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Introduction: Neuropathic pain initiates an interplay of pathways, involving MAP kinases and NFκB-signaling, leading to expression
of immune response factors and activation and inactivation of proteins via phosphorylation. Neuropathic pain models demonstrated
that spinal cord stimulation (SCS) may provide analgesia by modulating gene and protein expression in neuroinflammatory processes.
A differential target multiplexed programming (DTMP) approach was more effective than conventional SCS treatments at modulating
these. This work investigated the effect of DTMP and low rate SCS (LR-SCS) on proteins associated with MAP kinases and NFκB-
signaling relevant to neuroinflammation.
Methods: Animals subjected to the spared nerve injury model (SNI) of neuropathic pain were treated continuously (48h) with either
DTMP or LR-SCS. No-SNI and No-SCS groups were included as controls. Proteomics and phosphoproteomics of stimulated spinal
cord tissues were performed via liquid chromatography/tandem mass spectrometry. Proteins were identified from mass spectra using
bioinformatics. Expression levels and fold changes (No-SCS/No-SNI and SCS/No-SCS) were obtained from spectral intensities.
Results: Analyses identified 7192 proteins, with 1451 and 705 significantly changed by DTMP and LR-SCS, respectively. Eighty-one
proteins, including MAP kinases, facilitating NFκB-signaling as part of inflammatory processes were identified. The pain model
significantly increased expression levels of complement pathway-related proteins (LBP, NRG1, APP, CFH, C3, C5), which were
significantly reversed by DTMP. Expression levels of other complement pathway-related proteins (HMGB1, S100A8, S100A9, CRP,
C4) were decreased by DTMP, although not significantly affected by SNI. Other proteins (ORM1, APOE, NG2, CNTF) involved in
NFκB-signaling were increased by SNI and decreased by DTMP. Expression levels of phosphorylated protein kinases involved in
NFκB-signaling (including MAP kinases, PKC, MARK1) were affected by the pain model and reverse modulated by DTMP. LR-SCS
modulated inflammatory-related proteins although to a lesser extent than DTMP.
Conclusion: Proteomic analyses support the profound effect of the DTMP approach on neuroinflammation via MAP kinases and
NFκB-mediated signaling to alleviate neuropathic pain.
Keywords: differential target multiplexed spinal cord stimulation, proteomics, neuropathic pain, neuroinflammation, mitogen
activated protein kinase, nuclear factor-kappa B

Introduction
Pain is intended to protect species from harmful stimuli and to promote healing after injury. Processing in the spinal cord
and dorsal root ganglia of acute pain resulting from tissue injury is accompanied by an inflammatory process concerted
by immune and glial cells. In general, inflammation promotes healing and tissue regeneration, such that when healing
occurs, both inflammation and pain go away. However, the immune response that led to local inflammation of the injured
tissue is also signaled to the central nervous system (CNS) as a result of injury and may lead to chronic pain. Glial cells
play a fundamental role in chronic neuropathic pain since they are actively involved in the regulation of immune and
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inflammatory responses. Once activated, microglia, the immune cells of the CNS, transition into activated states that alert
(pro-inflammatory) and protect (anti-inflammatory) the CNS.1 The progression to chronic neuropathic pain involves the
activation of microglia in response to aberrant neural activity in the periphery. Active microglia release signaling
molecules, such as cytokines, chemokines and other moieties, such as glutamate, GABA, etc., that activate perisynaptic
astrocytes, which in turn promote the disruption of fundamental biological processes which normally maintain neuron-
glial interactions and are required for homeostatic balance of the CNS.2 Activated microglial cells and astrocytes play a
pivotal role in neuroinflammation and chronic pain.3–5

Spinal cord stimulation (SCS) is an effective and safe treatment for intractable chronic neuropathic pain.6,7 Recent
preclinical research based on high throughput transcriptomics and proteomics has revealed that SCS using a low-rate
electrical signal, consisting of 50 Hz pulses, has an effect on immune and inflammatory processes.8–10 Further work
implied that such a low rate SCS (LR-SCS) may be conducive to up regulate proinflammatory pathways via microglial
activation, which may prevent optimal efficacy.11 In order to improve clinical outcomes, our group developed a SCS
treatment based on a differential target multiplexed programming approach (DTMP) that uses multiple signals intended
to modulate neurons and glial cells to balance their interactions toward a physiologic homeostatic state. DTMP provided
significant relief of pain-like behavior in animals with the spared nerve injury (SNI) model of neuropathic pain while
modulating gene and protein expression in biological processes such as immune system, synaptic transmission, and ion
transport toward levels of naive animals.12,13 Furthermore, DTMP modulated cell-specific transcriptomes of both neurons
and glial cells (microglia, astrocytes, and oligodendrocytes) more effectively than SCS programs which rely on a single
signal at either low or high rate.14 Recent work on transcriptomes associated with active microglia states corroborated
these findings.1

Besides transcriptomics, which evaluates changes in the expression levels of protein-coding mRNA, it is crucial to
study the effects of SCS on proteins as well as their post-translational modifications, particularly those involved in
signaling cascades. Phosphorylation and dephosphorylation of proteins at specific locations activate or deactivate them
within regulatory pathways. At the intracellular molecular level, the activity of the NFκB cascade, known to promote
inflammation and neuronal sensitization, is partially regulated by the MAP kinase superfamily.15 Relevant to the
identification and quantitation of these proteins is the nature of the applied methodology. Proteomic-based screening
provides information of thousands of proteins in a single experiment using liquid chromatography tandem mass
spectrometry (LC/TMS). Various extraction and purification methods exist for LC/TMS proteomic analyses and have
their own limitations depending on depth and breadth of desired observations to be made. The process we utilized may
result in loss of non-anchored proteins and small peptides.16–18 Fortunately, multiple molecules involved in inflammatory
signaling pathways, including MAP kinases, are membrane bound or intracellularly anchored to cytoskeletal proteins,
and provide us with relevant insights into the overall effects of spinal cord stimulation (SCS) on those biological
processes. This work offers a comparative look at the effect of conventional LR-SCS and DTMP on proteins involved in
inflammatory pathways, particularly in relation to pro-inflammatory signaling via MAP kinases and indirectly the NFκB
pathway in the early stages of an animal model of neuropathic pain.

Methods
Animals, Surgical Manipulations, and SCS
A detailed description of the experimental design, including implementation of the SNI model and evaluation of the
resultant hypersensitive behavior, is provided elsewhere.12 The proteomic analysis presented in this work has been
conducted on samples from animals subjected to behavioral testing in reference 12. This study represents an extension of
the analyses started with that study.

Briefly, the study was approved by the Institutional Animal Care and Use Committee at Illinois Wesleyan University
according to the USDA Animal Welfare Act and the NIH Public Health Service Policy on the Humane Care and Use of
Animals. Male Sprague-Dawley rats (Envigo RMS, Indianapolis, US) weighing in the 275–315 g range were housed
individually in a temperature and humidity-controlled room with a 12-hour light/dark cycle. Food and water were
supplied ad libitum. After acclimation to the environment, animals were randomly assigned to either No-SCS (untreated,
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n = 10), DTMP (n = 10), LR-SCS (n=10), or No-SNI (uninjured, n = 10). Animals in the No-SCS, DTMP, and LR-SCS
groups were implanted with a miniaturized cylindrical quadrupolar SCS lead (0.62 mm diameter, 1 mm Pt/Ir electrodes,
1 mm spacing) at the L1-L2 level and subjected to the spared nerve injury (SNI) model of neuropathic pain as described
previously.12 Lead position was chosen according to the anatomical dissections by Gelderd and Chopin19 showing that
the sciatic nerve originates at L1-2 vertebral levels and exits the cord at L4-6. Five days after SNI surgery, animals in the
DTMP and LR-SCS groups that successfully developed mechanical hypersensitivity (at least 30% reduction of paw
withdrawal threshold, PWT) were stimulated continuously for 48 hours. No-SCS animals were connected to the SCS
device but not stimulated for the same duration. No-SNI animals did not receive neither the SNI model nor any SCS. All
animals were behaviorally assessed, as previously described,12 for mechanical and thermal hypersensitivity in parallel by
a researcher blinded to the assignments before surgical intervention, as well as before starting and ending the stimulation
period. DTMP uses multiplexed charge-balanced pulsed signals with components at 50 Hz (150 µs pulse width, PW) and
1200 Hz (50 µs PW) that are distributed over the contacts of the lead. LR-SCS uses single pulses at 50Hz (150 µs PW).
Signal intensities corresponded to about 70% of the motor threshold and were in the 0.03–0.10 mA range. Signals were
not duty cycled and initial intensities were unchanged throughout stimulation.

Protein Isolation and Quantification
After assessment and euthanization of animals following 48 hours of SCS, the ipsilateral dorsal quadrant of the spinal
cord underneath the SCS lead was harvested, washed with cold saline, snap frozen and stored at −80 °C until analyses.
Out of the available representative samples from responders to treatment (PWT increased to at least 30% of the pre-SNI
measurement, 8 per SCS group), 4 were used in the previously reported transcriptomic analysis. Therefore, the 4
remaining samples per group were available for the proteomic analyses. Each dissected tissue was suspended in a buffer
(9M urea) enriched with protease inhibitors and free of ionic detergents followed by sonication and centrifugation to
separate the proteins out. After determination of protein concentration, proteins were digested with trypsin followed by
alkylation of cysteine residues under appropriate buffering using standard methods.20 Tryptic peptides in a pool of
biological specimens (n = 3–4) of each experimental group were isotopically labeled using a tandem mass tag (TMT)
system, which allows for simultaneous identification, quantification, and comparison of a protein in various experimental
groups.21 All peptides were combined and loaded onto a 50 cm x 100 µm PicoFrit capillary column packed with C18
reversed-phase resin and fractionated via reverse column liquid chromatography (LC) into 96 fractions. The column was
developed with a 150-minute linear gradient of acetonitrile in 0.125% formic acid delivered at 280 nL/min. Fractions
were combined non-sequentially to 12 fractions, and mass spectra obtained in a LC/TMS instrument, allowing the
highest number of identifications possible and most accurate quantification via multi-notch MS3 methodology,20,22 with
parameters optimized under protocols developed at Cell Signaling Technology (Danvers, MA). Mass spectra were
evaluated using SEQUEST and the Core platform from Harvard University.23 The UniProt rat database (uniprot.org)
was used to search for proteins. Search results were filtered with mass accuracy of ±5 ppm on precursor ions and further
filtered for multiple comparisons to a 1% protein level false discovery rate (FDR). Fold changes were obtained from
comparison of the normalized spectral intensities (log2 scale) of the tagged peptides uniquely assigned to each protein.
Significance of fold changes was calculated using a two tailed t-test for each protein identified and quantified. Proteins
significantly differentiated (p < 0.05) between No-SNI and No-SCS were isolated, while the effect of either DTMP or
LR-SCS treatment relative to No-SCS was followed. Protein-protein interaction networks for significantly differentiated
proteins were built using the StringDB v11.0 bioinformatics tool.24 Significantly enriched biological processes affected
by the pain model and either DTMP or LR-SCS were obtained via gene ontology enrichment analyses (GOEA) within
the online Panther database.25

For phosphoproteomics, proteins from the same 3–4 biological samples used in the whole proteomics were digested
with trypsin and the peptides purified by reversed-phase solid-phase extraction, followed by phospho-enrichment using
immobilized metal affinity chromatography (IMAC) with iron-based magnetic beads (PTMScan® Fe-IMAC, Cell
Signaling Technology, Danvers MA).26 Unbound peptides were washed out, and immobilized phosphopeptides eluted
with basic pH buffer. Reversed-phase purification was performed to purify peptides prior to LC/TMS analysis of pooled
peptides from 3–4 biological samples, conducted as described above for whole proteomics following standard techniques

Journal of Pain Research 2022:15 https://doi.org/10.2147/JPR.S348738

DovePress
897

Dovepress Cedeño et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


developed at Cell Signaling Technology. Due to the limited amount of protein sample left for phosphoproteomics after
the whole proteomic analysis, technical assays were run for each pool of biological samples in duplicate. Therefore,
phosphoproteomic results based on spectral intensities of phosphoproteins filtered as described above, although reliable,
could not be assessed for statistical significance. Instead, the coefficient of variation (CV) was used to measure the
relative variability of fold changes from the variability of protein expression levels for individual groups. The CV,
defined as the ratio of the standard deviation to the mean for spectral counts for a given experimental group, was used to
obtain the coefficient of variation of the fold changes No-SCS/No-SNI and SCS/No-SCS. The CVof the ratio is given by
the square root of the sum of the square of the individual CVs of the ratioed values.

Results
Behavioral analysis of the experimental groups was previously reported.12 Briefly, mean paw withdrawal thresholds (±
standard error) normalized to pre-SNI baseline were 24.6 ± 2.6% for No-SCS, 62.9 ± 8.9% for DTMP, and 37.6 ± 6.0%
for LR-SCS. Relief of mechanical hypersensitivity with DTMP and LR-SCS was significantly better than with No-SCS.
DTMP also significantly reduced sensitivity to hot (44.9 ± 1.9 °C vs 39.4 ± 0.4 °C for pre-SCS) and cold (6.7 ± 1.4 °C vs
11.0 ± 0.4 °C for pre-SCS). In contrast, LR-SCS did not provide significant relief of hot (40.7 ± 2.2 °C) and cold (11.1 ±
1.6 °C) hypersensitivity relative to pre-SCS temperature thresholds.

The proteomic analysis uniquely identified 7192 proteins from the spinal cord tissue. Of these, 647 were significantly
affected by the SNI pain model (as reflected by the No-SCS group) relative to uninjured animals (No-SNI), while 1451
and 705 proteins were found to be significantly affected by DTMP and LR-SCS respectively relative to No-SCS. The
total breakdown depicting significant fold change in protein expression affected by SNI, DTMP, or LR-SCS is shown in
Figure 1A. Figure 1B shows a heat map of the fold changes for the 1451 proteins significantly regulated by DTMP
relative to No-SCS (DTMP/No-SCS) in comparison to the effect of LR-SCS (ie, LR-SCS/No-SCS) and the effect of the

A

B

Figure 1 (A) Venn diagram accounting for proteins significantly affected by the pain model and both SCS treatment groups. The pain model significantly affected 647
proteins (purple circle), DTMP affected 1451 proteins (red circle), and LR-SCS affected 705 proteins (blue circle). Regions of overlap indicate the number of shared
significantly affected proteins between the groups. (B) Heat map of proteins significantly regulated by DTMP relative to No-SCS (DTMP/No-SCS) and in comparison, to the
effect of LR-SCS (LR-SCS/No-SCS) and the effect of the pain model relative to uninjured animals (No-SCS/No-SNI). Red color represents decreased expression, blue depicts
increased fold changes, and white stands for no change.
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pain model (ie, No-SCS/No-SNI). Of the 1451 proteins regulated by DTMP, 472 (32.5%) were significantly changed by
the pain model, while 521 (35.9%) were significantly regulated by LR-SCS.

Proteomic Analysis
The GOEA revealed 85 proteins significantly regulated by either DTMP or LR-SCS which are categorized as part of
the inflammatory response. Of these proteins, DTMP and LR-SCS significantly changed expression levels of 81 and
56, respectively. Figure 2A illustrates a heatmap of the 81 proteins significantly regulated by DTMP, showing
expression level fold changes of these proteins for both SCS treatments relative to No-SCS, and for No-SCS relative
to No-SNI (see Supplementary Table 1). These proteins were evaluated in terms of their role in inflammation and pain
related pathways, with emphasis on MAP kinase and their related proteins that are involved in the NFκB cascade. The
GOEA also identified 81 proteins as regulators of the MAP kinase cascade which are shown in the heatmap in
Figure 2B (see Supplementary Table 2). Interestingly, only 18 proteins overlapped between inflammatory and MAP
kinase pathways (Figure 2C).

Of the 7 MAP kinase upstream regulators, also known to play a role in the activation of the NFκB signaling pathway
(CHI3L1, CNTF, HMGB1, NG2, APOE, SORL1, and C3), 5 were the signaling proteins: CHI3L1, CNTF, HMGB1,
NG2, and APOE. Among those, CNTF, NG2, and APOE were upregulated by the pain model. DTMP reversed
expression levels of all three, whereas LR-SCS reversed expression of only NG2 and APOE. SORL1, an APOE receptor,
was only upregulated by DTMP. Multiple proteins involved in processes linked to the NFκB pathway, such as the
complement system and the MAPK cascade, were affected. The pain model significantly changed expression levels of
proteins upstream of the complement pathway such as LBP, NRG1, APP, CFH, C3, and C5, which were significantly
reversed by both DTMP and LR-SCS. C3, a key component of the complement system, was upregulated by the pain
model and downregulated by both DTMP and LR-SCS, although the effect was noticeably more pronounced for DTMP
(Figure 2). Furthermore, DTMP significantly decreased expression levels of other complement pathway-related proteins,
whose expression had not been affected by the pain model, such as HMGB1, S100A8, S100A9, CSRP1, and C4A. Of
these, LR-SCS also changed expression levels of S100A8, S100A9, and CSRP1. Other proteins involved in the NFκB
signaling pathway outside of the complement cascade that were increased by the pain model and decreased by DTMP
were ORM1 and CNTF. Of these, CNTF was not affected by LR-SCS. Additional proteins that facilitate NFκB activation
leading to induced expression identified as part of inflammation are depicted in Figure 2B and Figure 3. Figure 3A
illustrates proteins significantly regulated by DTMP whereas Figure 3B illustrates the lesser effect of LR-SCS on the
same proteins.

Phosphoproteomic Analysis
Given the importance of signaling cascades and the need to respond rapidly to the environment, changes are reflected in
the products of post-translational modifications, such as phosphorylation, rather than the translated expression levels of
these proteins. Of the proteins identified to be involved in inflammatory processes through the NFκB signaling pathway,

A

B

C

Figure 2 (A) Heat map of fold changes in expression levels of proteins enriched in regulation of inflammatory response significantly changed by DTMP. See
Supplementary Tables 1 and 2 for corresponding data. (B) Heat map of proteins enriched in regulation of MAP kinase cascade significantly changed by DTMP. See
supplementary files for corresponding table. (C) Heat map of proteins that overlap between the aforementioned heat maps. * denotes p < 0.05 for each fold change
comparison. Red color represents decreased expression, blue depicts increased fold changes, and white stands for no change.
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Figure 3 Illustrations summarizing changes in expression of proteins involved in the NFκB signaling pathway and neuroinflammation by (A) DTMP or (B) LR-SCS. Up-Reg:
up regulation. Down-Reg: down regulation.
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there were 90 unique phosphoproteins distributed in 254 different phosphorylated isoforms. Figure 4 shows the
phosphorylated isoform with the greatest fold change between No-SNI, DTMP, and LR-SCS relative to No-SCS for
each of the 90 phosphoproteins (see Supplementary Table 3). Figure 5 shows a breakdown of phosphoproteins relevant to
the inflammatory process, in which MAP kinases play a fundamental role. The figure also indicates the number of
phosphoprotein isoforms affected by the pain model (expression level changed by at least 10%) and the number of these
in which SCS changes expression level in the direction of expression levels found in animals that were not subjected to
the pain model. It is evident that DTMP has a larger effect on phosphorylated MAP kinases than LR-SCS.

Figure 4 Heat map of the isoforms with the largest fold change for the 90 phosphoproteins involved in NFκB signaling. See Supplementary Table 3 for corresponding data.
Highlighted names indicate those involved in the MAPK cascade pathway.

Figure 5 Phosphorylated protein classes (blue boxes) of the NFkB signaling cascade involved in inflammatory processes showing the general effect of the SCS in the
direction of expression levels of animals without the pain model. Ratios shown for each phosphoprotein class indicate number of isoforms with back-regulation of expression
levels due to DTMP (D) or LR-SCS (L) relative to the total number of isoforms in each class. Black arrows indicate activation whereas red arrows indicate inhibition. Protein
classes in gray boxes were not differentially expressed.
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As MAP kinases are major regulatory components, their expression levels tend to be relatively stable Regulation of
MAP kinases is mainly accomplished via post-translational modifications, such as phosphorylation, which will determine
their levels of activity. Inflammatory pathways involving MAP kinases can be initiated by cytokines, chemokines, nerve
growth factors, or other inflammatory stimuli. Relevant phosphoproteins of the MAPK cascade identified in the
phosphorylation analysis is depicted in Figure 6 (see Supplementary Table 4). In total, 29 phosphorylated proteins of
the MAPK cascade were identified. Of these, 21 are MAP kinases, 1 is a MAP kinase interacting protein, and 7 are MAP
kinase activated proteins. From these 29 phosphoproteins, there were 63 different phosphorylated protein isoforms
having changes in expression level in either the No-SNI control or treatments relative to the untreated animals (No-SCS).
Setting a CV of 20% as the maximum threshold for reasonable variation of the calculated fold changes, the expression
levels of 33 of these phosphorylated isoforms were affected by the pain model relative to No-SNI. Treatment with SCS
changed expression levels towards expression levels found in the No-SNI group for many of these proteins.

Of the MAP kinase kinase kinase kinases (MAP4Ks) 3 different phosphorylated proteins were identified (p-HGK,
p-KHS1, and p-GCK) with 6 different isoforms (Figure 6). Three of these experienced more than 10% change in
expression level due to the pain model. DTMP reversed expression levels of 2 of these (p-HGK and p-KHS1) while LR-
SCS reversed none. Among the MAP kinase kinase kinases (MAP3Ks), there were 9 phosphoproteins found with 14
different isoforms. Five of them experienced more than 10% change in expression level due to the pain model, with
p-BRAF being reversed by DTMP and LR-SCS. Of the MAP kinase kinases (MAP2Ks), 4 phosphoproteins with 11
phosphorylation states were found. Expression levels of 7 of these were affected by more than 10% by the pain model.
DTMP reversed the effect in 3 of these (one p-MEK2, 2 p-MKK4), while LR-SCS reversed 2 p-MKK4. Four
phosphorylated MAPKs (p-JNK3, p-ERK1, p-ERK2 and p-ERK4) with 10 phosphorylated isoforms were found, with
expression levels in 5 of them changed by the pain model. DTMP and LR-SCS reversed expression levels of two of them
(p-ERK1 and p-ERK4) and one of them (p-ERK1) respectively. Downstream of MAPKs are additional proteins and
kinases, such as MAPK activated protein kinases (MAPKAPKs) and MAPK interacting proteins (MAPKIPs), which
regulate diverse outcomes such as proliferation, apoptosis, sensitization, etc. Of the 7 MAPKAP phosphoproteins
distributed in 14 isoforms, the pain model affected expression levels of 3 of them (p-p90RSK, p-MSK2,
p-MAPKAPK2). DTMP reversed expression levels of 2 of these (p-p90RSK, p-MSK2), whereas LR-SCS reversed the
3 of them. There were 8 isoforms of one p-MAPKIP identified (p-JIP3), with 2 of these changed by the pain model.
Expression levels of one of these was reversed by DTMP, while LR-SCS reversed levels of the other one.

Discussion
In this work, we have used high-throughput techniques to assess proteomic changes and characterize the effect of SCS
using DTMP or LR-SCS. We have utilized this approach for two main reasons: first, it was felt that it was important to
move beyond transcriptomic analyses1,12,14 as proteins are the main effectors within tissues; second, instead of focusing
on a very limited number of proteins determined a priori with conventional techniques, such as Western blot, we believe
that a very complex phenomenon, such as neuropathic pain, requires a more comprehensive and powerful approach, as
allowed by high-throughput proteomic analyses. Our previous transcriptomic analyses emphasized that the SNI pain
model activated the immune system and inflammatory processes mediated by glial cells. It also showed that DTMP may
alleviate neuropathic pain behavior by normalizing neuron-glial interactions in the spinal cord that have been disrupted
by nerve injury.12 The effect of DTMP on the transcriptomics was found to be more profound that LR-SCS as DTMP
significantly regulated more genes and biological processes associated with neuropathic pain toward the transcriptomic
state of uninjured animals. The proteomic and phosphoproteomic analyses presented here corroborated the transcrip-
tomics results. DTMP significantly regulated more proteins than LR-SCS, a similar occurrence in the transcriptomics.
Similarly, many of the 81 proteins and genes, such as complement proteins (C3, C4A, C5, CFH), ITGB2, IP3R3,
S100A8/9, and CNTF, found to be enriched in regulation by DTMP, are part of the inflammatory process associated with
glia activation.

In this study, we also confirmed our previous observation that SCS regulated proteomic expression in an animal
model of neuropathic pain. During the development and maintenance of chronic neuropathic pain, the activation of
inflammatory cascades maintains hypersensitivity in the central nervous system. Here, we show that DTMP significantly
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Figure 6 Heat map of fold changes of phosphoproteins associated with MAP kinase cascade. See Supplementary Table 4 for corresponding data. * denotes fold changes with
≤20% coefficient of variation. Content of parenthesis next to the protein isoform denotes the assignment of the phosphorylation site in the protein chain, und =
undetermined.
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affected expression levels of proteins involved in inflammatory states by reversing them toward those measured in
uninjured animals, and by regulating other proteins that, although not significantly affected by the pain model, play an
important role in inflammation regulation. Some healing-related or anti-inflammatory proteins may not be present in
uninjured animals and may also remain unmodified by the SNI model. As such, the ability of DTMP to alter the
expression of proteins unaffected by the pain model may indicate that the mechanism of action of DTMP occurs via
activation of molecular pathways and not just inhibition of action potentials or neuronal signaling.

We directed our attention toward MAP kinases, which are a diverse group of intracellular proteins involved in a
variety of pathways such as proliferation, differentiation, transformation, apoptosis, and inflammation. In particular, we
studied MAP kinase proteins known to be involved in inflammation and, more specifically, modulation of NFκB
pathway. Proteins identified and measured in this study are known to be involved in inflammation based on a GOEA
(gene ontology enrichment analysis), that relies on curated information from published literature. Previous reports have
emphasized the role of glial cells, particularly microglia and astrocytes, on inflammatory processes in chronic pain.27 For
example, the activation of the complement system, specifically C3, is primarily observed in microglia cells within the
CNS. Our results demonstrate that in the early stages of the SNI neuropathic pain model, DTMP down regulated key
proteins of the complement system, such as C3, C4A and C5, which promote the production of pro-inflammatory agents
as a response to nerve injury. These complement proteins primarily promote the NFκB pathway resulting in pro-
inflammatory gene expression. CFH, which was increased by the SNI pain model and down regulated by DTMP,
regulates C3 activity as does APP, which was decreased by the pain model and increased by DTMP. Additionally, C3 can
be activated by TLR4 via cofactors such as LBP (increased by SNI and decreased by DTMP), HMGB1 (decreased by
DTMP), and CAMP (decreased by DTMP), that were shown to be affected. Expression levels of CSRP1, a promoter of
C4, were decreased by DTMP. Complement proteins, such as C3 and C4, activate the NFκB signaling pathway, which
induces the production of proinflammatory agents including cytokines such as IL6, IL1β, TNFα, and the proteins CLU
and CSRP1. The net effect of these changes could represent a decrease of the pro-inflammatory drive set in motion by the
pain model.

Furthermore, activation of microglia and astrocytes is associated with calcium binding proteins S100A8 and S100A9,
which can induce a pro-inflammatory response via membrane receptors such as TLR4 and RAGE that activate signaling
cascades mediated by NFκB and AKT. Gliosis is also associated with neurotrophic factors such as CNTF, which is
expressed by astrocytes. Expression levels of this protein were increased by the SNI model and decreased with DTMP.
CNTF also activates the pro-inflammatory response by binding to the CNTF receptor, which then activates the AKT
signaling pathway. This pathway plays a significant role in the generation and maintenance of chronic pain and has been
shown to modulate activity of both MAPK as well as NFkB directly.28 As such, the inhibition of AKT by either reduced
expression or phosphorylation is important in the therapeutic effect observed by SCS therapies. It is noteworthy that
DTMP down regulates the expression of S100A8/9 as well as CNTF, thus potentially exerting a modulatory effect of the
inflammatory response, likely through this AKT pathway.

Additionally, we have identified and quantified phosphorylated proteins, which are associated with the activation/
deactivation of regulatory proteins related to inflammatory processes. Both DTMP and LR-SCS regulate expression
levels of many of these phosphoproteins (see Figures 4 and 6) back toward expression levels found in uninjured animals.
However, the effect of DTMP was more pronounced among the MAPK proteins. Out of the 63 isoforms identified,
DTMP back-regulated 62% of them toward expression levels of uninjured animals, while LR-SCS back-regulated 48%.
An interesting example is the activation of C3, which can lead to activation of ERK2 and ERK1 via phosphorylation,
leading to increased transcription and cell survival.29 Phosphorylation of ERK2 can also promote cytoskeletal remodeling
and cell migration.30 Regulation of phosphorylation via the MAPK cascade with DTMP may modulate the complement
cascade and determine which pathway is activated.

Another remarkable difference in the effects of DTMP and LR-SCS was related to the expression levels of filament
proteins like vimentin (VIM) and GFAP, which are markers of astrocyte activation and neuroinflammation in chronic
pain.31 The pain model increased the expression levels of VIM and 12 p-VIMs, which were regulated back to levels
found in uninjured animals by DTMP treatment in 11 of the p-VIMs. In contrast, LR-SCS only back-regulated levels of
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two of them. The pain model also increases expression levels of 14 p-GFAP isoforms. DTMP and LR-SCS back-
regulated the expression levels of 7 and 6 of these isoforms, respectively.

The activation of these signaling pathways, most likely in astrocytes,32,33 is manifested by the increase in the
expression of cytoplasmic filament proteins such as VIM, which in turn may mediate further signaling via phosphory-
lated isoforms (p-VIMs). Studies have shown that VIM (increased by SNI and decreased by DTMP) can function as a
receptor of cell adhesion proteins and can induce NFκB via CAMK2 activation.34 NFκB activation further promotes VIM
expression in a feed-forward loop. When activated, kinases like AKT phosphorylates VIM which modulates cell motility
and caspase proteolysis. For instance, the expression level of p-VIM (at S39) was upregulated by the pain model and
further increased by DTMP and LR-SCS. Interestingly, levels of the other 11 p-VIMs were found to be elevated by the
pain model, and were all reversed by DTMP, whereas only two were reversed by LR-SCS. This indicates that DTMP has
an enhanced down-regulatory effect on expression level changes in p-VIMs caused by the SNI. This seems to imply a
better effect of DTMP in astrocyte deactivation, given that VIM is a marker of astrocyte activation.35

The mTOR pathway also plays a regulatory role in NFκB pathway activation in neurons as well as glia. As such,
regulation of mTOR pathway activation may lead to a reduction in inflammatory processes.36 The pain model affected
nine phosphorylated mTOR-related proteins, with 8 of them back-regulated by DTMP and 7 of them by LR-SCS.

Activation of PKC via phosphorylation can increase calcium influx by phosphorylation of voltage gated calcium
channels (VDCC).37 Also, PKC can reduce pre-synaptic inhibitory tone at the presynaptic terminal by phosphorylation of
opioid receptors and inhibitory GABA receptors, leading to reduced presynaptic inhibition. Furthermore, chronic use of
opioid analgesics increases activity and expression of PKC that correlates with a decrease in analgesia. The pain model
affected 16 (4 p-PKCe, 3 p-PKCg, 3 p-PKCa, 2 p-PCKt, 1 p-PKCd, 1 p-PKCh, 1 p-PKCi, and 1 p-PKCz) out of 20
different phosphorylated PKC isoforms. DTMP and LR-SCS reversed expression levels of 12 and 11 of these, back to
levels found in uninjured animals, respectively. This finding might relate to a possible mechanism for analgesia for
electrical current applied via SCS.

Some classical inflammatory proteins (such as IL1b, TNFa, etc.) were not identified in the analysis. This is a
limitation of the experimental design for protein quantification, which may miss transient proteins or small peptides.
Large proteins or those embedded in a membrane or attached to the cytoskeleton were most likely to be identified and
quantified.

Conclusions
Proteomic and phosphoproteomic changes observed indicate a net reduction in the expression of proteins involved in the
proinflammatory cascade. All these changes, taken together, may have the net effect of decreasing the inflammatory
phenotype triggered by the pain model as a result of SCS therapy. This was observed through opposing effects on MAP
kinase and NFκB pathways between the injury model and DTMP and, to a lesser extent, LR-SCS therapy. This reduction
of injury-evoked responses by DTMP, observed in both proteomic and phosphoproteomic analyses, although it does not
constitute direct evidence, supports the potential role for electrical current to reverse-modulate biological processes
triggered by pain.
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