risk assessment.
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