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Background: An animal model of DSS-induced UC has been widely used in basic research, and the dysbiosis of gut microbiome is
one of the important pathogenetic mechanisms of DSS-induced UC, but its dynamic changes and correlation with inflammatory factors
are not clear yet.
Methods: Clinical signs and tissue damage degree of C57BL/6 ulcerative colitis mice model induced by different concentrations of
DSS were compared with that of normal mice, and finally the optimal concentration of DSS was determined. Then we analyzed the
sequencing results of gut microbiome and inflammatory factors to determine the dynamic patterns of gut microbiome and their
correlation with the inflammatory factors.
Results: DSS at 2.5% and 3.0% concentration could cause intestinal injury and induce colitis. However, 3.0% DSS resulted in higher
mortality. In addition, there were dynamic changes of gut microbiome in DSS-induced UC model: the relative abundance of intestinal
flora increased first and then decreased in Bacteroides, Parabacteroides, Romboutsia, Clostridium_sensu_stricto_1,
Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG-014, Parasutterella, and decreased first and then increased
in Lactobacillus, Muribaculum, norank_f_Muribaculaceae, in addition, Bifidobacterium, Coriobacteriaceae_UCG-002 and
Enterorhabdus did not change in the first 14 days but increased significantly on day 21. Moreover, inflammatory cytokines were
closely associated with the imbalance of the intestinal microbiota in mice with UC: most pathogenic bacteria in the intestinal tract of
the UC animal model were positively correlated with pro-inflammatory factors and negatively correlated with anti-inflammatory
factors, while beneficial bacteria were the opposite.
Conclusion: Intestinal microecology plays an important role in DSS-induced UC model, and the relative abundance of gut
microbiome changes dynamically in the occurrence and development of ulcerative colitis.
Keywords: ulcerative colitis, DSS, gut microbiome, dynamic changes, 16S rDNA

Introduction
Ulcerative colitis (UC) is a chronic, nonspecific recurrent disease characterized by persistent, diffuse inflammation of the
mucosa and the lower layer of the mucosa, with diarrhea, intermittent stool blood or pus as the main clinical
manifestations, accompanied by abdominal pain, fatigue, loss of appetite, fever and other systemic symptoms.1–4 The
course of the disease is long and does not heal on its own. Patients with UC often have repeated seizures and many
require life-long treatment, which seriously reduces the quality of life. Thus, UC has been listed by the World Health
Organization as a modern difficult disease.5–7 Because of diet changes and increased stress, the number of UC cases is
rapidly rising, and the total prevalence is approximately 116 per 100,000 in mainland China,8 meanwhile, the morbidity
is increasing. Studies have also shown that UC can significantly increase the risk of developing colorectal cancer, which
is disconcerting.9–11 The risk increases with the length of the patient’s course of UC. In patients with an UC disease
course of 10, 20, or 30 years, the percentage of patients with colon cancer is 1.6%, 8.3%, and 18.4%, respectively, and
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this is currently the main public health challenge.12 Some researchers believe that UC is a complex systemic disease that
is closely related to a variety of pathogenic factors, such as instability in the gut flora,13,14 immune imbalances,15,16

genetic susceptibility,17,18 and poor lifestyle. However, the etiology and pathogenesis of the disease have not been
completely clarified to date. Therefore, more basic research studies are needed to answer the abovementioned questions.

The selection and establishment of a mature, stable and reliable animal model is the premise and basis for various
basic research studies investigating UC-related pathogenesis and pharmacodynamics and in preclinical research. At
present, there are numerous UC modeling methods that can be summarized as chemical, immunological, genetic
modification and compounding.19 The principles for different modeling methods vary. No animal model can completely
encompass all the causes and clinical manifestations of human UC, and different models have more research significance
and attribution.

Currently, because immunological, gene modification and other modeling methods are highly technical, difficult to
manipulate, expensive, and have low adaptability and other issues, many models are only used in specific studies, but are
not widely used in basic research. Chemical induction modeling has become the preferred modeling method for
researchers because of its low cost, simplicity, stability and high level of controllability. The chemical induction method
mainly includes dextran sodium sulfate (DSS) model, 2,4,6-trinitrobenzene sulfonic acid (TNBS) model, oxazolone
(OXZ) model, acetic acid model, horn fork vegetable gum model, and dinitrochlorobenzene (DNCB) model. The
TNBS20,21 and acetic acid models22 more closely resemble the clinical symptoms of human Crohn’s disease (CD) but
do not adequately model clinical symptoms of human UC. The DNCB model is self-healing and uses guinea pigs and
domestic rabbits with relatively high feeding costs.23 The fork gum, OXZ and DSS models can better demonstrate
pathological symptoms of human UC, and because of low cost, simplicity, stability, and reliability.24–27 Among them, the
DSS model has become the preferred modeling method to study UC in China and abroad due to pathological and clinical
manifestations that are very similar to human UC.28–32

The DSS model was originally created and reported by a Japanese scholar named Okayasu and other researchers.33

DSS enters the intestine to act on the colon epithelium, reduces the amount of mucoprotein, destroys the structure of
tightly connected protein, destroys the microecological balance of intestine, and alters the composition of gut
microbiome.34,35 The model can be widely used to study UC pathogenesis and related drug efficacy, including studies
about UC innate immunity, multi-signaling pathway interactions and long-term enteritis-induced colon cancer related
mechanisms. The model can also be used to study gut microbiome in UC research.

After combing and analyzing the existing literature, we found that a large number of studies induced animal models
of UC with 2.5% or higher concentration of DSS and carried out relevant basic studies on gut microbiome and immune
inflammation.36–39 Other studies have found that the relative abundance of some bacteria (Bacteroides,
norank_f_Muribaculaceae, Turicibacter, Romboutsia, Clostridium_sensu_stricto_1) in the intestinal tract of DSS-
induced UC model changed significantly.40–43 In addition, the altered bacteria could trigger changes in levels of relevant
inflammatory factors.44–47 However, there have been no reports on the dynamic changes in intestinal flora when using the
DSS model or effects of different concentrations of DSS on intestinal flora and immune inflammation. Most studies have
not considered this factor, which may have led to variable experimental results. Previous experimental study of the
research group found that a high concentration of DSS could significantly increase the mortality of mice. Therefore, in
this experiment, we used 2.5% and 3.0% DSS to induce UC model to explore the dynamic role of intestinal microbiome
by measuring dynamic changes in gut microbiome and levels of inflammatory cytokines in serum and local tissue in
a murine model of UC induced by different concentrations of DSS with the goal of improving our understanding of the
etiology and pathogenesis of UC.

Materials and Methods
Reagents and Instruments
The following reagents and instruments were used: DSS (molecular weight = 36 kDa to 50 kDa; MP Biomedical,
California, USA) and enzyme-linked immunosorbent assay (ELISA) kits: interleukin-2 (IL-2), interleukin-4 (IL-4),
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interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-22 (IL-22), interferon-gamma (IFN-γ), tumor necrosis factor-
alpha (TNF-α), 5-hydroxytryptamine (5-HT) (Neobioscience Technology Company, Shanghai, China).

Animal Grouping and Intervention
Twenty-four pathogen-free healthy male C57BL/6N mice (6 weeks old, 20±2 g) were purchased from Beijing Weitong
Lihua Experimental Animal Technology Co., Ltd (license number: SCXK (Beijing) 2016-0006) and were maintained at
the Animal Experimental Center of Shandong University of Traditional Chinese Medicine (license number: SYXK (Lu)
2017-0022, Shandong, China). All mice were maintained under specific pathogen-free conditions where they received
standard food and sterilized water ad libitum at a constant temperature (23±1.5°C) and humidity (60±10%) with a 12 h/
12 h light/dark cycle. The mice were allowed to acclimatize for one week before the study began. Animals were
randomized by weight (prior to challenge) into three groups: control group, model 2.5 group and model 3.0 group; each
group contained 10 mice. Mice in the model 2.5 and model 3.0 groups received 2.5% and 3.0% DSS, respectively, in
their drinking water for seven days, while control mice received regular water only (Figure 1). Animal care and all
experiments were performed according to procedures approved by the University Animal Care and Use Committee of
Shandong University of Traditional Chinese Medicine (SDUTCM20210311003). All protocols were performed in strict
accordance with the Guidance Suggestions for the Care and Use of Laboratory Animals, as formulated by the Ministry of
Science and Technology of the People’s Republic of China, and all efforts were made to minimize animal suffering and
reduce the number of animals used.

Biological Data and Sample Collection
All mice were weighed daily from the first to the last day of the experiment, and their weights, general condition and
deaths were recorded daily. Stool samples were collected and stored at −80°C on days 0, 7, 14, and 21 of the experiment
for 16S sequencing, and body weight, fecal status, and hematochezia status were recorded. The disease activity index
(DAI) scores were calculated according to the formula DAI=A+B+C, where A, B, and C are the body weight loss score,
fecal status score, and hematochezia score in Table 1, respectively.

After euthanasia, first, blood was collected by removing eyeballs and centrifuged at 3000 rpm for 15 min to obtain
serum and stored at −80°C for the detection of inflammatory cytokines. Then, the spleen, liver, kidneys, and colon were
dissected from mice and weighed, and colon length was measured. Finally, the colon was divided into segments
representing the proximal, middle, and distal segments. Proximal and distal segments were fixed in a tube containing
4% paraformaldehyde solution for histological evaluation, and the middle colon was stored at −80°C for the detection of
inflammatory cytokines.

Histological Evaluation
The proximal and distal sections of the colon were embedded in paraffin, cut into 5 µm sections and stained with
hematoxylin and eosin (H&E) according to standard protocols. The sections were visualized under a microscope and
photographed and viewed at a final magnification of 200× using Leica Application Suite/Leica DM5000B.

Model3.0 3.0% DSS Water

Model2.5 2.5% DSS Water

Control Water

1 week 1 week1 week

Feces collected Feces collected Feces collected
Feces collected

Tissue and Blood Collection

Figure 1 Experimental protocol of DSS-induced ulcerative colitis mice.
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Histological scoring was performed based on four variables: inflammation cell infiltration, depth of lesions, destruc-
tion of crypts, and width of lesions. The total pathology score was expressed as the sum of the scores for all parameters.
The pathological score was independently evaluated by two pathologists in a double-blind manner based on the colon
histopathology scoring criteria in Table 2. Discrepant results were adjudicated by a third experienced pathologist.

Cytokine Expression Analyzed by ELISA
The levels of inflammatory cytokines IL-2, IL-4, IL-6, IL-10, IL-22, 5-HT in serum and IL-2, IL-4, IL-6, IL-10, and IL-22,
5-HT, TNF-α, IFN-γ in colon tissue homogenate were detected by commercial ELISA kits purchased at Jiangsu Jingmei
Biological Technology Co. Ltd (Jiangsu, China). Absorbance was determined at 450 nm using an enzyme labeling
instrument (Labsystems Multiskan, Finland). All experiments were performed according to manufacturer’s instructions.

Illumina MiSeq Pyrosequencing of Gut Microbiome
The standard procedures for gut microbiome detection in the literature48–51 were followed.Microbial DNAwas extracted from
fecal samples using the E.Z.N.A.® soil DNA Kit (Omega Biotek, Norcross, GA, USA) according to manufacturer’s protocol.
The final DNA concentration and purification level were determined by a NanoDrop 2000 UV-vis spectrophotometer (Thermo

Table 1 Scoring Criteria of Disease Activity Index (DAI) in UC Mice

Indicators Score

The percentage of weight loss Unchanged or increased 0
1–5% 1

6–10% 2

11–15% 3
>15% 4

Fecal status Normal 0

Soft or thin feces 2
Watery or bloody diarrhea 4

Hematochezia status No blood 0
Occult blood 2

Traces of blood visible 4

Table 2 Scoring Criteria of Histopathological in UC Mice

Indicators Score

Inflammation Absence of inflammation 0
Mild inflammation 1

Moderate inflammation 2

Severe inflammation 3
Depth of lesions Mucosal 0

Submucosal 1

Muscular 2
Serosal 3

Destruction of crypts None 0

Basal one-third damaged 1
Basal two-thirds damaged 2

Crypts lost, but surface epithelium present 3

Crypts and surface epithelium lost 4
Width of lesions 1–25% 0

26–50% 1

51–75% 2
76–100% 3
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Scientific, Wilmington, DE, USA), and DNA quality was checked by 1% agarose gel electrophoresis. The V3-V4 hypervari-
able regions of the bacterial 16S rRNA gene were amplified with primers 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and
806R (5’-GGACTACHVGGGTWTCTAAT-3’) by a thermocycler PCR system (GeneAmp 9700, ABI, USA). The PCRs
were conducted using the following program: 3 min of denaturation at 95°C, 27 cycles of 30 seconds at 95°C, 30 seconds for
annealing at 55°C, and 45 seconds for elongation at 72°C, and a final extension at 72°C for 10 min. PCRs were performed in
triplicate in a 20 μL mixture containing 4 μL of 5×FastPfu buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 0.4
μL of FastPfu polymerase and 10 ng of template DNA. The resulting PCR products were extracted from a 2% agarose gel,
further purified using the AxyPrep DNAGel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and quantified using
QuantiFluor™-ST (Promega, USA) according to the manufacturer’s protocol.

Purified amplicons were pooled in equimolar amounts and paired-end sequenced (2×300) on an Illumina MiSeq
platform (Illumina, San Diego, USA) according to the standard protocols of Majorbio Bio-Pharm Technology Co. Ltd
(Shanghai, China).

Raw fastq files were demultiplexed, quality-filtered by Trimmomatic and merged by FLASH with the following
criteria: (i) The readings were truncated at any site receiving an average quality score <20 over a 50 bp sliding window.
(ii) Primers were matched exactly, allowing 2 nucleotide mismatches, and reads containing ambiguous bases were
removed. (iii) Sequences with an overlap longer than 10 bp were merged according to the overlap sequence.

Operational taxonomic units (OTUs) were clustered with a 97% similarity cutoff using UPARSE (version 7.1 http://drive5.
com/uparse/), and chimeric sequences were identified and removed using UCHIME. The taxonomy of each 16S rRNA gene
sequence was analyzed by the RDP Classifier algorithm (http://rdp.cme.msu.edu/) against the 16S SILVA database (Silva 138,
Bremen, Germany) using a confidence threshold of 70%.

Statistical Analysis
The experimental data were analyzed by GraphPad Prism 9.0 and expressed as the mean ±SD. Statistical differences
were analyzed using one-way ANOVA test and graphed using GraphPad Prism 9.0 and R statistical programming
language. A p-value of *,#p<0.05 was considered a statistically significant difference, and **,##p<0.01 was considered an
extremely significant difference.

Results
General Assessment of Animals in Different Groups
The mice in control group exhibited a good mental state, physical agility, normal stools and shiny hair and were in good
shape throughout entire study. The mice in model group were dispirited and exhibited less activity, drowsiness and
tiredness, especially in model 3.0 group, compared with the control group. Four mice died during the experiment, one in
model 2.5 group and three in model 3.0 group, while no death was observed in control group (Figure 2A). Mortality
events occurred on days 11–13, and mean body weight of mice that died was significantly lower than that of other mice
in the same time period.

Figure 2 General condition of DSS-induced ulcerative colitis mice. (A) Mice survival was monitored daily. (B) The body weight of mice was measured once daily. (C) The
DAI score was calculated by measuring the clinical score of body weight change, stool, and fecal occult blood. The graphs are represented as mean±SD. *,#p<0.05,
**,##p<0.01. *Control and model 2.5. #Control and model 3.0.
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As shown in Figure 2B, beginning on day four, mice in the model groups exhibited weight loss. The most weight loss
occured on day 10 of the experiment in model 2.5 group, but the model 3.0 group lost the most weight on day 11. Weight
curve of model groups reached a plateau on day 19, and mice in model groups, especially in model 3.0 group, had
significantly lower body weights than the control group (losing 2.4% and 5.3% of the initial body weight in groups of
models 2.5 and 3.0). After DSS intervention, DAI scores of model groups were significantly increased and always
remained significantly higher than those in the control group (p<0.05), while there was no significance between the two
model groups (Figure 2C). Mice in model groups presented severe diarrhea, especially in the 3.0 model group, with the
appearance of mucopurulent bloody stools after five days of DSS treatment.

These results indicate that both 2.5% and 3.0% DSS could reduce body weight, increase DAI index and cause UC
symptoms in mice. Meanwhile, the disease symptoms induced by 3.0% DSS were more severe.

Histopathological Changes
Histopathological analysis is the gold standard method to diagnose UC. The results of the histopathological changes in
the colon are shown in Figure 3. Crypt destruction, goblet cell loss and inflammatory cell infiltration was observed in
model mice groups, and part of the lesion area developed severe edema, bleeding, and ulceration. In addition, the disease
pathology was more severe in model 3.0 group. Histopathological scores of the proximal and distal segments of mice
colon were depicted in Figure 3. The histopathological scores of both proximal and distal colon in model group were
significantly higher than those in control group (p<0.05), and higher in 3.0% group (p<0.01). Moreover, we found that
there was also statistical difference in pathological score between the two model groups, among which the 3.0% group
was significantly higher than the 2.5% group (p<0.05).

Based on the aforementioned findings, it is evident that DSS could cause severe tissue damage in both proximal and
distal colon, and the damage degree caused by 3.0% DSS is worse than 2.5% DSS. In other words, pathological damage
degree of local tissues in DSS-UC model is positively correlated with DSS concentration.

Changes of Inflammatory Cytokines
The results of ELISA are presented in Figure 4. Compared to the control group, the expression levels of IL-4 and 5-HT in
serum and TNF-α, IFN-γ and 5-HT in the colon in the two model groups were significantly increased (p<0.05), while the
expression levels of colon IL-2, IL-6, IL-10, and serum IL-6 appeared to be changed, but the changes were not
statistically significant. The mice in model 3.0 group showed decreased expression levels of serum IL-10, IL-22, and
colon IL-22 and elevated expression of serum IL-2 (p<0.05), however, the changes in model 2.5 group were not
significantly different. Here, we found an interesting phenomenon that IL-4 content expression in serum of model 2.5
and 3.0 groups was significantly higher than that in control group (p<0.05), while the different situation was observed in
the colon, and only IL-4 concentration in model 3.0 group was significantly lower (p<0.05).

Figure 3 Colons tissue of the proximal and distal colon sections were stained with H&E, and the histological images were obtained through an optical microscope.
Histopathological scores of inflammation cell infiltration, depth of lesions, destruction of crypts, width of lesions, and crypt damage were measured. The graphs are
represented as mean ±SD. *p<0.05, #p<0.01. *Control and model 2.5. #Control and model 3.0.
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In the above results, we found that DSS increased the levels of IL-2, IL-4, 5-HT in serum and TNF-α and IFN-γ in
colon tissue, and decreased the levels of IL-22 in serum and colon. At the same time, different concentrations of DSS
have different effects on the above inflammatory cytokines.

Changes in Gut Microbiome Composition
Illumina sequencing of V3 and V4 regions in 16S rRNA gene produced the number of sequences in each OTU that were
counted to obtain the taxonomic information of OTUs for all fecal samples from surviving mice at different periods with
a similarity level of 97%. All 80 microbiome samples were sub-sampled to 2,162,480 sequence reads to conduct an OTU
diversity analysis. These readings included 686 OTUs belonging to 10 phyla, 15 classes, 35 orders, 59 families, 126
genera, and 215 species. The rarefaction curves of all samples appeared to flatten (Figure 5A,), indicating that the amount
of sequencing data was large enough to reflect the true level of bacterial diversity in the respective samples, and the
amount of sequencing data was reasonable (Figure 5B). A total of 181 OTUs, which were assigned to 68 genera, were
shared by all groups. The number of OTUs of model 2.5 and 3.0 groups decreased by varying degrees on days 7 and 14
of experiment, respectively, while some degree of recovery occurred on day 21 (Figure 5C).

Principal component analysis (PCA), principal coordinate analysis (PCoA) and non-metric multidimensional scaling
(NMDS) plot analysis showed clustering of samples by group. The clustered results shown in Figure 5D indicated that all
12 individual groups were clearly clustered into cluster. Indeed, we found that the results showed that samples without
DSS intervention (control group at 0, 7, 14, and 21 days, model 2.5 and 3.0 group at 0 day) clustered into a cluster. At the
same time, the samples of model 2.5 and 3.0 groups clustered into a cluster on the seventh day of the experiment, which
were far apart from other groups in a separate quadrant. In addition, only in PCoA and NMDS analysis, samples of model

Figure 4 Levels of inflammatory cytokines was measured by ELISA in DSS-induced ulcerative colitis. (A) The level of inflammatory cytokines such as IL-2, IL-4, IL-6, IL-10,
IL-22, or 5-HT from the serum of the mice. (B) The level of inflammatory cytokines such as IL-2, IL-4, IL-6, IL-10, IL-22, TNF-α, IFN-γ, or 5-HT from the colon of the mice.
The graphs are represented as mean ±SD. *p<0.05, **p<0.01 and ***p<0.001.
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2.5 and 3.0 group were gathered separately on days 14 and 21 of the experiment. The 14-day samples cluster was also
isolated in a quadrant, far from the other groups. The 21-day samples cluster was close to the group without DSS
intervention, but had distinct boundaries. Through the above experimental results, we could find that DSS-induced and
time-point were the primary determinant of intestinal flora clustering, while the concentration of DSS had little
significance on gut microbiome diversity at the overall level.

We then conducted an in-depth analysis of the average relative abundance of each genus and phylum in samples for
all groups at four different time points. No significant difference in the relative abundances was observed at genus and
phylum levels prior to the experiment (day 0). Compared with control group, the same change tendency and significant
changes in the relative abundance of many taxa at phylum and genus levels were observed in model 2.5 and 3.0 groups
after DSS treatment (day seven of experiment). At phylum level (Figure 6A), Firmicutes (p<0.01), Proteobacteria
(p<0.05) were significantly increased; however, Bacteroidota (p<0.01) and Patescibacteria (p<0.05) were significantly
decreased. At genus level, the abundance of 10 genera was significantly changed (Figure 6B): Bacteroides (p<0.05),
Lachnospiraceae_NK4A136_group (p<0.01), Turicibacter (p<0.01), Clostridium_sensu_stricto_1 (p<0.01),
Eubacterium_fissicatena_group (p<0.05), Colidextribacter (p<0.05), Parasutterella (p<0.05) and Parabacteroides
(p<0.05) were significantly increased; however, norank_f_Muribaculaceae (p<0.01), Lactobacillus (p<0.01) and
Muribaculum (p<0.01) were much decreased. Otherwise, the abundance changes of Cyanobacteria (p<0.05),
unclassified_f_Lachnospiraceae (p<0.05) and Escherichia-Shigella (p<0.05) were significantly increased only in model

Figure 5 DSS changed the structure of gut microbiome in UC model mice. (A) Rarefaction/Shannon curve indicates the amount of sequencing data is large enough to reflect
the true level of bacterial diversity. (B) Pan/core analysis shows the amount of sequencing data is reasonable. (C) Venn diagram (OTU and genus) analysis notes DSS could
reduce the richness of bacterial community. (D) Beta-diversity analyses illustrates the gut microbiome composition of different groups differed at different time points.
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3.0 group. Meanwhile, norank_f_norank_o_Clostridia_UCG-014 (p<0.05) and Romboutsia (p<0.01) were significantly
increased only in model 2.5 group.

By day 14, the abundance of the following microbial taxa changed significantly across the model 2.5 and 3.0 groups:
At phylum level (Figure 6A), Patescibacteria (p<0.05) and Cyanobacteria (p<0.05) were significantly decreased.
Alternatively, Proteobacteria (p<0.05) was significantly increased only in model 3.0 group, meanwhile, Bacteroidota
(p<0.01) were significantly decreased only in model 2.5 group. In addition, at genus level (Figure 6B), Romboutsia
(p<0.05) was increased, while norank_f_Muribaculaceae (p<0.01), norank_f_norank_o_Clostridia_UCG-014 (p<0.05)
and Alistipes (p<0.05) and Colidextribacter (p<0.05) decreased. Moreover, Bacteroides (p<0.01), Escherichia-Shigella
(p<0.05) and Parabacteroides (p<0.05) was significantly increased, while Muribaculum (p<0.05) were significantly
decreased only in model 3.0 group.

By day 21, only three bacterial taxa were significantly different from control group in model groups (Figure 6):
Actinobacteriota (p<0.01) and Patescibacteria (p<0.05), which are at phylum level, were increased and decreased
respectively; apart from that, at genus level Bifidobacterium (p<0.01) was increased. Other than that, the abundance
changes of norank_f_norank_o_Clostridia_UCG-014 (p<0.05), Prevotellaceae_UCG-001 (p<0.01) were significantly
decreased, while Romboutsia (p<0.05), Clostridium_sensu_stricto_1 (p<0.05), Coriobacteriaceae_UCG-002 (p<0.01)
and Rikenellaceae_RC9_gut_group (p<0.05) increased only in model 3.0 group. Meanwhile, Enterorhabdus (p<0.05)
and Eubacterium_fissicatena_group (p<0.01) were significantly increased, but Alloprevotella (p<0.05) decreased only in
model 2.5 group.

By analyzing the relative abundance of each species in each group at different periods, results showed that at 7, 14,
and 21 days after DSS intervention with different concentrations, there were statistical differences in the relative

Figure 6 Differential gut microbiome results. (A and B) The difference genera of intestinal flora in mice at phylum (A) and genus (B) levels at different time points was
analyzed. The graphs are represented as mean±SD. *,#p<0.05, **,##p<0.01. *Control and model 2.5. #Control and model 3.0.
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abundance of some species in control group, whether at phylum genus level. However, in different intervention days,
there were also differences in types of bacteria with statistical differences.

Furthermore, we also performed an analysis of the average relative abundance ofmicrobial taxa at genus and phylum levels in
samples for different groups at different time points (Figure S1). We found that in two model groups, the relative abundance of
three flora (Actinobacteriota, Patescibacteria and Cyanobacteria) at phylum level and of 22 floras (norank_f_Muribaculaceae,
Lactobacillus, Bacteroides, Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG-014, Parasutterella,
Clostridium_sensu_stricto_1, Muribaculum, Enterorhabdus, Eubacterium_fissicatena_group and Colidextribacter) at genus
level changed significantly over time. Concurrently, two floras (Firmicutes and Bacteroidota) at phylum level and five floras
(Prevotellaceae_UCG-001, Bifidobacterium, Romboutsia, Alloprevotella and Parabacteroides) at genus level changed signifi-
cantly only in model 2.5 group. In parallel, Proteobacteria at phylum level and two floras (Escherichia-Shigella and
Coriobacteriaceae_UCG-002) at genus level changed significantly only in model 3.0 group.

By analyzing the relative abundance of different groups in different periods of DSS intervention, results indicated that
both DSS intervention and drug concentration had a great impact on the abundance of intestinal flora in mice. Moreover,
compared with 3.0% DSS, 2.5% DSS owned a greater impact on the abundance of gut microbiome.

Correlation Analysis Between Genera and Cytokines
To further explore the relationship between the abundance of gut microbiome and inflammatory factors in mice,
Spearman’s rank correlation test was performed to analyze the correlation between the above different bacteria and
inflammatory cytokines (Figure 7 and Supplement Table 1). According to the analysis results, we found that the
significantly inflammatory factors were associated with enriched species in mice with UC. For example, in serum
level, IL-2 was positively correlated with Parabacteroides (r=0.47, p=0.034), and IL-4 was positively correlated with
Bacteroides (r=0.65, p=0.002), Clostridium_sensu_stricto_1 (r=0.73, p=0.0002), Parasutterella (r=0.46, p=0.04) and
Romboutsia (r=0.67, p=0.001), and negatively correlated with Alloprevotella (r=−0.47, p=0.037), Muribaculum (r=
−0.54, p=0.013) and norank_f__Muribaculaceae (r=−0.49, p=0.028). In addition, IL-10 was positively correlated with
Colidextribacter (r=0.53, p=0.017) and norank_f__Muribaculaceae (r=0.46, p=0.04) and negatively correlated with
Romboutsia (r=−0.51, p=0.023). Moreover, IL-22 was positively correlated with Prevotellaceae_UCG-001 (r=0.53,
p=0.016), and negatively correlated with Bifidobacterium (r=−0.51, p=0.02), Clostridium_sensu_stricto_1 (r=−0.48,
p=0.031), Coriobacteriaceae_UCG-002 (r=−0.61, p=0.005), Enterorhabdus (r=−0.57, p=0.009), Parasutterella (r=
−0.56, p=0.0098) and Romboutsia (r=−0.53, p=0.017). 5-HT was positively correlated with Coriobacteriaceae_UCG-
002 (r=0.51, p=0.021), Enterorhabdus (r=0.52, p=0.018), Parasutterella (r=0.63, p=0.003) and Romboutsia (r=0.55,
p=0.012), and negatively correlated with Alloprevotella (r=−0.58, p=0.008), norank_f__norank_o__Clostridia_UCG-014
(r=−0.64, p=0.003) and Prevotellaceae_UCG-001 (r=−0.51, p=0.023). Interestingly, in colon level, IL-4 was negatively
correlated with Clostridium_sensu_stricto_1 (r=−0.50, p=0.026) and Coriobacteriaceae_UCG-002 (r=−0.45, p=0.045),
and IL-6 was positively correlated with Lachnospiraceae_NK4A136_group (r=0.59, p=0.006) and negatively correlated
with Lactobacillus (r=−0.48, p=0.032). IL-22 was positively correlated with Lachnospiraceae_NK4A136_group (r=0.52,
p=0.018), norank_f__norank_o__Clostridia_UCG-014 (r=0.49, p=0.027) and Prevotellaceae_UCG-001 (r=0.53,
p=0.015), while negatively correlated with Parasutterella (r=−0.50, p=0.025) and Romboutsia (r=−0.58, p=0.008).
Alternatively, 5-HT was positively correlated with Bifidobacterium (r=0.64, p=0.002), Clostridium_sensu_stricto_1
(r=0.57, p=0.009), Coriobacteriaceae_UCG-002 (r=0.57, p=0.009), Enterorhabdus (r=0.48, p=0.031), Parasutterella
(r=0.45, p=0.048) and Romboutsia (r=0.48, p=0.03), and negatively correlated with Prevotellaceae_UCG-001 (r=−0.53,
p=0.017). TNF-α was positively correlated with Bifidobacterium (r=0.48, p=0.033), Clostridium_sensu_stricto_1
(r=0.48, p=0.033), Coriobacteriaceae_UCG-002 (r=0.51, p=0.021), Parasutterella (r=0.58, p=0.007) and Romboutsia
(r=0.53, p=0.017), and negatively correlated with norank_f__norank_o__Clostridia_UCG-014 (r=−0.55, p=0.012) and
Prevotellaceae_UCG-001 (r=−0.50, p=0.024). Further, IFN-γ was positively correlated with Bacteroides (r=0.82,
p=0.00001), Clostridium_sensu_stricto_1 (r=0.60, p=0.005), Coriobacteriaceae_UCG-002 (r=0.49, p=0.028),
Eubacterium_fissicatena_group (r=0.51, p=0.023), Parabacteroides (r=0.58, p=0.008), Parasutterella (r=0.53,
p=0.016), Rikenellaceae_RC9_gut_group (r=0.53, p=0.016) and Romboutsia (r=0.69, p=0.001), and negatively corre-
lated with Alloprevotella (r=−0.57, p=0.009), norank_f__norank_o__Clostridia_UCG-014 (r=−0.52, p=0.018) and
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Figure 7 Heatmap of correlation analysis between gut microbiome and inflammatory cytokines in UC mice. Spearman’s rank correlation coefficient is indicated using a color
gradient: red indicates positive correlation; green indicates negative correlation,*p<0.05, **p<0.01.
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Prevotellaceae_UCG-001 (r=−0.57, p=0.008). In conclusion, these results suggest that the inflammatory cytokines are
closely associated with the imbalance of the gut microbiome in mice with UC.

Discussion
Gut microbiome and inflammatory cytokines play a critical role in the progression of DSS-induced UC in mice. The DSS
colitis model has advantages over other various chemically induced experimental models due to its rapidity, simplicity,
reproducibility and controllability, which has been widely used in basic research into the induced ulcerative colitis
model.52,53 Studies in the literature suggested intestinal microecological imbalance in mice with DSS-induced UC
abnormal intestinal microbial diversity and structure, and altered levels of inflammatory factors. However, few studies
have explored the dynamic changes of gut microbiome in the DSS-UC model, and the changing trend and mechanism of
flora in the occurrence and development of the disease are still unclear. Therefore, our study analyzed the abundance of
gut microbiome in mice at different time points, and the correlation between inflammatory factors and intestinal flora to
explore the pathogenesis of DSS-UC.

Through analyzed experimental mice weight loss, diarrhea, mortality, DAI index change, histopathological grading,
inflammatory factor levels and relative abundance of gut microbes, we found that, in our experimental environment, DSS
induced ulcerative colitis could be by intervening the intestinal microecological balance and inflammatory factors in
mice, causing intestinal injury. Meanwhile, the symptoms of mice were gradually relieved after 14 days of the experiment
over time, indicating that DSS-UC mice model had a certain self-healing ability. This result is consistent with another
study.47 In addition, experimental results showed that the severity of UC induced by 2.5% and 3.0% DSS concentration
was different. The clinical manifestations of mice with DSS-UC were highly associated with concentration: higher
concentrations commonly led to more severe clinical disease manifestations. Compared with model 2.5 group, mice in
3.0 group exhibited a severe clinical manifestation, which had a more severe presentation at diagnosis and higher
mortality. Hence, we preferred to use 2.5% DSS for induction modeling under the same experimental conditions as ours
in view of animal ethics and experimental costs.

Literature searches suggested that intestinal flora plays a major role in the pathogenesis of ulcerative colitis.54–57

However, how the gut microbiome dynamically changes in DSS-induced UC in mice remains unclear. Through this
experiment, we found that after the establishment of UC model in mice, the relative abundance of intestinal flora
increased first and then decreased in Bacteroides, Parabacteroides, Romboutsia, Clostridium_sensu_stricto_1,
Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG-014, Parasutterella, and decreased first and
then increased in Lactobacillus, Muribaculum, norank_f_Muribaculaceae, in addition, Bifidobacterium,
Coriobacteriaceae_UCG-002 and Enterorhabdus did not change in the first 14 days but increased significantly in the
21st day.

Previous researchers have shown that the abundance of Lactobacillus decreased in UC,58,59 which were consistent
with the results of our study. Lactobacillus is an anaerobic probiotic that synthesizes amino acids and vitamins in
intestinal tract. It could improve the integrity of intestinal mucosal barrier by inducing the differentiation of regulatory
T cells (Treg), reduce the level of pro-inflammatory cytokines, inhibit the reproduction of pathogenic bacteria and inhibit
the production of endotoxin to restore intestinal immune system balance and relieve the onset of ulcerative colitis.60–64

Accordingly, we speculated that the relative abundance of Lactobacillus recovered to normal level at day 14, which
might be due to the increase of Lactobacillus induced by inflammatory feedback type of DSS. Moreover, studies found
that Lactobacillus was negatively correlated with pro-inflammatory factor IL-6, which could trigger inflammatory storm
at early stage of inflammation and then gradually decrease,65 which also explained the reason why there was no
significant difference between pro-inflammatory factor IL-6 and control group at day 21 of the experiment.

In addition, the relative abundance of Bacteroides was significantly higher than that of control group on day seven,
and then decreased but still higher than that of control group. Bacteroides is a symbiotic gram-negative exclusive
anaerobic bacterium in intestinal tract of mammals, which could regulate body immunity and maintain homeostasis of
internal environment.66 Its relative abundance could be significantly increased in both acute and chronic UC animal
models to ameliorate Th1/Th2 immune imbalance and thus protect intestinal tissue.33,67,68 However, other study has

https://doi.org/10.2147/JIR.S358807

DovePress

Journal of Inflammation Research 2022:152642

Gu et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


found that Bacteroides could aggravate intestinal injury in UC,33 but there is still no definite conclusion and further
research is needed.

Bifidobacterium is a common gram-positive anaerobic beneficial bacterium, which the stability of relative abundance
is crucial for maintaining normal intestinal function and body health.69,70 Studies have shown that the number of
Bifidobacterium decreased in UC, and increasing in intestinal tract could alleviate UC.71–73 However, the present
study suggests that the relative abundance of Bifidobacterium did not change over 14 days, but increased significantly
by 21 days. Yang et al believed that Bifidobacterium could only be found in intestinal tract of mice in control group.74

Therefore, we could reasonably infer that the intestinal injury of animal model has been significantly recovered after 21
days of experiment, indicating that DSS-induced UC model has certain self-healing ability, which is consistent with the
literature.47 This result also explained that the relative abundance of microflora recovered partly in later experiment. For
instance, Clostridium_sensu_stricto_1, Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG−014
and Parasutterella showed the variation trend was increased first and then decreased, while Lactobacillus,
Muribaculum and norank_f_Muribaculaceae decreased first and then increased, which showed no significant difference
between control group at 21 days.

Clostridium_sensu_stricto_1 played an important role in development of UC. The present results corresponded with
the results of previous studies that the relative abundance of Clostridium_sensu_stricto_1 increased significantly in
animal models.75–77 In addition, we also found that Clostridium_sensu_stricto_1 was positively correlated with IL-4 in
serum, 5-HT, TNF-α and IFN-γ in colon. Studies have shown that IL-4 in UC could induce monocytes and eosinophils to
participate in inflammatory response and stimulate mast cell proliferation, thus promoting inflammatory response and
aggravating the degree of UC.78,79 The level of peripheral 5-HT, a pro-inflammatory factor, which could regulate cellular
immune function, promote emission of IFN-γ and other inflammatory factors,80 and also aggravate inflammatory
response of UC, was positively correlated with the severity of UC,80,81 Taken together, DSS could increase the
abundance of Clostridium_sensu_stricto_1 relative pro-inflammatory factors, promotes the release of IL-4, 5-HT, TNF-
α and IFN-γ, which could promote intestinal inflammation, leading to ulcerative colitis.

Short-chain fatty acids (SCFAs), which generated by the degradation and fermentation of indigestible carbohydrates
by gut microbiome, could increase intestinal peristalsis and oxygen content in the intestinal mucosa, and promote
epithelial cell proliferation and gland development.82–84 SCFAs, which are important source of energy for immune
cells,85,86 are essential substrate of intestinal epithelium normal function, regulation of the immune response and
inflammation,87,88 Literature searches suggested that SCFAs were closely associated to UC,31,89,90 and the relative levels
of bacteria, which could produce SCFAs also changed significantly in UC, which could relieve clinical symptoms and
promote intestinal microecological balance, thus playing a positive role in recovery of UC.91,92 Our study found that DSS
could lead to significant changes in relative levels of bacteria, such as Lachnospiraceae_NK4A136_group and
Muribaculum, which could produce SCFAs in the intestinal tract but different trends after DSS intervention. We inferred
the reason may be that Lachnospiraceae_NK4A136_group is a beneficial bacterium, and when the level of
Lachnospiraceae_NK4A136_group increased in an early stage of inflammation, SCFAs were generated to against
inflammatory response. After inflammatory response reduced, its abundance decreased. However, Muribaculum was
significantly inhibited at early stage, so its abundance decreased, and then increased to produce SCFAs to against
inflammation. In conclusion, intestinal microflora plays an anti-inflammatory effect role in whole process of occurrence
and development of UC, but different bacteria have anti-inflammatory effects at different times.

To study mechanism between inflammatory cytokines and intestinal flora in pathogenesis of UC, we conducted
correlation analysis and found that most pathogenic bacteria in the intestinal tract of the UC animal model were
positively correlated with pro-inflammatory factors and negatively correlated with anti-inflammatory factors, while
beneficial bacteria were the opposite. For example, the relative abundance of pathogenic bacteria
(Clostridium_sensu_stricto_1, Coriobacteriaceae_UCG−002, Parasutterella and Romboutsia) was positively correlated
with the level of pro-inflammatory factors (IL-4, TNF-α, IFN-γ, 5-HT), but negatively correlated with anti-inflammatory
factors (IL-10, IL-22). This result is consistent with previous studies.37,44,47,93 These findings suggest that DSS could
affect the relative abundance of intestinal microorganisms and the level of inflammatory factors in mice, disrupt intestinal
immune balance, cause tissue damage and induce UC.
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Conclusion
Our study found that 2.5% DSS caused colon tissue damage to UC by decreasing abundance of certain probiotics,
increasing abundance of pathogenic bacteria to reduce the level of anti-inflammatory factors and increase pro-
inflammatory factors. Moreover, there were significant differences in relative abundance of bacteria in different stages
of UC, and most of them tended to be normal at day 21. Our study, together with previous studies, suggests that Intestinal
microecology plays an important role in DSS-induced UC model, and the relative abundance of gut microbiome changes
dynamically in the occurrence and development of ulcerative colitis.
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