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Purpose: This study aimed to investigate the characteristics of gut bacteria and the derived metabolites among allergic asthmatic
children, non-allergic asthmatic children and healthy children without asthma.
Methods: Fecal samples were collected from 57 participants, including 20 healthy children, 27 allergic asthmatic children, and 10
non-allergic asthmatic children. 16S rRNA gene sequencing was conducted for analyzing gut bacterial compositions and untargeted
metabolomics was used to analyze the alterations of gut microbe-derived metabolites. The associations between gut bacterial
compositions and metabolites were analyzed by the method of Spearman correlation.
Results: The results showed that the compositions and metabolites of gut microbiome were altered both in allergic and non-allergic
asthmatics compared with healthy controls. Chao1 (p = 0.025) index reflected a higher bacterial richness and Simpson (p = 0.024)
index showed a lower diversity in asthma group. PERMANOVA analysis showed significant differences among the three groups based
on unweighted UniFrac distance (p = 0.001). Both allergic and non-allergic asthmatics showed a higher relative abundance of
Proteobacteria and a lower relative abundance of genera from Clostridia. More bacteria were altered in non-allergic asthmatics
compared with allergic asthmatics. Metabolomics analysis identified that 42 metabolites were significantly associated with allergic
asthma, and 58 metabolites were significantly associated with non-allergic asthma (multiple linear regression, p < 0.05). Histamine
was 4 folds up-regulated only in the non-allergic asthma group. The relative abundance of Candidatus Accumulib was significantly
correlated with the upregulation of histamine. The relative abundance of genera from Clostridia was significantly correlated with the
downregulation of lipid and tryptophan metabolism.
Conclusion: The altered gut microbes was associated with the mechanism of asthma attack through metabolites in allergic and non-
allergic asthma group, respectively. The result suggested that gut microbiome had an impact on the development of both allergic and
non-allergic asthma. The distinct gut microbiome and microbiome-derived metabolites in non-allergic asthma children suggested that
gut microbiome might play a critical role in modulation of asthma phenotype.
Keywords: gut microbiome, untargeted metabolomics, allergic childhood asthma, non-allergic childhood asthma, 16S rRNA gene
sequencing

Introduction
Childhood asthma is one of the most prevalent chronic pediatric diseases. It affected children’s health all over the world.1

Asthma is a heterogeneous disease with complex pathogenesis, which presents many phenotypes.2 Allergic and non-
allergic asthma are the most common phenotypes of asthma. Approximately 80% of children with asthma were reported
to be allergic.3 Allergic asthma is mainly induced by inappropriate immune responses of type 2 T helper (Th2) cells,
which might be triggered by an increased serum level of total immunoglobulin E (IgE) due to allergen exposures. While
non-allergic asthma occurs independently of allergen sensitization.4 Mechanisms of non-allergic asthma development
have not been fully elucidated yet.5,6
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Apart from allergen triggers, recent studies showed that development of asthma might be modulated by gut microbiome.
Hygiene hypothesis firstly suggested a link between microbes and allergy.7,8 Riedler’s study showed that exposures to stables
in early lives might have a protective effect not only on allergic but also on non-allergic asthma, which suggested that gut
microbiome may be also related with non-allergic asthma based on the hygiene hypothesis.9 Recent studies showed the
association between early life gut microorganism colonization and risk of asthma later in life.10–13 As the improvements in
multi-omic technologies, gut microbiome has been demonstrated to affect the immune responses in the lung by microbes or
microbes-derived metabolites. Surviving gut microbes, fragments of dead bacteria or immune cells (activated by gut
microbes or their metabolites) may travel to the lung through lymphatic circulation and trigger the host immune
responses.14–16 In addition, metabolites derived from gut microbiome, for instance, short chain fatty acids (SCFAs) could
migrate through the bloodstream to modulate lung immune responses.16 Animal experiments illustrated that some gut
microbes could regulate differentiation of regulatory T cells (Tregs), and modulate the balance of Th1 and Th2 cells.17–21

While, some gut microbes can also induce Th17 responses.22,23 These findings suggested that a continued cross-talk may
exist between gut microbes and immune responses, dysbiosis of gut microbiome may also play a critical role in the recurrent
attack of asthma. Furthermore, Zou’s study showed that gut microbiome between allergic and non-allergic asthma patients
were different.24 Thus, we hypothesized that gut microbiome has an impact on the attack of both allergic and non-allergic
childhood asthma, whereas it plays a different role in allergic and non-allergic asthma.

To confirm our hypothesis, we conducted this study by combining the methods of 16S rRNA gene sequencing and
fecal metabolomics to analyze gut microbial compositions and functions in allergic and non-allergic childhood asthma.
Fecal metabolomics is the functional readout of gut microbiome.25

Materials and Methods
Study Population
Participants in this study were recruited from a project of National Natural Science Foundation of China, Epigenetic
Modification Mechanisms of Black Carbon Impacts on Non-allergic Asthma, performed from 2016 to 2019. A total of 57
children met the criteria of sample collection, and agreed to join in this study. All participants aged from 5 to 14 years
old. They all lived in urban areas of Beijing. All asthmatic participants were mild asthma. Asthmatic children were
diagnosed according to the Global Initiative for Asthma (GINA, http://ginasthma.org) by pediatricians from Children
Hospital of Capital Institute of Pediatrics in Beijing. Briefly, asthma was confirmed as repeated attacks of respiratory
symptom (wheezing, shortness of breath, chest tightness, and cough), together with variable expiratory airflow limitation.
Lung function and fractional exhaled nitric oxide (FeNO) of asthmatic children was measured by pediatricians. Allergic
and non-allergic status of asthmatics was identified by skin prick testing. Children without any history of asthma, allergic
disease, and chronic inflammation of the respiratory system were recruited as healthy controls. Height and weight were
measured by trained professionals. In addition, all participants were asked to offer information about basic character-
istics, and records of disease with a questionnaire based on the questionnaire of the International Study of Asthma and
Allergies in Childhood. Food consumption of all participants were investigated by a questionnaire based on the food
frequency questionnaire of National Health and Nutrition Examination Survey, which mainly including vegetables,
mushrooms and eggs. Carbohydrate intake was defaulted to no difference, as all children shared similar carbohydrate
consumption in their diet based on the local diet habits. This study was conducted in accordance with the Declaration of
Helsinki and approved by the ethical review committee of the Institute for Environmental Health and Related Product
Safety, Chinese Center for Disease Control and Prevention (201,501). All participants and their legal guardians signed
the written informed consent.

Fecal Sample Collection
A total of 57 fecal samples were collected between December 2017 to March 2018, including 27 samples from children
with allergic asthma, 10 samples from children with non-allergic asthma and 20 samples from healthy children. All
participants, who offered feces, were asked to meet the following criteria, including no oral drug intake or no vaccination
history in the past one month, no injury or diarrhea in the past two weeks, girls were not in the period of the menstrual
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cycle when offering feces. Fecal samples of all participants were collected into sterilized tubes and stored at
a temperature of −80°C until detected. After removing low quality samples, gut microbiome was detected in 47 samples
and metabolomics analysis was detected in 50 samples.

Gut Microbiome Detection and Analysis
Total genome DNA from fecal samples was extracted using the CTAB (Cetyltrimethylammonium Bromide) method. The
V4 region of 16S rRNA genes was amplified by using the specific primers of 515F and 806R. Paired end sequencing (2 ×
250 bp) was performed on the Illumina HiSeq 2500 (Illumina Inc., USA) by Novogene Bioinformatics Technology Co.

Paired-end reads were assigned to samples based on the unique barcode and truncated by cutting off the barcode and
primer sequence. Then they were merged using Fast Length Adjustment of Short reads (FLASH, v1.2.7) to obtain the
raw tags.26 The demultiplexed data were conducted using QIIME2.27 Errors were corrected by DADA2.28 Then a tree of
phylogenetic diversity analyses was generated. Taxonomy was classified according to the database of SILVA.29 Chao1
and Simpson indices were calculated for evaluating the alpha diversity of gut microbiome. Weighted and unweighted
unique fraction metric (UniFrac) distances were calculated to estimate beta diversity.30 Principal coordinates analysis
(PCoA) was used to show the clustering of all samples. Linear Discriminant Analysis (LDA) of effect size (LEfSe) was
used to discriminate the taxa with statistical and biological difference.31

Metabolomics Detection and Analysis
An untargeted metabolomics analysis on fecal samples was carried out at METABOLON’s Discovery HD4™
Metabolomics Platform (Calibra (DIAN) - Metabolon Joint Laboratory, Hangzhou, China). Samples were prepared
and detected according to the operation process of the platform.32 Raw data was extracted, peak-identified and QC
processed using Metabolon’s proprietary software. Compounds were identified by comparison to library entries of
purified standards. Peaks were quantified using area-under-the-curve. Missing values in samples were filled in with the
minimum observed value for each compound, and raw data were normalized to the median of each compound in all
samples. Functional pathways were annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG).

Statistical Analysis
Statistical analysis was carried out using R software (v4.0.2). Characteristics of study populations were analyzed by the
method of Chi square test, t-test and ANOVA. Differences in gut bacteria diversity and relative abundance among three
groups were analyzed by the nonparametric Kruskal–Wallis test. Differences between two groups were analyzed by the
Wilcoxon test. Difference of community structure of gut microbiome among groups was analyzed using the method of
permutational multivariate ANOVA (PERMANOVA). Metabolomic data were log transformed before statistical analysis.
Multiple linear regression was used to identify metabolites that were associated with asthma, by controlling for age,
gender and BMI. Spearman correlation was used to analyze the correlation between gut microbes and metabolites. All
reported p values were two-tailed and p <0.05 was considered significant.

Results
Characteristics of Study Populations
A total of 57 participants were enrolled in this study, including 27 children with allergic asthma, 10 children with non-
allergic asthma and 20 healthy children for control. Of these participants, 54.4% were boys, and 45.6% were girls. The
mean age of all participants was 8.0 ± 2.0 years old. All children were Han nationality. Table 1 showed the baseline
characteristics of each group. Table 2 showed the details of clinical information of all asthmatic children, including lung
function, FeNO and allergens. There was no significant difference in lung function between allergic and non-allergic
asthmatic children (t-test, p >0.05). Allergic asthmatic children showed a significantly higher value of FeNO (t-test,
p =0.021). Approximately 59.2% allergic asthma children had two or more allergens.
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Characteristics of Gut Microbiome
Diversity of Gut Microbiome
We performed a 16S rRNA genes sequencing to investigate characteristics of gut bacteria in allergic and non-allergic
asthmatics. Chao1 (p =0.025) and Simpson (p =0.024) indices showed significant differences among the three groups
(Kruskal–Wallis test). Figure 1A and B showed the parameters of alpha diversity by groups. These results reflected
a higher bacterial richness and a lower diversity in asthma group. We assessed beta diversity of gut microbiome based on
weighted and unweighted UniFrac distance. Figure 1C and D showed beta diversity with the PCoA plot among the three
groups. PERMANOVA analysis showed a significant difference among the three groups based on unweighted UniFrac
distance (p = 0.001).

Differential Gut Microbes Among Groups
All of the observed sequences were assigned to 35 phyla. Figure 1E showed the relative abundance of top 10 phyla
among the three groups. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the dominant phyla of all
samples. Proteobacteria showed significant difference among the three groups (Kruskal–Wallis test, p = 0.008). Both

Table 1 Baseline Characteristics of All Study Populations

Variable Allergic Asthmatics (n=27) Non-Allergic Asthmatics (n=10) Healthy Control (n=20) P value

Gender 0.080

Boys, n (%) 15 (55.6) 4 (40.0) 9 (45.0)

Girls, n (%) 12 (44.4) 6 (60.0) 11 (55.0)

Age (years, mean ± SD) 6.9 ± 1.4 9.3 ± 2.8 8.9 ± 1.5 < 0.010

BMI (kg/m2, mean ± SD) 16.5 ± 1.8 18.7 ± 2.9 17.9 ± 3.5 0.298

High-fiber food intakesa

(times/week, mean ± SD)

8.9 ± 3.5 10.6 ± 3.2 11.4 ± 5.6 0.150

High-protein food intakesb

(times/week, mean ± SD)

4.5 ± 0.6 3.8 ± 1.5 4.5 ± 0.9 0.107

Notes: aHigh-fiber food included vegetables, mushrooms and fruit. bHigh-protein food included eggs and duck eggs.
Abbreviations: BMI, body mass index; SD, standard deviation.

Table 2 Clinical Information of Asthmatic Children

Variable Allergic Asthmatics (n=27) Non-Allergic Asthmatics (n=10)

Lung function (%, mean±SD)a

FEV1 96.2±16.1 85.9±21.3

FVC 97.6± 7.0 90.8±19.7

MMEF75/25 75.3± 29.0 61.2±20.8

FeNO (ppb, mean±SD) 39.1± 31.1 21.3±11.9

Allergens foy skin pick testing

Cat and dog allergies, n (%) 7 (25.9) None

Mites, n (%) 11 (40.7) None

Pollens of weeds, trees and grasses, n (%) 13 (48.2) None

Fungi, n (%) 11 (40.7) None

Note: aLung function was the percentage of measured value to predicted value.
Abbreviations: SD, standard deviation; FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; MMEF, maximal mid-expiratory flow; FeNO,
fractional exhaled nitric oxide; ppb, part per billion.
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Figure 1 Continued.
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Figure 1 Characters of gut microbiome. (A and B) Alpha diversity (Chao1 and Simpson parameter) in allergic, non-allergic asthma and healthy control groups. (C) PCoA
plot based on weighted UniFrac distance, (D) PCoA plot based on unweighted UniFrac distance. (E) Relative abundance of top 10 phyla by groups. The height of bars
represents relative abundance. (F) LEfSe analysis between allergic asthma and healthy control groups. (G) LEfSe analysis between non-allergic asthma and healthy control
groups. The graph of LEfSe distinguished the microbial communities of each group with LDA > 2 and p < 0.05.
Abbreviations: AA, allergic asthma group; NA, non-allergic asthma group; HC, healthy control group.
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allergic (p =0.007) and non-allergic (p =0.019) asthma groups showed significant increases compared with healthy group
(Wilcoxon test).

We used LEfSe analysis to discriminate taxa with statistical and biological differences among the three groups, stratified
by allergy and non-allergy status. Figure 1F showed the taxa with significant discriminations between allergic asthma and
healthy control groups. Figure 1G showed the taxa with significant discriminations between non-allergic asthma and healthy
control groups. All discriminated taxa were from phyla of Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria,
except for Fusobacteriota. Difference of Fusobacteriota was induced only by Fusobacterium at genus level, which
decreased significantly in non-allergic asthma group. The richest taxon in allergic asthma was Lactobacillales. The next
one was phylum of Proteobacteria, including Alphaproteobacteria, Rhizobiales, and Xanthomonadales
(Xanthomonadaceae). While in non-allergic asthma group, more taxa (allergic/non-allergic:12/34) ranging from phylum to
species were significantly overrepresented, especially more taxa (allergic/non-allergic:5/19) from Proteobacteria showed
significant differences. In healthy control group, most of the discriminated taxa were from Bacteroidetes and Firmicutes at
phylum level. For phylum of Bacteroidetes, Prevotella and Bacteroides showed significant richness. For phylum of
Firmicutes, more bacteria from class of Clostridia showed significant richness, such as Terrisporobacter, Eubacterium
eligens group, Lachnospira, Lachnospiraceae ND3007 group, and Christensenellaceae R-7 group.

Then we assessed the alterations in relative abundance at genus level. We found 9 genera of the top 50 genera showed
significant differences between allergic asthmatics and healthy controls (8 genera decreased, 1 genus increased), and 14
genera of the top 50 genera showed significant differences between non-allergic asthmatics and healthy controls (13
genera decreased, 1 genus increased) (Wilcoxon test, p < 0.05). Table 3 presented details of the genera with significant
differences. We noted that 10 genera among the significantly decreased genera of all asthmatics belonged to Clostridia.

Based on the altered genera obtained from LEfSe and Wilcoxon test analysis, we compared the altered gut bacteria in
allergic and non-allergic asthma. Among the significantly increased genera in asthmatics, allergic and non-allergic
asthma shared 1 genus (Lactobacillus), while Eggerthella increased only in allergic asthma, Coprobacillus, Niabella,
Chitinophagales|37-13, Microscillaceae OLB12, Candidatus Accumulib, and Dogia increased only in non-allergic
asthma. Among the significantly decreased genera in asthmatics, allergic and non-allergic asthma group shared 7 genera,
including Collinsella, Christensenellaceae R 7 group, Eubacterium eligens group, Lachnospira, Lachnospiraceae
ND3007 group, Terrisporobacter, and Holdemanella. Megamonas, Lachnospiraceae CAG-56, and Prevotella only
decreased in allergic asthmatics. Intestinibacter, Lachnoclostridium, Ruminococcus, Agathobacter, Eubacterium ventrio-
sum group, Ruminococcaceae CAG-352, Turicibacter, Parasutterella, Bacteroides, and Fusobacterium only decreased in
non-allergic asthmatics.

Characteristics of Gut Metabolomics
To further study the functions of gut bacteria, we conducted an untargeted metabolomics analysis. A total of 811 metabolites
were found in all samples. We analyzed the associations of asthma status with the metabolites by the method of multiple linear
regression, controlling for age, gender and BMI. Among all metabolites, 42 metabolites were significantly associated with
allergic asthma (14 of them elevated and 28 of them down regulated), and 58 metabolites were significantly associated with
non-allergic asthma (9 of them elevated and 49 of them down regulated) (p < 0.05). Only 6 metabolites showed significantly
associations with both allergic and non-allergic asthma. Table 4 showed the pathway of the significantly altered metabolites
involved in allergic and non-allergic asthma groups. Supplementary Table 1 showed details of the significantly altered
metabolites in allergic and non-allergic asthma groups.

The altered metabolites mainly involved in amino acid and lipid metabolism. More metabolites of amino acid and lipid
metabolism showed significant alterations in non-allergic asthmatic group. For amino acid metabolism, 8 metabolites were
significantly altered in allergic asthmatics, while 15 metabolites were significantly altered in non-allergic asthmatics. Only
tryptophan and lysine metabolism showed significant alterations in both allergic and non-allergic asthmatic groups.
Especially, the metabolites of histidine metabolism, including histamine, N-acetylhistamine, and 4-imidazoleacetate,
showed significant increases only in non-allergic asthma group. For fatty acid metabolism, 17 metabolites were signifi-
cantly decreased in asthmatic groups (p <0.05). Among them, only 4 metabolites were significantly changed in allergic
asthmatic group, while 15 ones were significantly changed in non-allergic asthmatic group. Fatty acids metabolism in non-
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Table 3 Genera with Significant Differences in Relative Abundance Between Asthmatic Group and Healthy Control Group (Wilcoxon Test)

Genus Affiliated Phylum Affiliated Class Affiliated Order Affiliated Family Asthmatics Healthy Control P value

Mean ± SDa Mean ± SDa

Allergic asthmatic group vs Healthy control group

Prevotella Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae 1.27±5.26 4.19±9.41 <0.001

Lactobacillus Firmicutes Bacilli Lactobacillales Lactobacillaceae 0.42±0.42 0.09±0.12 0.006

Lachnospiraceae ND3007 group Firmicutes Clostridia Lachnospirales Lachnospiraceae 0.53±0.50 0.79±0.28 0.040

Collinsella Actinobacteriota Coriobacteriia Coriobacteriales Coriobacteriaceae 0.54±0.88 0.90±0.62 0.011

Terrisporobacter Firmicutes Clostridia Peptostreptococcales.

Tissierellales

Peptostreptococcacea 0.42±0.80 1.32±1.90 0.002

Megamonas Firmicutes Negativicutes Veillonellales.

Selenomonadales

Selenomonadaceae 0.15±0.17 0.26±0.19 0.005

Eubacterium eligens group Firmicutes Clostridia Lachnospirales Lachnospiraceae 0.26±0.30 0.82±0.35 <0.001

CAG.56 Firmicutes Clostridia Lachnospirales Lachnospiraceae 0.26±0.35 0.38±0.27 0.017

Lachnospira Firmicutes Clostridia Lachnospirales Lachnospiraceae 0.30±0.54 0.44±0.17 0.003

Non-allergic asthmatic group vs Healthy control group

Bacteroides Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae 10.08±6.28 20.35±7.09 0.003

Agathobacter Firmicutes Clostridia Lachnospirales Lachnospiraceae 1.72±1.64 3.38±2.16 0.043

CAG.352 Firmicutes Clostridia Oscillospirales Ruminococcaceae 1.31±1.00 2.82±1.61 0.029

Ruminococcus Firmicutes Clostridia Oscillospirales Ruminococcaceae 0.95±0.85 1.82±0.80 0.029

Intestinibacter Firmicutes Clostridia Peptostreptococcales. Tissierellales Peptostreptococcaceae 0.81±0.74 1.14±0.33 0.029

Lachnoclostridium Firmicutes Clostridia Lachnospirales Lachnospiraceae 0.42±0.14 0.68±0.20 0.003

Lactobacillus Firmicutes Bacilli Lactobacillales Lactobacillaceae 1.86±4.00 0.09±0.12 0.012

Turicibacter Firmicutes Bacilli Erysipelotrichales Erysipelotrichaceae 0.40±0.35 1.03±1.42 0.005

Lachnospiraceae ND3007 group Firmicutes Clostridia Lachnospirales Lachnospiraceae 0.46±0.55 0.79±0.28 0.023

Collinsella Actinobacteriota Coriobacteriia Coriobacteriales Coriobacteriaceae 0.27±0.30 0.90±0.62 0.009

Terrisporobacter Firmicutes Clostridia Peptostreptococcales.

Tissierellales

Peptostreptococcaceae 0.12±0.10 1.32±1.90 <0.001

Parasutterella Proteobacteria Gammaproteo-bacteria Burkholderiales Sutterellaceae 0.23±0.25 0.34±0.24 0.043

Eubacterium eligens group Firmicutes Clostridia Lachnospirales Lachnospiraceae 0.18±0.14 0.82±0.35 <0.001

Lachnospira Firmicutes Clostridia Lachnospirales Lachnospiraceae 0.11±0.09 0.44±0.17 <0.001

Note: aRelative abundance, %.
Abbreviation: SD, standard deviation.
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allergic asthmatic group presented more alterations. A marginally significant decrease of SCFAs (p =0.089), and significant
decreases in medium chain fatty acids and long chain fatty acids (p <0.05) were observed in non-allergic asthma compared
with healthy control group.

Correlation Between Gut Microbiome and Metabolites
To validate the association between the altered gut microbiome and the altered metabolites in the pathogenesis, we
performed a Spearman correlation analysis with the samples tested for both gut microbiome and metabolomics. We
analyzed the correlations between the altered genera and the altered metabolites, except xenobiotics metabolites.
Figure 2A–E presented the correlations between the altered gut microbes and metabolites. We found that the metabolites
of amino acid and lipid metabolism showed more correlations with gut microbes. Figure 2A showed that 28 genera were
significantly associated with 20 metabolites of amino acid. Decreased bacteria of Clostridia mainly showed significantly
positive correlations with metabolism of tryptophan, tyrosine, lysine, methionine and cysteine. For histidine metabolism,
decreased Lachnospira showed a significantly positive correlation with histidine, increased Candidatus Accumulibacter
showed a significantly positive correlation with histamine, decreased Christensenellaceae R 7 group, Eubacterium
ventriosum group, and Intestinibacter all showed significantly negative correlations with N-acetylhistamine.
Christensenellaceae R 7 group, Holdemanella, Turicibacter, and Prevotella showed significantly negative correlations
with 4-imidazoleacetate. Figure 2B presented that 24 altered genera showed significant correlations with 26 metabolites
of lipid metabolism. Among them, 12 genera from Clostridia showed significant correlations with fatty acid metabolism.
Microscillaceae OLB12 was negatively associated with valerate, Eggerthella and Coprobacillus were positively asso-
ciated with valerate. Candidatus Accumulibacter and Niabella were negatively associated with medium chain fatty acid,
Lachnoclostridium was positively associated with medium chain fatty acid. Eggerthella, Coprobacillus, Fusobacterium
and Lachnoclostridium showed positive correlations with Long Chain Fatty Acid, Microscillaceae OLB12 and
Terrisporobacter showed negative correlations with long chain fatty acid. Figure 2C showed that the altered genera
were less associated with peptide metabolism. Figure 2D showed that 22 altered genera were significantly positively
associated with 7 nucleotide metabolites, only Eggerthella and Coprobacillus were significantly negatively associated
with 4 nucleotide metabolites. Figure 2E presented 11 genera were significantly negatively associated with TCA cycle, 9
genera were significantly positively associated with biocytin.

Discussion
In this study, we combined 16S amplicon sequencing and untargeted metabolomics analysis to explore the gut micro-
biome association with childhood asthma by allergic status. We found that allergic asthmatic children and non-allergic
asthmatic children shared some alterations in gut microbes and microbiome-derived metabolites. In addition, we also

Table 4 The Involved Metabolic Pathways of the Altered Metabolites in Allergic and Non-Allergic Asthma Groups

Pathway Allergic Asthmatics (Up, Down) Non-Allergic Asthmatics (Up, Down)

Amino Acid 8 (1,7) 15 (4,11)

Lipid 10 (5,5) 19 (1,18)

Peptide 7 (0,7) 2 (0,2)

Carbohydrate 0 1 (0,1)

Energy 2 (2,0) 0

Nucleotide 5 (1,4) 4 (0,4)

Cofactors and Vitamins 2 (1,1) 4 (2,2)

Xenobiotics 8 (4,4) 13 (2,11)
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found that non-allergic asthma had some distinct commensal gut microbes and microbiome-derived metabolites relative
to that of allergic asthma.

Firstly, as previous findings we found asthma children had lower gut microbiome diversity than healthy
controls.24,33,34 Variation of gut bacterial diversity has been found closely associated with allergic disease including
food allergies, diabetes, asthma, even cancer.34–38 Apart from the diversity difference between asthmatic children and
healthy controls, we found distinguished Simpson diversity (marginally significant) between allergic and non-allergic
asthma children. The heterogeneity of gut microbiome might be related with phenotypic features.39 Lifestyle and diet are
important impacting factors of gut microbiome. However, all participating children in this study came from Beijing. They
were all students and they were similar in self-reported diets. Therefore, our findings of diversity difference in asthma
children suggested that gut microbiome might play a role in asthma phenotype development.

The pathological mechanism of non-allergic asthma has not been fully elucidated yet. Recent studies showed that the
human gut microbiome would be an etiological factor of various diseases.39 In this study, gut microbiome was especially
altered in asthma children including Clostridia and Proteobacteria. While the altered genera and counts of Clostridia and
Proteobacteria were quite different between allergic and non-allergic children. Existing studies have proved that
Clostridia and Proteobacteria were related to the pathogenesis of asthma. Clostridia was reported to produce SCFAs
which may stimulate the differentiation of Tregs.34–36 Tregs might mediate immunomodulation during asthma
development.40 Impaired Tregs would predispose to severe viral bronchiolitis in infancy which was thought to be
a major risk of asthma.41 Gut Proteobacteria has been reported to significantly increase in asthmatics.42 Several studies
showed that Proteobacteria was higher in the airway of asthmatic subjects.43–45 Brevundimonas vesicularis of
Proteobacteria was found enriched in non-allergic asthma.24 More serious dysbiosis in Clostridia and Proteobacteria

Figure 2 Continued.
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in non-allergic asthma suggested that they might also play a role in asthma phenotype development. However, few
studies explored the host-microbe association by allergic status of asthma. Some certain gut microbes, including
Coprobacillus, Niabella, Chitinophagales|37-13, and Microscillaceae OLB12, were enriched only in non-allergic chil-
dren. The potential roles of these distinct microbes in the development of asthma need to be further studied.

We then further analyzed the metabolome of the gut microbiome for a better view of the microbe-host association.
The most interesting finding was that histamine significantly increased only in non-allergic asthma children. Histamine is
an important immunomodulator involved in allergic reactions and inflammatory responses. Its functions are determined
by the histamine receptor subtypes. It can activate H1R to enhance Th1 and Th2 type immune responses, activate H4R in
human immune cells to release pro-inflammatory cytokine and chemokines to modulate immune responses, such as IL-6,
TNF-α, IL-8, and also can induce smooth muscle contraction via activating H1R.46–48 Our finding suggested gut bacteria-
derived histamine may be related with non-allergic asthma development. Gut histamine was derived from histidine
decarboxylation under the action of histidine decarboxylase enzyme (HDC). Some bacteria can secrete HDC, such as
Oenococcus oeni and Lactobacillus hilgardii.49,50 Bacterial HDC gene level has been reported significantly elevated in
asthmatics, Morganella morganii levels were correspondingly elevated in the gut microbiome.51 We compared relative
abundances of the altered microbes with microbe-derived metabolites. We did not find Morganella morganii’s correlation
with histamine, however, we only found Candidatus Accumulibacter was positively correlated with histamine. It may be
influenced by the sample size. To our knowledge, there was no study reported the relation of Candidatus Accumulibacter
and histamine. Candidatus Accumulibacter has been widely used in enhanced biological phosphorus removal (EBPR). At
the anaerobic phase of EBPR, SCFAs were absorbed. The role of Candidatus Accumulibacter in non-allergic asthma
needs to be further studied.

Figure 2 Continued.
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Apart from the distinct increase of histamine in non-allergic asthmatic children, we found some genera of Clostridia
were positively correlated with lipid and tryptophan metabolism. Lipid metabolism were altered in asthmatics in this
study, which was consistent with previous finding.52 Lipids have been reported to play an important role in the
development of asthma through inflammatory responses.53 Previous study showed that abnormal lipid metabolism was
correlated with the severity and IgE levels in asthmatic patients.54 Some microbes of Clostridia have been reported to
correlated with asthma by producing SCFAs.19 More lipid metabolites were changed in non-allergic asthma in our study.
Combining analyzed with Clostridia dysbiosis in non-allergic asthma, it suggested that Clostridia may also play a role on
asthma phenotype development by this pathway. Then we analyzed the metabolites in tryptophan metabolism, kynur-
enine down regulated in both allergic and non-allergic asthma children. Kynurenine plays an important role in immune
responses and has been shown to modulate the systemic cytokine network in asthma patients.55 It is a potent immuno-
modulatory molecule that may control T-cell immune responses.56–59 Kynurenine can modulate Tregs generation to
influence the immune responses.60 Kynurenine pathway metabolism decreased in germ-free mice that lack of gut
microbiota.61 Our finding supported that Clostridia might also play a role in the development of asthma by kynurenine
pathway.

To our knowledge, few studies explored host-microbe association of childhood asthma by allergic status and fewer
studies explored the association with multi-omics research. Our findings in this study added evidence on that host-
microbe association might be the etiological factor for the allergic phenotype development of asthma. There were still
limitations in this study. Firstly, it was only an association analysis between gut microbiome and metabolomic. It is
lacked of direct evidence, such as animal experiment or in vitro study. In addition, the sample size was not big, which
was also a limitation of this study.

Conclusion
In this study we observed composition and microbial metabolites of gut microbiome of asthma children by allergic status.
Dysbiosis of gut microbiome in allergic and non-allergic asthma suggested that gut microbiome play a critical role in

Figure 2 Spearman correlation heatmap for significantly altered metabolites and genera in asthmatics. *p <0.05, **p <0.01. (A) Correlation heatmap for amino acid. (B)
Correlation heatmap for Lipid. (C) Correlation heatmap for peptide. (D) Correlation heatmap for nucleotide. (E) Correlation heatmap for others, including carbohydrate,
energy, cofactors and vitamins.
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both types of asthma. The distinct altered gut microbes and the microbial derived metabolites among non-allergic asthma
children suggested that gut microbiome might play a role in the modulation of asthma phenotype.
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