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Abstract: Although several pro-inflammatory cytokines including interleukin-6 (IL-6), IL-7, 

IL-12/IL-23, IL-17, IL-2, interferon, and the anti-inflammatory cytokines, IL-4/IL-13, IL-10, 

and IL-22, all activate the Janus kinase/signal transducers and activators of transcription (JAK/

STAT) pathway, in autoimmune disorders, a skewing of the cytokine repertoire in favor of 

pro-inflammatory cytokines results in amplifying the effects of pro-inflammatory cytokines. 

An apparent deficiency of anti-inflammatory cytokines to counterbalance the ‘ramping up’ of 

pro-inflammatory cytokine-mediated activation of JAK/STAT is also significant, while endog-

enous negative regulators of cytokine signaling and JAK/STAT activation may also be com-

promised. In addition, JAK/STAT pathway activation can result in activation of stress-activated 

protein/mitogen-activated protein kinase (SAP/MAPK) and phosphatidylinositol-3-kinase/

Akt/ mammalian target of rapamycin pathways that are instrumental in promoting matrix metal-

loproteinase gene expression, aberrant cell survival, and osteoclast differentiation. The critical 

role played by pro-inflammatory cytokines in differentially activating JAK/STAT and parallel 

signal transduction pathways resulted in the development of several cytokine/cytokine receptor 

neutralizing monoclonal antibodies and fusion proteins that are currently employed for treating 

rheumatoid arthritis, Crohn’s disease, and psoriasis. Small molecule inhibitors (SMIs) that target 

specific JAK enzymes have led to the development of CP690550, a JAK3-specific SMI, which 

is the first JAK-specific SMI to reach phase III in a rheumatoid arthritis clinical trial.

Keywords: autoimmunity, cytokines, inflammation, Janus kinase, signal transducers and 

activators of transcription, small molecule inhibitors

Introduction
Recent and quite compelling evidence has implicated activation of the Janus kinase/

signal transducers and activators of transcription (JAK/STAT) pathway by pro-

inflammatory and/or anti-inflammatory cytokines as a key regulatory step in the 

pathogenesis and progression of inflammation associated with autoimmune-mediated 

diseases such as rheumatoid arthritis (RA)1–9 and other autoimmune disorders, systemic 

lupus erythematosus (SLE)8,10 and Crohn’s disease.11 Thus, the pro-inflammatory 

cytokines, interleukin-6 (IL-6),12–14 IL-7,15–19 IL-12/IL-23,4,20–23 IL-17,24–27 the interferon 

(IFN) family of proteins,28–31 as well as the macrophage-derived cytokine IL-232 via 

their interaction with specific cytokine receptors (CyRs) result in the phosphorylation 

(ie, activation) of JAK enzymes.33 In this regard, cytokine/CyR binding regulates a 

host of immune cell regulatory functions including activation of antigen-presenting 
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cells such as plasmacytoid dendritic cells (DC)6,34–37 as 

well as the genesis and modulation of two T-lymphocyte 

subpopulations and the T
h
1720 and T-regulatory (T

reg
) cell 

subsets,37–40 the activity of the latter T-cell subset being 

crucial for instituting and maintaining immune tolerance. In 

that regard, dysfunctional T
reg

 cell activity has been attributed 

to a breakdown in immune tolerance in RA37–39 perpetuation 

of immune-mediated inflammation40 and immunodysregula-

tion, polyendocrinopathy, enteropathy, X-linked syndrome,41 

a rare autoimmune disorder originating from mutations in 

the FoxP3 transcription factor that resulted not in defective 

CD4+ CD25+ T
reg

 cell production but rather in dysfunctional 

T
reg

 cell and effector T-cells.42

Counterbalancing the overproduction of pro- inflammatory 

cytokines in autoimmune-mediated inflammatory disor-

ders should occur by activation of JAK/STAT with the 

anti-inflammatory cytokines IL-4, -13,43 -10,44 and -22 

(an IL-10-related cytokine).45 Of note, deficient levels of 

these anti- inflammatory cytokines do not appear to be 

responsible for blunted anti-inflammatory responses in 

autoimmune-mediated disorders. In actuality, higher levels 

of IL-13 were found in the synovial fluid of patients with 

RA, SLE, and Sjögren’s syndrome,46 as well as in sera and 

synovial fluid samples from patients with psoriatic arthritis47 

where the levels of IL-13 in the patient group was compa-

rable to IL-13 levels in a control group. Additionally, no 

significant relationship was found to exist between IL-13 

levels and antinuclear antibody titers.46 However, in RA, 

dysfunctional IL-10/IL-4/IL-13 could serve to blunt potential 

anti-inflammatory responses. Reportedly, this can occur by 

suppressing the synthesis of suppressor of cytokine signaling 

(SOCS) proteins48–51 or by the reduced production of IL-10 

by T
reg

 cells.43 Interestingly, IL-2 was reported to enhance 

the synthesis of IL-10 in the T-cell line, HOZOT.52

In RA, the potential for modulating JAK/STAT ter-

minating signals mediated by SOCS48–51 protein tyrosine 

phosphatases (eg, SHP-1, -2), protein inhibitor of activated 

proteins, and signal transducing adaptor protein (STAM)33,53 

must also be considered. Thus, in RA, defective regulation 

of these negative regulatory proteins may account for any 

significantly elevated levels of constitutively activated STAT 

proteins.

Cytokine-mediated activation  
of the JAK/STAT pathway
Activation of specific STAT proteins (see below) via JAK 

enzyme activation converts STAT proteins into potent 

transcription factors.54 In this conversion step, activated 

STAT proteins function to up regulate the expression 

of pro- inflammatory and anti-inflammatory cytokine 

genes,1,33,53–55 modify the survival signaling pathways of 

activated monocytes, lymphocytes, and synoviocytes in the 

inflamed synovial joint56–60 and in a positive feedback loop 

setting down regulates JAK/STAT and cytokine signal-

ing by activating SOCS gene expression.61 Of note, ‘cross 

talk’ between activated JAK/STAT, SAP/MAPK, and the 

phosphatidylinositol-3-kinase/Akt/mammalian target of 

rapamycin (PI3K/Akt/mTor) pathways may all be involved in 

promoting the survival and/or apoptosis of activated immune 

cells, activated synoviocytes, and chondrocytes. Thus, main-

taining activated immune cell, synovial cell, and chondrocyte 

vitality in RA joints appears to be crucial for regulating the 

chronic inflammatory response33,60–63 and for promoting 

chondrocyte-mediated articular cartilage repair.64

The results of recent experiments conducted in the 

Arthritis Research Laboratory at Case Western Reserve 

University shed some light on the mechanism by which 

inhibition of JAK enzyme activation could induce human 

chondrocyte apoptosis. Thus, incubating juvenile human 

chondrocyte macroaggregate pellet cultures65,66 with 50 µM 

of the JAK2 tyrosine kinase inhibitor, tyrphostin (AG-490),67 

induced apoptosis after 60 min as evidenced by the increased 

frequency of terminal deoxynucleotidyl transferase dUTP 

nick end labeling (TUNEL)-positive nuclei in 5-µm his-

tologic cross sections compared to untreated chondrocyte 

macroaggregate pellet cultures (unpublished data). These 

results suggested that induction of apoptosis by AG-49067,68 

could reflect the down regulation of JAK/STAT and MAPK 

pathways as was previously reported when AG-490 was 

incubated with an IL-6-dependent myeloma cell line.69 The 

down regulation of the synthesis of the gp130 signaling 

subunit, but not JAK2 or STAT-3, was also found in rat 

schwannoma RT4 cell cultures but only after treatment with 

recombinant human IL-6.70

Although dampening JAK/STAT signaling is a laudable 

clinical goal designed to regulate chronic  inflammation, 

inhibition of parallel SAP/MAPK60,62,71,72 and PI3K/Akt/mTor 

signaling pathways,53 Toll-like receptor (TLR) activation,62 

and the immunoreceptor tyrosine-based activation motif 

pathway73,74 may also have to be considered as a way to 

fully ameliorate autoimmune-mediated inflammation. 

 Nevertheless, recently, development of novel therapies 

with the capacity to inhibit or promote cytokine-mediated 

activation of the JAK/STAT pathway has been considered, 

which focuses on designing novel agents with the capacity 

to inhibit or promote cytokine-mediated activation of the 
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JAK/STAT pathway for treating human myeloproliferative 

diseases (MPDs)75,76 and inflammatory arthritis.14,19,56,77,78 

Interestingly, the JAK2V617F mutation found in several 

lymphoproliferative disorders, which gives rise to consti-

tutively activated STATs, was proposed as a link between 

B-cell dysfunction in MPDs and the B-cell hyperactivity 

associated with RA.76

Cytokine activation of STAT 
proteins
The earliest steps in the activation of JAK/STAT signal-

ing by IFNs and other extracellular signaling molecules 

previously held that under basal conditions ‘inactive’ or 

unphosphorylated-STAT proteins (U-STATs) were found 

in the cytoplasm where they existed as free monomeric 

proteins.79 After the appropriate stimulation is achieved via 

cytokine/CyR binding, JAK enzymes are activated and the 

U-STAT proteins are recruited from the cytoplasmic com-

partment to the CyR complex using Src homology 2 (SH2) 

regions that are homologous between specific JAK enzymes 

and their respective STAT proteins.3,33 This proved to be the 

case for IFN-γ where the specificity of p-STAT accumula-

tion via IFN-γ-mediated JAK1/JAK2 activation was found 

to reside in those interactions that occurred between SH2 

homologous domains and specific phosphotyrosine motifs 

found in the JAK enzyme and STAT protein.79,80 The next 

step in STAT protein activation was shown to occur when 

phosphorylated STAT proteins (p-STATs) dissociated from 

the cytokine/CyR/JAK complex leading to the formation of 

STAT hetero/homodimers whose interaction was also sta-

bilized via reciprocal p-STAT/SH2-phosphotyrosine motifs. 

The formation of p-STAT dimers facilitated their transport 

to the nucleus where they bound to STAT-target genes to 

regulate the initiation of transcription.33,81

Recent studies, however, have resulted in a paradigm 

shift in the interpretation of these early steps in STAT pro-

tein activation. Thus, it is now recognized along with other 

components of the ‘revised’ understanding of JAK/STAT 

signaling82 that U-STAT proteins exist primarily as U-STAT 

dimers and as high molecular mass ‘statosome’ complexes. 

Further, U-STAT proteins can also activate target genes that 

are distinct from those genes which are the targets for p-STAT 

proteins. Two examples of this phenomenon include findings 

that IL-6-stimulated p-STAT-3 also activated U-STAT-3 where 

U-STAT-3 drove the expression of both nuclear factor-κB 

(NF-κB)-dependent and NF-κB-independent gene targets83 

and the finding that IFN which drives p-STAT-1 accumula-

tion in human mononuclear cells in vitro also resulted in a 

significant increase in U-STAT-1, which persisted for several 

days, leading to the expression of many immune-regulated 

genes that were distinct from those gene targets activated 

by p-STAT-1.84

Do cytokine/CyR interactions result 
in specific STAT protein activation?
Seven mammalian STAT proteins, STAT-1, -2, -3, -4, 

STAT5α, STAT5β, and STAT6 have been described,1 and 

specific STAT protein activation has been reported based on 

various cytokine/CyR interactions. For example, STAT-3 is 

the main STAT mediator of IL-6/IL-6/gp130 signaling,44,85,86 

STAT-2 for IFN-α,87 and STAT-1 and -6 for IFN-γ88,89 and 

IL-4,90 respectively. However, STAT-1 can also be acti-

vated by IL-6.33 Moreover, IFN-α/β can act cooperatively 

with other T-cell mitogens including IL-2, -4, -7, and -12 to 

activate STAT-1 and -2, but not STAT-3.91 IL-23, a member 

of the IL-6/IL-12 protein family was shown to induce the 

formation of STAT-3/STAT-4 heterodimers and activate 

STAT-1, -3, -4, and -5,23 whereas IL-17 and -33 have been 

reported to activate STAT-3 and -5, respectively.92

Each specific cytokine/CyR interaction is also known to 

produce a different downstream gene response. In that regard, 

studies in STAT gene knockout mice have been instructive 

because specific STAT gene ablation resulted in variable 

downstream physiological responses.43,93,94

Specific gene responses initiated  
by cytokine/CyR interactions
The IL-6/IL-6R/gp130 pathway
IL-6 belongs to a family of pleiotypic pro-inflammatory 

cytokines including IL-11, leukemia inhibitory factor (LIF), 

oncostatin M, ciliary neurotrophic factor, epidermal growth 

factor, granulocyte colony-stimulating factor (G-CSF),  leptin, 

and cardiotrophin-1 that signal through a common gp130 

receptor subunit.52,95,96 The binding of IL-6 to its specific 

receptor (IL-6R) in conjunction with the gp130 signaling 

subunit initiates the activation of JAK/STAT signaling33,53 

with the phosphorylation of mainly p-STAT-3.95 In contrast, 

oncostatin M was found to mainly induce activation of JAK2/

STAT-5.97 A variety of transcriptional coactivator proteins 

some of which belong to a group of histone acetyltrans-

ferases but also including, CBP/p300 and CR6-initiating 

factor-1, were shown to improve access of p-STAT proteins 

to the transcription initiation complex.33 Steroid receptor 

coactivator-1 which at one time was considered as performing 

a similar function as CBP/p300 and CR6-initiating factor-1 

was recently found to be dispensable for the transcriptional 
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control by STAT-3, but the results of this study also confirmed 

the critical role of CBP/p300 in STAT-3-mediated target gene 

transcription.98

Gene expression profiling microarrays have system-

atically cataloged those target genes which are likely to be 

relevant to some aspect of the pathogenesis and progression 

of RA and other autoimmune-mediated arthritic disorders 

following IL-6, oncostatin M, or LIF-mediated STAT protein 

activation. In that regard, Andreas et al99 recently defined 

100 RA-related genes expressed by human chondrocytes 

after stimulation with the conditioned medium from SV40-

T-antigen immortalized human synovial fibroblast cultures. 

One of these genes, for example, Cyr61, which encodes 

a cysteine-rich heparin-binding protein, was known to be 

a STAT-3 target gene (Table 1).

The IL-7/IL-7Rα pathway
The expression of the IL-7Rα gene also known as CD127 is 

likely to be important in the pathogenesis and progression of 

immune-mediated arthritis because of the central role played 

by IL-7R in T-cell survival, the maturation of B-cells, interac-

tions of T-cells with DCs, and as a lymphoid tissue inducer 

cytokine.15,16,18,106,107 Additionally, suppressed activity of the 

pro-apoptosis proteins Bad and Bim108 and the levels of anti-

apoptosis proteins Bcl-2 and Bax109 have been implicated in 

activation of the IL-7/IL-7R regulatory pathway which in all 

likelihood is a contributor to defective apoptosis exhibited 

by activated T-cells in RA.57 Also critical to this expanded 

understanding of the role of IL-7/IL-7Rα-mediated signal-

ing in RA were analyses showing elevated levels of IL-7 

in RA synovial fluid.110 Additionally, the F759 mutation in 

gp130/IL-6R subunit resulted in elevated levels of IL-7 and 

activated STAT-3,111 suggesting a strong correlation between 

defective gp130 signaling and increased IL-7 levels. Further-

more, Kim et al110 also showed that IL-1β and tumor necrosis 

factor alpha (TNF-α) increased IL-7 levels by stromal cells 

in vitro. This result was coupled to the finding that IL-7 

markedly induced osteoclastogenic cytokine  production 

by T-cells, which was  receptor activator of NF-κB ligand 

(RANKL)-dependent while being TNF-α independent. 

This result strongly suggested a critical link between IL-7/

IL-7Rα-dependent signaling and STAT protein activation 

playing a role in the destruction of subchondral bone, which 

is a characteristic feature of chronically progressive RA. Of 

note, glucocorticoids that are often employed in the initial 

therapy of RA inhibited IL-7-mediated signaling (along 

with IL-4 and -15) in primary human T-cells which was 

 accompanied by inhibition of STAT-5 activation.112

Although STAT-5-mediated signaling via IL-7/IL-7Rα 

was crucial for promoting naïve T-cell survival, the forced 

expression of constitutively active STAT-5 failed to rescue 

CD4+ T-cells in SOCS1 transgenic mice, implying that 

STAT-5 was necessary but not sufficient for survival of 

naïve T-cells.106 Moreover, employing T-lymphoid cells, 

Jahn et al113 showed that Kit, the transmembrane protein 

receptor tyrosine kinase for stem cell factor and IL-7R could 

act synergistically with partial complementation of γ-C or 

IL-7-mediated signaling occurring via the Kit signaling 

pathway so that Kit-mediated activation of JAK-3 became 

IL-7R-dependent. Of note, deficient STAT-5 activation was 

also found in the Kit mutant YY567/569FF which lacked 

intrinsic Src activation capacity. This defect could be partially 

reconstituted in the presence of IL-7R and JAK-3.113

IL-17
IL-17 exists in six isoforms among which the bioactivity of 

isoforms IL-17A and -17F is the most thoroughly studied. 

IL-17 is a T-cell-derived cytokine that is overexpressed in the 

synovial tissue of RA patients.24,114 IL-17 can drive the progres-

sion of arthritis in well-validated animal models of RA which 

was found to be independent of the presence and/or activity 

of IL-1β57 and/or TNF-α.115,116 Noteworthy was the finding 

Table 1 IL-6 protein family member-regulated genes

Cytokine STAT-regulated genes Cell target References

GM-CSF Survivin CD34+ hemoprogenitor cells 100
IL-6, sIL-6R Type II collagen, link protein, 

aggrecan, Sox9
Articular chondrocytes 101

IL-6 BCL-3 Multiple myeloma cell lines 102
Oncostatin M c-fos, TNF-R, Pcnt, Bcl-3, Peg10, 

Cdo, Cin6, Perq1, Smad9, Boc, CBP, 
Ect2, FasL

NIH3T3 STAT3-dependent 103

Oncostatin M CH13L1, PLAU, MTA2, EPAS1 U1242MG glioma cell line 104
LIF Dact1, Klf4, Klf5, Rgs16, Smad7 Ccrn1, 

Ocln, ler3, Pim1, Cyr61, Sgk
Mouse embryonic stem cells 
STAT3-dependent

105

Abbreviations: GM-CSF, granulocyte macrophage-colony-stimulating factor; IL, interleukin; LIF, leukemia inhibitory factor.
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that a T-cell subset, T
H
17, isolated from RA peripheral blood 

mononuclear cell preparations had several  characteristics 

that made them distinct from the T
H
1/T

H
2 T-cell subsets 

with TNF-α, GM-CSF, and IL-6 among the most prominent 

pro-inflammatory cytokines produced by T
H
17 cells.25 Impor-

tantly, IL-2321,22,117 and over-expression of the retinoic acid 

receptor-related orphan receptor-γ (ROR-γ)118 were shown 

to be potent inducers of IL-17 synthesis and T
H
17 cell dif-

ferentiation. Moreover, ROR-α t and ROR-γ t coexpression 

acting in synergistic fashion was found to further drive the 

production of T
H
17 differentiation. T

H
17 cells in vitro also 

secreted IL-21 and -22.119 In that regard, Korn et al120 showed 

that the robust production of T
H
17 cells only occurred in the 

presence of transforming growth factor-β, IL-6, -21, -23, 

and ROR-α t and ROR-γ t which also drove the activation 

of STAT-3. T
H
17 cells specifically lacking gp130 and STAT-3 

failed to differentiate into T
reg

 cells or express the ROR-γ t 

phenotype indicating that activation of the JAK/STAT-1, 

-3 signaling pathway was critical for the differentiation of T
reg

 

cells from T
H
17 cells.121–123 Not unexpectedly, two genome-

wide analyses determined that STAT-dependent targets 

(eg, IRF8-STAT-3 and NFAT-STAT-3) were regulated at the 

level of transcription either directly by IL-17,124 indirectly by 

the up regulated expression of IL-6 in response to IL-17, or 

by ‘cross talk’ via activation of NF-κB and PI3K/Akt/mTor 

pathways.125,126 Conversely, IL-17 expression was blocked by 

IFN-γ and IL-4 signaling.127

IL-12/IL-23
IL-23 is a heterodimeric cytokine composed of IL-12p40 

and the IL-12p35 cytokine.128,129 IL-23 binds to the 

IL-12 receptor-β
1
 (IL-12R β

1
), which strongly activates 

JAK2/STAT-1, -3, -4, and -5 but with a weaker STAT-4 

activation profile.130 Interestingly, different patterns of DNA-

binding complexes emerge in response to IL-12 and -23.

Serum IL-12 and -23 levels are elevated in RA sera and syn-

ovial fluid,20,131 but neither of these cytokines were decreased in 

response to conventional therapy of RA with corticosteroids.131 

At the cellular level, IL-17129 and IL-1β132 stimulated IL-23 syn-

thesis, whereas IL-23 up regulated IL-8 and -6 expression132 

in cultured RA synovial fibroblasts. The stimulatory effects 

of IL-17 and IL-1β on IL-23 production were both dependent 

on activation of the p38 MAPK, PI3K/Akt/mTor, and AP-1 

pathways.131,132 Conversely, IL-12-induced IFN-γ production 

by human T-cells was also found to be regulated by mTor.133

Xu et al134 showed that DCs that were engineered 

(ie, ‘silenced’) to not produce IL-12p35 were capable of 

blunting T-cell responses. This occurred by dampening the 

activation of T-cell JAK2, Tyk2, STAT-3, and -4. STAT-4 

induced target genes following stimulation of human T-helper 

cells with IL-12, which included macrophage inflammatory 

protein-1α and -3α, IL-1-receptor antagonist, IFN-regulatory 

factor, v-ets erythroblastosis virus E26 oncogene homolog 1 

(Ets)-related transcription factor, CCR5 and the IL-18 recep-

tor.135 Of note, Kageyama et al136 showed that a significant 

decrease in serum IL-23 and macrophage inflammatory 

protein-3α, but not IL-17, occurred after 3- and 6-month 

therapy of RA patients with etanercept, an anti-TNF-α 

fusion protein. Additionally, in a Phase II clinical trial in RA 

patients, the orally administered IL-12/IL-23 small molecule 

inhibitor (SMI), STA-5326, down regulated IL-12p35 and 

IL-12/IL-23p40 at the transcriptional level with decreased 

T
h
1 responses.130

The interferon-mediated pathway
An extensive analysis of the critical role played by the IFN 

protein family and the interferon-regulated gene (IFG) 

pathway in RA,137,138 including the emerging role of two 

newly identified IFN-λ protein family members, IL-28A,B 

and IL-29139 as well as the role of IFN/IFG-dependent path-

ways in other autoimmune disorders such as SLE140,141 and 

Sjögren’s syndrome142 is beyond the overall scope of this 

review. Sufficed, the IFN/IFG-mediated pathway has been 

extensively studied in these autoimmune diseases and was 

shown to play an important regulatory role in mediating 

autoimmune-dependent inflammation.

The following patterns of IFN/IFG-regulated gene 

responses have emerged in these disease states. Despite the 

fact that most of the previous studies have focused on the 

capacity of IFN to activate the JAK/STAT pathway resulting 

in IRG-mediated responses,33,143,144 recent studies have also 

shown that i) non-STAT-dependent pathways, including, 

those signaling pathways involving activation of the MAPK 

components, p38 kinase, and ERK1/2 as well as activation 

of PI3K/Akt/mTOR signaling were important in transmitting 

cellular signals that were critical to IRG-mediated metabo-

lism originating from IFN/IFN-receptor-(IFNR)-associated 

complexes;145–147 ii) that Akt activity was crucial for the up 

regulation of key IFN-α,-γ responses148 with these IFN-α,-γ-

mediated responses also reflecting the direct control of IRG 

activity by mTOR149 at the initiation of translation level;150 and 

iii) that Akt/mTOR substantively regulated the initiation of 

translation of three IRGs pertinent to autoimmune-mediated 

inflammation in RA, SLE, and psoriatic arthritis, namely, IFN-

induced 17kDa protein (Isg15), Cxc110, and IFN-regulatory 

factor-7 (Irf7).151–155
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Of note, JAK/STAT rather than Akt/mTOR was shown to 

regulate IFN-α-mediated translation of irf9 and the antipro-

liferative effect of IFN-α against the ovarian carcinoma cells 

line, OVCAR3.147 However, although irf9-RNAi inhibited the 

activity of TNF-related apoptosis-inducing ligand (TRAIL)-

induced apoptosis in OVCAR3, STAT-1-RNAi did not, indi-

cating that TRAIL-mediated apoptosis was ifr9-dependent 

rather than STAT-1-dependent.147 In contrast, irf3 was shown 

to regulate IFN-stimulated response element promoter activ-

ity as well as IFN-β, irf5, irf7, RANTES (regulated upon 

activation normal T-cell expressed and presumably secreted), 

IFN-inducible protein-10, MCP-1, and MIP-1α in response 

to poly (I-C). Interestingly, irf3 knockdown also blocked 

the activity of some genes in RA-synovial fibroblasts not 

generally thought to be mediated by an IRSE such as matrix 

metalloproteinase (MMP)-3, -9, IL-6, and -8, the latter which 

required JNK and AP-1 activity.156

Finally, Österlund et al157 showed that the binding of 

an irf to the Type III IFN promoter/IRSE was the critical 

step regulating the transcription of IRSE-regulated genes. 

In this regard, IFN-λ-1 gene responses could be induced 

by virally-activated irf3 and irf7 thus resembling IFN-β 

gene activation, whereas IFN-λ2/3 gene expression was 

mainly controlled by irf7 and thus resembled an IFN-α gene 

response. The results of this study157 also demonstrated that 

IFN genes could be regulated by both TLR-dependent as 

well as  TLR-independent pathways.

Signaling by the IL-10 protein family
The IL-10 protein family of cytokines consists of IL-10, 

-19, -20, -22, -24, -26, and the IFN-λ group (IL-28A, -28B, 

and -29) all of which bind to a shared class II of CyRs to 

form heterodimeric complexes which activate JAK/STAT 

signaling and thus play a potential role in cell survival and 

proliferation.158–162 During the past decade or so, there has 

been an increased interest to restore anti-inflammatory-

mediated events associated with the IL-10-type cytokines that 

may have become dampened during autoimmune-mediated 

events. This approach has often taken a somewhat overly 

simplistic approach. For example, in one study, IL-22 was 

shown to act synergistically with TNF-α, IL-1β, and IL-17.159 

However, under most other conditions, the biological activ-

ity of IL-22 did not require cooperation with any of these 

cytokines so that modifying the biological activity of TNF-α, 

IL-1β, and IL-17 would not be expected to abrogate the 

effects of IL-22 on inflammatory responses.

As discussed previously, autoimmune-mediated disorders 

such as RA and SLE are characterized by a skewing of T
h
1 

and T
h
2 T-cell subsets in favor of T

h
1. Thus, development 

of T
h
1 and T

h
2 T-cell subsets may simply be related to the 

biological activity of specific transcription factors; T-bet for 

T
h
1163 GATA3 for T

h
2,164,165 RORγ t for Th17 cells,166 and the 

Schnurri (Shn) zinc-finger proteins for memory and resting 

T-cells.167 These transcription factors all appear to play a 

fundamental role in modulating the ratio of memory T
h
1 and 

T
h
2 T-cell subsets. Therefore, regulation of the biological 

activity of these transcription factors may have significant 

effects on regulating levels of IL-10 family cytokines. How 

this phenomenon is actually controlled at the molecular level 

still remains to be fully elucidated. However, recent evidence 

indicated that Shn-2 was responsible for promoting memory 

T
h
 cell survival, that suppression of additional transcription 

factors was required for the development of memory T
h
 cells 

and resting T
h
 cells, and for that matter naïve CD4+ cells 

could be modulated by repressor proteins such as Shn-2.167 

Another factor that may explain reduced IL-10 function and 

the dysregulation of STAT protein activation in RA and SLE 

could be related to the recent results reported by Hermann 

et al168 who showed that an IL-10R1 loss of function G330F 

mutation cloned into HeLa cells resulted in weak induction 

of both SOCS and STAM after stimulation with IL-10.

Over a decade ago, Riley et al169 demonstrated that 

IL-10 was responsible for suppressing macrophage-derived 

TNF-α. Therefore, macrophages that were STAT-3- or 

JAK1-deficient could not respond to induction of TNF-α 

by lipopolysaccharide (LPS). Furthermore, Riley et al169 

demonstrated that two redundant STAT-3 recruitment sites 

located at 427YQKQ430 and 477YLKQ480 were required for 

all IL-10-dependent effects on B-cells or macrophages. Of 

note, IL-10-mediated anti-inflammatory effects required the 

intracellular domain of the IL-10R at the COOH-terminus 

which contained at least one functional serine phosphory-

lation site. Thus, it was likely that the progression of auto-

immune-mediated arthritis could go on unabated if some or 

all of these IL-10 functional requirements were lost during 

the disease process. These results were later confirmed by 

Ahmed and Ivashkiv170 and Herrero et al,171 who showed 

that IL-10-(and IL-6)-mediated signaling could be blunted 

by activation of pro-inflammatory and stress-activated path-

ways involving p38 MAPK, JAK-1, and STAT-3. Further, 

modulation of IFN-γ regulated the ‘on/off ’ switch which 

controlled IL-10-mediated STAT activation and macrophage 

responses to IL-10.

Several other possibilities that may account for the loss of 

functional IL-10 in RA were also proposed by Ji et al172 and 

van Roon et al173 whereby macrophages become refractory 
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to the anti-inflammatory effects of IL-10 when macrophages 

are continuously exposed to immune complexes in vivo. In 

addition, macrophage activation by IFN-γ required F
c
 receptor 

activation to mediate the suppression of IL-10 signaling, and 

diminished STAT-1- and IL-10-inducible gene activity with 

concomitant suppression of pro-inflammatory cytokine pro-

duction was also dependent on the activity of protein kinase 

C-δ. More recently, it was shown that IL-27, a member of the 

IL-12 cytokine family, was capable of priming monocytes to 

respond to TLR stimulators which were STAT-1 dependent 

and which altered IL-10 signaling.174 Further, IL-27 was 

found to strongly suppress TLR-induced IL-10 production 

by human monocytes suggesting that the elevated levels 

of IL-27 mRNA produced by the macrophages recovered 

from the synovial fluid of RA patients compared to control 

macrophages175 could be responsible, in part, for abrogating 

the potential anti-inflammatory effects of IL-10. Importantly, 

IL-27 mRNA levels did not differ between RA and control 

macrophages after TLR2 ligation suggesting a mechanism 

for modulating the effects of IL-27 on IL-10-mediated 

signaling.

IL-4/IL-13
IL-4 and -13 are produced primarily by T

h
2 cells, mast cells, 

and basophils. IL-4-mediated signaling is initiated via the 

binding of IL-4 to two receptors, type I and type II, whereas 

IL-13-mediated signaling is activated only through binding 

of IL-13 to the type II receptor.176 Both IL-4 and -13 activate 

the JAK/STAT pathway,176 but evidence has also shown 

that PI3K/Akt/mTor,43,176 Fes tyrosine kinase, insulin recep-

tor substrates, and inositol phosphatases are also activated 

by IL-4/IL-13.43 Additionally, IL-4 was shown to induce 

phosphorylation of Syk, p38, ERK 1/2, JNK, as well as 

JAKs-1 and -2, STAT-1 and -6 in neutrophils with IL-4 

also increasing the expression of SOCS3 at the mRNA and 

protein level.177

Wang et al178 showed that IL-4/IL-13 activated STAT-1/

STAT-6 in multiple cell types, including smooth muscle, 

epithelium, endothelium, fibroblasts, and lymphoid cell 

lines. IL-4 and -13 utilized a common receptor for activa-

tion composed of IL-4Rα and IL-13Rα1, but IL-4 also used 

IL-4Rα and the common γ chain for activation of JAK/STAT 

suggesting a common mechanism among various cell types 

that regulate IL-4/IL-13-mediated signaling.

The role played by IL-4 and -13 in regulating inflam-

matory responses in arthritis has also been systematically 

analyzed. Thus, Morita et al179 showed that IL-4 and -13 

(as well as IL-10) inhibited the production of IL-1β, TNF-α, 

IL-6, and IL-8 in freshly isolated synovial tissue cells in vitro. 

IL-4 and -13 also increased the production of IL-1R antago-

nist protein. However, IFN-γ production was suppressed by 

IL-4 (and IL-10), but not by IL-13. Finally, IL-1β-induced 

RA synovial fibroblast proliferation was inhibited by IL-4 

and -13, but not by IL-10, a result which suggested that if 

IL-4 and -13 could retain their potency in RA synovial joints, 

IL-4 and -13 could potentially suppress aberrant synoviocyte 

proliferation induced by the elevated levels of IL-1β.

Proof-of-concept studies to show that IL-4 could ablate 

arthritic changes were performed by Woods et al180 who 

showed that adenovirally-directed IL-4 administered to rats 

with adjuvant-induced arthritis (AIA) showed reduced joint 

inflammation compared to the empty vector-control group. 

The reduction in joint inflammation was accompanied 

by lower levels of IL-1β, TNF-α, macrophage inhibitory 

protein-2 (MIP-2), and RANTES chemokine. A reduction in 

synovial tissue cellularity, vascularization, and bone destruc-

tion was also noted. In contrast, Nabbe et al181 showed that 

local IL-13 gene transfer when prophylactically administered 

to rodents prior to the development of immune-complex-

mediated arthritis had a lower frequency of apoptotic chon-

drocytes and reduced MMP-mediated cartilage proteoglycan 

degradation, despite the fact that IL-13 gene transfer had 

little or no effect on inflammatory responses or on MMP-3, 

-9, -12, and -13 mRNA levels.

The results of other studies have also indicated that IL-4 

and -13 (but not IL-10) protected human synoviocytes or 

synovial tissue explants from apoptosis induced by sodium 

nitroprusside in a dose-dependent manner.182 In addition, 

elevated levels of IL-13 were found in RA sera and synovial 

fluid compared to normal sera or synovial fluid from OA 

patients.183 Further, IL-13 recovered from RA samples pro-

moted DC maturation and IL-13 production by DC. Of note, 

DC growth activity could be inhibited by etanercept in vitro 

which was also associated with diminished IL-13 activity. 

Lastly, etanercept-treated RA patients who demonstrated 

noticeable clinical improvement also showed concurrent 

increases in circulating macrophage-colony stimulating fac-

tor (M-CSF), a non-DC, monocyte-specific growth  factor. 

M-CSF is known to promote monocyte/macrophage 

 differentiation, to act as a survival factor for osteoclasts184 

and to activate STAT-5 during myeloid cell differentiation.185 

However, it remains to be determined if clinical improve-

ment by RA patients in response to etanercept was totally 

independent of changes in the level of M-CSF.

Three other studies186–188 were noteworthy because 

they have focused on the putative role of IL-4 and -13 in 
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suppressing neoangiogenesis in rat AIA. In one study,186 

intraarticular administration of adenovirus-producing IL-4 

reduced synovial tissue vascularization in rat AIA. The 

reduction in blood vessel density was accompanied by 

decreased synovial joint inflammation that was also char-

acterized by lower levels of IL-18, CXC chemokine ligand 

16 (CXCL16), and LPS-induced CXC chemokine (CXCL5) 

but with higher levels of endostatin. The antiangiogenic 

effects induced by adenovirus-producing IL-4 occurred 

despite persistently high levels of vascular endothelial 

growth factor in the joints of rats with AIA. In a follow-up 

study, Haas et al187 produced an almost identical result using 

rats with AIA treated with adenovirus-producing IL-13. 

The reduction in joint inflammation was characterized by 

down regulation of IL-18, cytokine-induced neutrophil 

chemoattractant-1 (CXCL1), CSCL5, and up regulation of 

endostatin as well as a decrease in the activities of MMP-2 

and -9. Interestingly, neither study examined the extent 

to which adenovirus-producing IL-4 or -IL-13 altered 

JAK/STAT or other signaling pathways in rat AIA, although 

Ruth et al188 previously showed that intragraft injection of 

human CLCL16 which mediated the recruitment of human 

mononuclear cells to RA synovial tissue implanted in SCID 

mice was inhibited by antisense oligonucleotides directed 

toward ERK1/2 MAPK, suggestive of an effect of CLCL16 

on the SAP/MAPK pathway.

IL-2-signaling activates STAT proteins
Mice deficient in IL-2 or its receptor, IL-2R showed an 

elevated level of lymphocytic proliferation coupled to an 

autoimmune disorder.189 This finding together with the 

knowledge that IL-2 plays a critical role in regulating T-cell 

proliferation in vitro ultimately led to the conclusion that 

constitutive expression of IL-2Rα on CD4+CD25+ T-cells 

as well as IL-2/IL-2Rα binding was critical for maintaining 

normal T-cell proliferation and homeostasis. Prior to this 

discovery, it was already known that IL-2/IL-2Rα signaling 

activated the JAK/STAT pathway with STAT-5a and -5b, the 

principal STAT proteins activated in this process, and that 

SOCS was the negative regulator of STAT-5a, -5b protein 

activation by IL-2/IL-2Rα.190 In this regard, Murawski et al191 

showed that up regulation and sustained activity of FOXP3 

were required for the sustenance of mouse and human T
reg

 

cells which were also dependent on STAT-5 activation by 

IL-2. Moreover, Taylor et al192 showed that the STAT-5-driven 

activation in response to IL-2/IL-2Rα was critical for lym-

phocyte homeostasis and could, in fact, ‘supersede’ the 

general requirement for T-cell receptor engagement and 

cytokine stimulation with other cytokines such as IL-15 as a 

T-cell proliferation activator. Thus, chronic cellular  stressors 

that limited STAT-5 phosphorylation might be expected to 

suppress CD4+CD25+FOXP3+ T
reg

 cell activity. Such was 

the case with CD4+CD25+FOXP3+ T
reg

 cells from patients 

that were chronically infected with hepatitis C virus. In this 

particular case, inadequate levels of CD4+CD25+FOXP3+ T
reg

 

cells were accompanied by up regulation of the interaction 

between programmed death-ligand-1 (PD-L1) and B7.1193 

suggesting that PD-L1 negatively regulated T
reg

 cell activity 

by blocking STAT-5 activation at sites where chronic inflam-

mation was persistently present.

Is epigenetic status a mechanism 
for regulating STAT-protein 
expression?
Recent studies have focused attention on the distinct pos-

sibility that epigenetic modifications, including chromatin 

methylation and histone post-translational alterations, play 

a critical role in the pathogenesis and progression of RA.194 

Thus, Karouzakis et al195 showed that histone hyperacetyla-

tion and elevated microRNA expression were a character-

istic of RA synovial fibroblast cultures. Moreover, normal 

synovial fibroblasts grown in a culture milieu that supported 

hypermethylation resulted in normal cultured synoviocytes 

acquiring an RA-like phenotype. One possible interpretation 

of these results was that aberrant DNA methylation altered 

the progression of RA by inducing abnormal synoviocyte 

proliferation and activation. These findings were extended 

to show that similar epigenetic alterations affecting chro-

matin and DNA supercoiling occurred in other autoimmune 

disorders, such as SLE and multiple sclerosis,196 whereby 

epigenetic modifications affected autoreactive lymphocyte 

development and neural demyelination, respectively. As 

previously indicated, in RA, DNA methylation and histone 

modifications were also found to be strong promoters of 

aberrant synoviocyte proliferation.195,196

STAT proteins appear to be particularly sensitive to 

epigenetic modifications.197 For example, Shin et al198 

showed using normal human T-cells that STAT-4 expres-

sional regulation was associated with the hypermethylated 

state and STAT-4 gene expression was strongly increased 

in human T-cells following treatment with a DNA meth-

yltransferase inhibitor. Moreover, methylation exhibited a 

stronger association with STAT-4 protein expression than 

that associated with promoter polymorphisms. A similar 

result was found for the regulation of STAT-6 signaling in 

human T-cells.199
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Of note, loss of functioning JAKs resulted in an 

 enhancement of heterochromatin gene silencing and the 

 over-expression of heterochromatin protein-1 which 

 correlated with the growth of oncogenic JAK-induced tumors 

in the absence of any alterations in JAK/STAT-mediated 

signaling.200 These results suggested that epigenetic status 

was critical for disrupting heterochromatin-mediated tumor 

suppression characterized by overactivation of JAKs which 

may have particular relevance for establishing a role for 

altered JAK activity in autoimmunity.

Finally, Nile et al201 showed using LPS-stimulated mac-

rophages that methylation of a single CpG site in the IL-6 

promoter region altered IL-6 gene regulation. Moreover, 

the IL-6/CpG motif in monocytes from RA patients was 

undermethylated compared to the IL-6/CpG motif from 

control monocytes. Although the relevance of these findings 

to RA requires further study, they may be associated with 

the elevated levels of IL-6 found in RA synovial fluid and 

sera as well as the altered responsiveness of IL-6-induced 

STAT activation2,6,8,14 found in human RA synoviocytes 

and monocytes ex vivo.

Potential drug targets
The majority of the newer drug treatment strategies for RA and 

other autoimmune disorders have focused on neutralizing pro-

inflammatory cytokine/CyR interactions, especially those initi-

ated by IL-1, TNF-α, and IL-6.4,5,13,14 Other pro-inflammatory 

cytokines that include IL-17,202,203 IL-12/IL-23,204–206 IL-7,17,19 

and IL-7Rα207 have also been considered as promising targets 

for drug development for the medical therapy of various forms 

of inflammatory arthritis, Crohn’s disease, and psoriasis. 

Manipulating DC activity deemed to be critical to the progres-

sion of RA has also been contemplated as a viable form of 

‘cell’ therapy.208 Drug development strategies for improving 

the potential disease-modifying effects of anti-inflammatory 

cytokines such as IL-4/IL-13 and IL-10 must also be formu-

lated but at the present time, the development of experimen-

tal strategies to counteract the effects of pro-inflammatory 

cytokine-induced responses in RA using anti-IL4/Il-13 or 

anti-IL-10 have lagged behind other experimental approaches. 

However, in the context of the overall theme of this review, 

there have been experimental protocols designed to directly 

target JAK/STAT-mediated signaling.209,210 Indeed, several 

drugs in various current stages of development as specific 

JAK and/or STAT protein inhibitors are shown in Table 2. 

In addition to RA, several of these JAK/STAT- specific SMIs 

are contemplated for use in the treatment of MPDs, renal 

carcinoma, and malignant glioma.

Conclusions
Activation of the JAK/STAT signaling pathway initiated by 

the interaction of pro-inflammatory and/or anti-inflammatory 

cytokines with their respective CyRs regulate a host of 

immune-mediated inflammatory responses that are highly 

relevant to the pathogenesis and progression of RA and other 

autoimmune disorders. Although the importance of STAT 

protein activation in RA is undeniable and has resulted in 

the development and testing of several JAK-specific SMIs in 

well-validated animal models of inflammatory arthritis and 

now in RA clinical trials, there are other potential targets 

for RA intervention that should not be overlooked. Thus, 

circulating hormonal axes relevant to chondrogenesis and 

cartilage repair involving insulin-like growth factor binding 

protein and the growth hormone/IGF-1 nuclear receptor 

peroxisome proliferator-activated receptor pathway, the latter 

participating in the maintenance of normal cartilage homeo-

stasis, can also initiate STAT protein activation.223,224 The 

extent to which non-cytokine mediators should be further 

studied to determine whether or not they promote or inhibit 

JAK-specific activation or if they affect cartilage repair in 

RA via JAK/STAT or any of the other parallel signaling 

pathways seems appropriate and worthwhile.

There had been strong implications based on the results 

from well-validated animal models of inflammatory arthritis 

that suppression of the SAP/MAPK pathway and p38 kinase, 

in particular, dampens the severity of bone loss in experimen-

tal arthritis.225 However, there has been little clinical efficacy 

obtained when p38 kinase isoform-specific SMIs were 

employed in human RA clinical trials.226,227 In the meantime, 

Table 2 Drug targeting of the JAK/STAT signaling pathway

Inhibitor JAK selectivity Potential 
indication

References

CP690550 JAK3 RA 211,212
MS-0120 JAK3 Hodgkin’s 

lymphoma
213

INCB018424 JAK1/JAK2 MPD 214
INCB028050 RA 215
420999 JAK1/2/3 (?) Osteosarcoma 216
CYT387 JAK2 Hematologic 

malignancy
217

TG101348 JAK2 Polycythemia vera 218
TG101209 JAK2 219
JS-124 JAK1/2/3 (?) Glioblastoma 

multiforme, 
Malignant glioma

220

wP1066 Renal carcinoma 221
CPA-7 Malignant glioma 222

Abbreviations: JAK, Janus kinase; MPD, myeloproliferative disease; RA, rheumatoid 
arthritis; STAT, signal transducers and activators of transcription.
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significant progress has already been made in determining 

the efficacy, safety, and tolerability of the orally administered 

JAK3-specific SMI, CP690550 in RA clinical trials. The use of 

CP690550 for future RA therapy will hinge on data forthcom-

ing from the currently ongoing phase III clinical trial.
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