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Background: Low delivery efficiency of nanoparticles (NPs) to the tumor is a critical barrier in the field of cancer nanomedicine.
Strategies on how to improve NP tumor delivery efficiency remain to be determined.
Methods: This study analyzed the roles of NP physicochemical properties, tumor models, and cancer types in NP tumor delivery
efficiency using multiple machine learning and artificial intelligence methods, using data from a recently published Nano-Tumor
Database that contains 376 datasets generated from a physiologically based pharmacokinetic (PBPK) model.
Results: The deep neural network model adequately predicted the delivery efficiency of different NPs to different tumors and it
outperformed all other machine learning methods; including random forest, support vector machine, linear regression, and bagged
model methods. The adjusted determination coefficients (R2) in the full training dataset were 0.92, 0.77, 0.77 and 0.76 for the
maximum delivery efficiency (DEmax), delivery efficiency at 24 h (DE24), at 168 h (DE168), and at the last sampling time (DETlast). The
corresponding R2 values in the test dataset were 0.70, 0.46, 0.33 and 0.63, respectively. Also, this study showed that cancer type was
an important determinant for the deep neural network model in predicting the tumor delivery efficiency across all endpoints (19–29%).
Among all physicochemical properties, the Zeta potential and core material played a greater role than other properties, such as the
type, shape, and targeting strategy.
Conclusion: This study provides a quantitative model to improve the design of cancer nanomedicine with greater tumor delivery
efficiency. These results help to improve our understanding of the causes of low NP tumor delivery efficiency. This study demonstrates
the feasibility of integrating artificial intelligence with PBPK modeling approaches to study cancer nanomedicine.
Keywords: artificial intelligence, machine learning, physiologically based pharmacokinetic modeling, nanomedicine, drug delivery,
nanotechnology

Introduction
Global Cancer Statistics estimated that almost 10 million deaths occurred worldwide due to cancer in 2020.1 The
treatment of cancer remains a challenge. Traditional small molecule-based chemotherapy has limitations; such as adverse
side effects, low therapeutic indices, low bioavailability, high-dose requirements, lack of specificity, and development of
multi-drug resistance.2 Recent advances in nanotechnology enabled nanoparticle (NP)-based drug formulations to be
designed with superior properties compared to traditional small molecule chemotherapy, including high drug loading,
specific targeting/delivery, and the ability to regulate the release of the anticancer drug in a controlled or sustained
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manner.3 During the last 30 years, many nanomedicines were designed and tested to be effective in reducing the size of
various tumor types in laboratory animals,4,5 but only a limited number of nanomedicines have been translated to clinical
success and approved by the United States Food and Drug Administration (US FDA) or European Medicines Agency
(EMA).6 Low clinical translation of animal results to humans has become a major obstacle in the field of cancer
nanomedicine.

The low animal-to-human translation of cancer nanomedicines have been, in part, attributed to two main reasons: (1)
a lack of physiologically based models that can extrapolate pharmacokinetic and biodistribution results of NPs from
animals to humans,7–9 and (2) the low delivery efficiency observed for NPs to the tumor site (~0.7% of median injected
dose).4,5,10 To address the former issue, physiologically based pharmacokinetic (PBPK) models were developed to
simulate the biodistribution of different NPs in healthy rodents and humans.11–20 Recently, one of these models
developed by our group was extrapolated to tumor-bearing mice. This model was calibrated with hundreds of datasets
obtained from different types of NPs in different tumor types.5 This model was used to predict the delivery efficiencies of
different NPs at different times (eg, 24 and 168 h) after intravenous (IV) injection in tumor-bearing mice (this dataset is
referred to as “Nano-Tumor Database” in this manuscript). To address the issue of low tumor delivery efficiency, it is
essential to determine the relationship between the physicochemical properties and the tumor delivery efficiency of the
NPs. Previous studies attempted to use simple multiple linear regression analysis to determine the roles of the
physicochemical properties in NP tumor delivery efficiency.4,5 Although some statistically significant correlations were
identified, the extent of these correlations were low (eg, the determination coefficients R2 values were around 0.3 to 0.5).
Therefore, it is important to address this critical limitation since the role of the physicochemical properties in NP tumor
delivery efficiency are essential for the proper design to improve the delivery efficiency of cancer nanomedicines.

In recent years, due to the rapid growth in computational power, the availability of a large amount of data in various
databases, and the development of sophisticated data analysis algorithms, multiple machine learning (ML), and artificial
intelligence (AI) methods are available to help predict the absorption, distribution, metabolism, and excretion (ADME)
properties, as well as the toxicity of chemicals or NPs.21–24 A summary of the basic characteristics of commonly used
methods (also the methods used in this study) is provided in Table 1. Among these methods, multiple studies suggest that
artificial neural networks are more robust than linear regression because they can process large datasets more efficiently,
work with incomplete data, handle both linear and nonlinear processes and identify new relationships not inputted by the
user.25–27 A recent report showed that a deep neural network (DNN) model (deep learning [DL] model) could be used to
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predict the biodistribution of NPs based on their surface chemistry in healthy rats.28 However, the use of ML or AI
methods has not been applied to predict the biodistribution of NPs in tumor-bearing animals or in cancer patients.

The objective of this study was to determine the roles of the physicochemical properties, tumor models, and cancer
types in the tumor delivery efficiency of NPs. We hypothesized that more sophisticated ML and DNN computational
methods outperform linear regression in the determination of the relationship between the physicochemical properties
and the tumor delivery efficiency of NPs, with the DNN model having the best performance. The present analysis was
based on our published Nano-Tumor Database that contains 376 datasets from different types of NPs in tumor-bearing
mice.5 This study extends our earlier work5 by providing a better quantitative model based on the DNN approaches,
which can aid in the design of new cancer nanomedicines with a higher tumor delivery efficiency. This study also
provides valuable insights into the relative contributions of different physicochemical properties of NPs on tumor
delivery efficiency. Another novelty of this study is that it demonstrates PBPK modeling can be integrated with ML
and AI methods, and the PBPK-based supervised DNN method can be used to predict the delivery efficiency of NPs to
different tumors in animals and serves as a basis for applying this approach to cancer patients.

Materials and Methods
Datasets and Data Preprocessing
In our earlier study,5 we estimated delivery efficiencies (DE) of NPs to the tumor at 24 h (DE24), 168 h (DE168) and last
sampling time points (DETlast), as well as the maximum DE (DEmax) after IV administration in tumor-bearing mice using
PBPK models based on the Nano-Tumor Database consisting of 376 datasets covering a wide range of cancer
nanomedicines published from 2005 to 2018. Multiple variables that might influence the tumor delivery were included
in this database, including the physicochemical properties of NPs [eg, log-transformed hydrodynamic diameter (Size),
original value of Zeta potential (ZP), shape, core material (MAT), type of NPs (Type)], tumor therapy strategies such as
the targeting strategies (TS), cancer types (CT) and tumor model (TM), etc. The hydrodynamic diameter was log-
transformed because its values had a wide range and were not normally distributed. By leveraging the earlier work, the
database was reorganized by filtering the missing data for the development of ML and DL models. The symbols and
further explanation for all the variables in the Nano-Tumor Database are provided in Table 2.

In the data preprocessing step, both categorical and numeric data were included in the database, so two different data
preprocessing techniques were used including one-hot encoding and feature scaling were applied to the data to allow it to

Table 1 Summary of Modeling Algorithms Used in This Study

Model Synonym Model Category Tuning Parameters

Machine Learning Algorithms
Linear regression Linear Simple model Alpha, Lambda

k-nearest neighbors KNN Simple model K

Random Forest RF Ensemble model mtry
Bagged Model Bag Ensemble model Nonea

Stochastic Gradient Boosting Gbm Ensemble model n.trees; shrinkage, n.minobsinnode

Support vector machine SVM Support vector machine C
Least-squares SVM LS-SVM Support vector machine Cost, loss

L2-Regularized SVM L2-SVM Support vector machine Cost, loss
Deep Learning Algorithm

Deep neural networks DNN Neural networks Rate, L1, L2

Notes: Alpha, Lambda: the penalty parameters in the elastic regression model. C: A regularization parameter that controls the trade-off between the misclassification
and width of the margin. Cost: The cost function in Least-squares or L2-Regularized SVM model. Loss: The Loss function in Least-squares or L2-Regularized SVM
model. K: A parameter in KNN model that refers to the number of nearest neighbors. mtry: Number of variables randomly sampled as candidates at each decision
tree. n.trees: Number of decision trees in the stochastic gradient boosting model. n.minobsinnode: Minimum number of samples in tree terminal nodes. L1: a loss
function to minimize the error which is the sum of all the absolute differences between the measured values and predicted values. L2: a loss function to minimize the
error which is the sum of all the squared differences between the measured values and predicted values. Rate: The learning rate in deep learning model that controls
how much to change the model in response to the estimated error when model weights are updated for each of the iterations. shrinkage: The learning rate in the
stochastic gradient boosting model. aNone of the parameters were tuned in this model.
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be recognized by the ML and DL models. For the categorical variables, the data were one-hot encoded by splitting
variables into different columns with its own encoded binary string to impose an artificial ordering on the variables that
may have implications for the ML and DL models.29 For numerical variables, the feature scaling technique was
normalized to the value to center around the mean with a unit standard deviation to aid the model optimization
efficiency.30 The one-hot encoding and feature scaling were conducted by the function dummyVars and preProcess,
respectively from R package caret.31

Feature Selection
To improve the model learning performance, the feature selection is essential before the model development. In this
study, the low-variation feature filtering algorithm and stepwise regression selection were used to select the input
features. The low-variation feature filtering algorithm was used to filter out the identical or almost identical features in
the data set through the set-up threshold values. This method provided procedure to eliminate the irrelevant and
redundant variables with low variance and to have less impact on the response variable. The low-variation feature
filtering algorithm was executed by the nearZeroVar function in R package caret (version 6.0–86),31 followed by the
stepwise regression technique via the function step in R package stats. Stepwise regression is a statistical approach to
build a model by adding or removing variables based on a series of the test statistics of the estimated coefficients, which
was used to identify the smallest set of features that had a significant impact to the response variable in the regression
model.

Model Development
A total of 9 modeling algorithms were applied in this study. These algorithms can be categorized into four classes
including classic models, ensemble models, support vector machines (SVMs) and neural networks (Table 1). Two

Table 2 List of Variables and Its Levels/Values in the Tumor-Nano Database

Variables Unit Symbol Levels or Ranges

Type of nanoparticles - Type Inorganic; Organic

Core materials of

nanoparticles

- MAT Gold, Dendrimers, Liposomes, Polymeric, Hydrogels, Other Organic Material,

Other Inorganic Material

Targeting strategy - TS Passive, Active

Hydrodynamic diameter nm HD [3, 399]

Log10-transformed HD nm Size [0.43, 2.66]

Zeta potential mV ZP [−59.4, 71.3]

Shape of nanoparticles - Shape Spherical, Rod, Plate, Others

Tumor Model - TM Allograft Heterotopic (AH), Allograft Orthotopic (AO), Xenograft Heterotopic

(XH), Xenograft Orthotopic (XO)

Cancer Type - CT Brain, Breast, Cervix, Colon, Liver, Lung, Ovary, Pancreas, Prostate, Skin

DE at 24 hours %ID DE24 [0.008, 50.3]

DE at 168 hours %ID DE168 [0.008, 23.8]

DE at the last sampling

time point

%ID DETlast [0.008, 56.9]

Maximum DE %ID DEmax [0.008, 29.8]

Note: DETlast, DE24, DE168 represent tumor delivery efficiency estimated at the last sampling time point, 24 h and 168 h after intravenous injection. DEmax is the maximum
tumor delivery efficiency.
Abbreviations: DE, tumor delivery efficiency of nanoparticles; %ID, percentage of initial dose or injected dose.
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classic models including the simple linear regression (LR) and k-nearest neighbors (KNN) were used as the simple ML
algorithms. Three decision tree algorithms, including Random Forest (RF), Bagged model (Bag), and Gradient
boosting model (Gbm), were used as ensemble models. For SVMs, three versions of the SVM models based on the
linear basis kernel were adopted, including regular SVM (R-SVM), least-squared (LS-SVM) and L2 Regularized (L2-
SVM) models. These algorithms were implemented in R software (Version 4.02) with ML packages such as kernlab
(version 0.9–25),32 the randomForest (version 4.6–12),33 and the xgboost (version 0.4–4)34 for model construction. The
random search method35 implemented in the R package caret was applied to optimize the hyperparameters for each ML
model.

For the artificial neural networks, a DL neural network was constructed to predict the delivery efficiencies of cancer
nanomedicines. DL was conducted through the R package “h2o” (Version 3.32.0.5), which is a R interface for
a multilayer feedforward neural network model.36 Five dense layers (three hidden layers) were included in the
architecture of the DL model. Three hidden layers comprised [512, 256, 128], [480, 240, 120], [512, 128, 64] and
[180, 90, 45] nodes were used for the predictions of DEmax, DE24, DE168 and DETlast, respectively. The ReLu was used as
an activation function to perform non-linear transformations.37 Using the training dataset, the learning rate and the
regulation function with L1 [ie, Lasso Regression] and L2 [ie, Ridge Regression] was optimized. The Adam and root
mean square error (RMSE) were used as optimizers and loss functions to compile the DL model in this study. The
dropout function38 and early stopping rule39 were applied to reduce overfitting and to improve the generalization error in
the model. In addition, the variable importance for the DL model was calculated based on the method from Gedeon.40

Model Performance Evaluation
The evaluation of model performance was conducted using the internal validation and external validation methods
commonly used in ML and DL modeling studies.41–45 The original dataset was randomly split into a training set (80% of
the data), as internal validation data through 5-fold cross-validation for training the model, and a test set (20% of data)
for external validation of the model. In the 5-fold cross-validation analysis, the training set was further partitioned into
five equal sized subsets. Of the five subsets, four subsets were used for building the model and a single subset was
retrained as validation data for evaluating the developed model. This cross-validation process was then repeated five
times until all subsets were used for validation once. The performance of each model for the 5-fold cross-validation and
external validation was evaluated by root mean square error (RMSE), mean absolute error (MAE) and adjusted
determination coefficient (R2). These evaluated metrics are defined as below:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
� ð∑ y � ŷð Þ

2
Þ

r

(1)

MAE ¼
1
n
� ∑ y � ŷj jð Þ (2)

R2 ¼ 1 � ð∑ y � ŷð Þ
2
=∑ y � �yð Þ

2 (3)

where y is the observed response variable value derived from the Nano-Tumor Database based on a PBPK model,5 �y is its
mean, ŷ is the corresponding predicted value, and n is the number of data sets. R2 was used to evaluate the goodness-of-fit of
the model, and RMSE and MAE were used to evaluate the error between observed and predicted values. The lower values
of MAE and RMSE imply higher accuracy of the model. However, a higher value of R2 is considered desirable.

Results
Study Workflow
The overall study framework is depicted in Figure 1. All data on the physicochemical properties of NPs, tumor model,
and cancer type were obtained from our published Nano-Tumor Database.5 The combination of four types of response
variables (delivery efficiency at different time points after IV injection, including DE24, DE168, DEmax, and DETlast) in
conjunction with nine modeling algorithms, 36 models were developed. Specifically, the physicochemical properties of
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NPs (Type, Size, ZP, shape, MAT), and the parameters related to the description of tumor studies (TM, TS, and CT) were
used as input features to predict the tumor delivery efficiencies of different NPs derived from the PBPK model from our
previous study.5 After data preprocessing (ie, feature selection and scaling), the models were developed using the
different modeling algorithms presented above (Table 1). During model training, the optimization of hyperparameters
was conducted to choose a set of optimal hyperparameters for ML and DL model algorithms. Final models were
evaluated by the 5-fold cross-validation method and the quality of each model was evaluated with both training and test
data sets, separately using several indicators, including R2, RMSE, and MAE.

Nano-Tumor Database
Figure 2 is an overview of the data sets in this study. The tumor delivery efficiency data were categorized based on the
cancer therapeutic scenarios or the physicochemical properties of the NPs, including cancer TS (Figure 2A), CT
(Figure 2B), TM (Figure 2C), Type (Figure 2D), shape (Figure 2E), MAT (Figure 2F), Size (Figure 2G), and ZP
(Figure 2H). For the parameter of targeting strategies, the majority of datasets were from studies that used passive
targeting (68%). The data were related to a wide range of different cancer types, including breast (30%), liver (17%),
colon (8%), cervix (7%), and lung (6%) and others (32%). The mouse tumor models included Allograft Heterotopic (AH,
38%), Allograft Orthotopic (AO, 12%), Xenograft Heterotopic (XH, 38%), and Xenograft Orthotopic (XO, 12%). For the
physicochemical properties of NPs, the majority were organic NPs (71%). The core materials were also very diverse,
including polymeric (40%), gold (17%), liposomes (9%), hydrogels (6%), silica (6%), iron oxide (2%), dendrimers (2%),
and others (18%). The values of ZP, which described the charge at the interface between the NP surface and its liquid
medium, ranged from −59.4 mV to 71.30 mV. The “Size” of the studied NPs, which represented the log10-transformed
hydrodynamic diameters of the NPs, ranged from 0.43 nm to 2.66 nm (ie, the range of the original hydrodynamic
diameter values was 2.51 nm to 457 nm).

Development and Validation of NP Tumor Delivery Efficiency Models
The R2, RMSE and MAE values based on 5-fold cross-validation and testing results from the developed ML and DL
models are summarized in Table 3. Among the selected ML model algorithms, the RF model showed a better predicting
performance for each of the endpoints with higher R2 and lower RMSE or MAE values than other categories of ML
algorithms. The relatively weakest modeling algorithm was the KNN model with R2 values for all endpoints below 0.1.
The R2 and RMSE values for RF ranged from 0.11 to 0.29 and from 3.17 to 7.15 across each of endpoints in the test set,
while the values in the training set ranged from 0.15 to 0.19 and from 2.06 to 3.72, respectively. Although the L2-SVM
model slightly outperformed the others in the test set for DE168, the results may not be reliable because the values of R2

Figure 1 Overview of the study framework to develop machine learning and deep learning models to predict delivery efficiency of nanoparticles to the tumor site in tumor-
bearing mice. X represents the initial input variables and W represents the variables after feature selections.
Abbreviations: R2, adjusted coefficient of determination; RMSE, root mean square error; MAE, mean absolute error.
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and RMSE between training and test sets had significant differences. For the predicting performance of the DL model
(Table 3; Figure 3), the results outperformed all ML methods with the highest R2 values and substantially lower RMSE
and MAE values across all endpoints compared to those from other algorithms. The R2 values were 0.70, 0.46, 0.33 and
0.63 for DEmax, DE24, DE168 and DETlast in the test set, respectively, while these values were 0.92, 0.77, 0.77 and 0.76 in
the full training set (Figure 3). In addition, the similar ranges of R2, RMSE and MAE between 5-fold cross-validation
results in the training and test sets in the DL model results suggest that there were minimal or no overfitting problems.

To further assess and to confirm whether the performances of the DL model was more superior than other methods,
the traditional simple linear regression model (LM) and RF model were used to predict delivery efficiency (Figures 4–5)
and then the results were compared with those from the DL model (Figure 3). These results showed that the
performances of the DL model in the predictions of DEmax, DE24, DE168 and DETlast were better than the LM model
based on R2 and RMSE (Figure 4). Although similar values of R2 and RMSE were found between the DL and RF models
in the training dataset, the RF model did not predict as well in the test dataset compared with the DL model (Figure 5).
These results suggest that of all the developed ML and DL models, the DL model had the best predicting performance
among all endpoints in the training and test sets. The code of all the developed ML and DL models is provided in the

Figure 2 Overview of the Nano-Tumor Database. (A–C) Percentages of data related to cancer therapy scenarios based on the Targeting Strategy (TS), Cancer Type (CT),
and Tumor Model (TM). (D–H) Percentages of data that were categorized based on the physicochemical properties of the studied nanoparticles, including the type (D), the
shape (E), the core (F), the log-transformed hydrodynamic diameter (G), and Zeta potential (H). In Panel H, Zeta potential values are presented using box whisker plots
across 2.5th, 25th, 50th, 75th, and 97.5th percentiles. Data in the Nano-Tumor Database are from Cheng et al.5
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GitHub (https://github.com/UFPBPK/Nano-ML-AI) to enable other researchers to reproduce our results and to apply our
optimal DL model for the design of new nanomedicines.

Feature Importance
To understand the impact of the input features on model predictions, we estimated the variable importance based on the
method from Gedeon.40 As shown in Figure 6, the cancer type had a greater impact on the DL model across all endpoints
(19% ~ 29%). For the variables related to the physicochemical properties of NPs, MAT (22%) significantly contributed to
the DEmax, while ZP and Size had impact on the DE24, DE168 and DETlast. Overall, the importance of features related to

Table 3 Five-Fold Cross-Validation and Testing Results for Tumor Delivery Efficiency Using Different Machine Learning and Deep
Learning Models

DEmax DE24 DE168 DETlast

Model 5-Fold CV Test 5-Fold CV Test 5-Fold CV Test 5-Fold CV Test

LR
R2 0.06 ± 0.05 0.08 0.10 ± 0.10 0.08 0.07 ± 0.03 0.06 0.07 ± 0.07 0.13

RMSE 3.98 ± 1.03 7.56 3.89 ± 0.61 6.56 2.18 ± 0.60 3.20 3.98 ± 0.88 4.73

MAE 2.42 ± 0.48 3.31 2.37 ± 0.24 2.70 1.29 ± 0.20 1.44 2.42 ± 0.44 2.46
KNN

R2 0.03 ± 0.04 0.06 0.04 ± 0.04 0.08 0.03 ± 0.04 0.04 0.01 ± 0.04 0.08

RMSE 4.05 ± 1.12 7.55 3.95 ± 0.71 6.51 2.31 ± 0.56 3.22 4.05 ± 1.01 4.77
MAE 2.36 ± 0.47 3.51 2.31 ± 0.30 2.82 1.33 ± 0.21 1.50 2.36 ± 0.43 2.59

RF

R2 0.19 ± 0.12 0.16 0.19 ± 0.16 0.17 0.19 ± 0.10 0.11 0.15 ± 0.16 0.29
RMSE 3.71 ± 1.03 7.15 3.64 ± 0.62 6.18 2.06 ± 0.61 3.17 3.72 ± 0.82 4.24

MAE 2.21 ± 0.48 2.92 2.17 ± 0.27 2.37 1.20 ± 0.21 1.30 2.22 ± 0.45 2.15

Bag
R2 0.09 ± 0.07 0.08 0.13 ± 0.12 0.08 0.10 ± 0.06 0.04 0.09 ± 0.09 0.15

RMSE 3.91 ± 1.06 7.49 3.86 ± 0.64 6.50 2.16 ± 0.58 3.22 3.91 ± 0.91 4.63

MAE 2.38 ± 0.47 3.34 2.34 ± 0.25 2.66 1.27 ± 0.19 1.35 2.38 ± 0.46 2.44
Gbm

R2 0.08 ± 0.08 0.09 0.12 ± 0.11 0.17 0.11 ± 0.06 0.05 0.08 ± 0.07 0.24

RMSE 3.91 ± 1.03 7.48 3.81 ± 0.62 6.30 2.16 ± 0.57 3.22 3.92 ± 0.85 4.46
MAE 2.42 ± 0.47 3.27 2.34 ± 0.26 2.60 1.30 ± 0.20 1.32 2.42 ± 0.42 2.38

R-SVM

R2 0.02 ± 0.03 0.23 0.04 ± 0.03 0.19 0.04 ± 0.03 0.14 0.02 ± 0.02 0.25
RMSE 4.12 ± 1.29 7.80 4.02 ± 0.87 6.76 2.28 ± 0.67 3.31 4.12 ± 1.12 4.97

MAE 1.93 ± 0.54 2.82 1.87 ± 0.35 2.32 1.06 ± 0.24 1.22 1.93 ± 0.47 2.08
LS-SVM

R2 0.02 ± 0.03 0.23 0.05 ± 0.03 0.18 0.05 ± 0.03 0.13 0.03 ± 0.03 0.24

RMSE 4.12 ± 1.29 7.81 4.02 ± 0.87 6.77 2.27 ± 0.66 3.31 4.12 ± 1.12 4.98
MAE 1.92 ± 0.54 2.83 1.86 ± 0.26 2.32 1.05 ± 0.24 1.22 1.93 ± 0.47 2.09

L2-SVM

R2 0.07 ± 0.06 0.14 0.11 ± 0.10 0.14 0.08 ± 0.04 0.18 0.08 ± 0.07 0.19
RMSE 4.01 ± 0.97 7.32 3.91 ± 0.59 6.37 2.23 ± 0.56 3.03 4.02 ± 0.78 4.54

MAE 2.52 ± 0.46 3.20 2.45 ± 0.26 2.61 1.38 ± 0.19 1.37 2.52 ± 0.42 2.39

DNN
R2 0.47 ± 0.20 0.70 0.40 ± 0.34 0.46 0.45 ± 0.24 0.33 0.35 ± 0.23 0.63

RMSE 3.58 ± 1.35 2.38 2.75 ± 0.92 3.10 1.96 ± 1.09 1.78 3.24 ± 1.04 3.01

MAE 2.20 ± 0.65 1.64 1.72 ± 0.50 1.84 1.10 ± 0.42 0.94 1.92 ± 0.54 1.81

Note: DEmax, DE24, DE168 and DETlast represent the maximum tumor delivery efficiency (DE), DE at 24 h, 168 h, and the last sampling time, respectively.
Abbreviations: LR, linear regression; KNN, k-nearest neighbors; RF, random forest; Bag, bagged model; Gbm, stochastic gradient boosting; R-SVM, regular support vector
machine; LS-SVM, least-squared support vector machine; L2-SVM, L2-regulated support vector machine; DNN, deep learning neural network; CV, cross-validation.
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Figure 3 Correlation between values from the Nano-Tumor Database and the deep neural network model-predicted values for (A) DEmax, (B) DE24, (C) DE168 and (D)
DETlast. Root mean square error (RMSE) and coefficient of determination (R2) in the training set and test set are shown. RMSE_train and R2_train represent the best
performance of RMSE and R2 values in the training set, while RMSE_test and R2_test represent the values for external validation. DEmax, DE24, DE168 and DETlast represent
the maximum tumor delivery efficiency (DE), DE at 24 h, 168 h, and the last sampling time, respectively.

Figure 4 Correlation between values from the Nano-Tumor Database and the predicted values based on the simple linear regression model for (A) DEmax, (B) DE24, (C)
DE168 and (D) DETlast. Root mean square error (RMSE) and coefficient of determination (R2) in the training set and test set are shown. RMSE_train and R2_train represent
the best performance of RMSE and R2 values in the training set, while RMSE_test and R2_test represent the values for external validation. DEmax, DE24, DE168 and DETlast
represent the maximum tumor delivery efficiency (DE), DE at 24 h, 168 h, and the last sampling time, respectively.
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the cancer therapy strategies was higher than the parameters related to the physicochemical properties of NPs. Among the
physicochemical parameters of NPs, the ZP and MAT were the most important factors to the final model than other
parameters.

Discussion
This study reports a PBPK-based DL neural network model that can adequately predict the delivery efficiency of NPs to
tumors in mice based on the NP physicochemical properties, tumor model and cancer type. This model can serve as
a predictive tool to assist in the design of new NP-based drug formulations for cancer therapy. This tool is anticipated to
facilitate nanomedicine development in the future by preventing NPs of low tumor delivery efficiency from entering
preclinical trials, thereby helping scientists to make better informed decisions and reduce and refine animal studies. This
study also represents a methodology advance by integrating ML and AI approaches with PBPK modeling in the field of
cancer nanomedicine.

Low delivery efficiency of NPs to tumors has for decades been a barrier in the field of cancer nanomedicine.3–5 We
recognize that a nanomedicine’s specificity and efficacy are critical factors that may overcome low delivery efficiency.
However, for NP with similar pharmacodynamic activity, enhanced delivery will improve efficacy, decrease adverse
effects in non-target tissues, and potentially lower total dose needed for treatment. Previous studies on delivery efficiency
used traditional simple multivariate regression analysis to determine the relationship between NP physicochemical
properties and tumor delivery efficiency.4,5 While some significant correlations were identified, the extent of the
correlation was generally low with determination coefficients ranging only from 0.3 to 0.5. These simplified models
were also not rigorously validated. In the present study, we implemented nine ML and DL models (Table 1) and
compared their results (Table 3). We found that the RF model had better predictive performance than other ML models,
and the DL model had the best predictive performance compared to all other methods. The DL model was also rigorously
validated with internal cross-validation and external validation. This DL model is a more superior model than the simple

Figure 5 Correlation between values from the Nano-Tumor Database and the predicted values based on the random forest model for (A) DEmax, (B) DE24, (C) DE168 and
(D) DETlast. Root mean square error (RMSE) and coefficient of determination (R2) in the training set and test set are also shown. RMSE_train and R2_train represent the
best performance of RMSE and R2 values in the training set, while RMSE_test and R2_test represent the values for external validation. DEmax, DE24, DE168 and DETlast
represent the maximum tumor delivery efficiency (DE), DE at 24 h, 168 h, and the last sampling time, respectively.
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multivariate linear regression models reported in earlier studies,4,5 and it represents the best model currently available to
predict NP tumor delivery efficiency in this field.

Compared to earlier studies,4,5 the present study also improves our understanding on the relative contributions of
different physicochemical properties to the tumor delivery efficiency of NPs. It is well-known that pharmacokinetics and
tissue distribution (including tumor delivery), depend on multiple factors, including the dose, size, ZP, surface coating,
MAT, shape and TS.8,18 Earlier studies using traditional multivariate linear regression analysis and stepwise inclusion/
exclusion methods were able to identify only one or a few major factors in the determination of tumor delivery efficiency
for specific NPs. The limitation of this traditional linear regression method is that the final optimal model is limited to
a few major parameters, whereas other relatively minor parameters have to be excluded. Thus, the linear regression
model only considers the roles of some parameters, but ignores others. As a result, the relative contributions of each of
the factors in a linear regression model are unknown.4,5 In this study, the DL model considered all parameters and
evaluated the relative contributions of each of the studied factors on each of the selected tumor delivery efficiency
metrics (Figure 6). These results suggest that cancer type was an important contributor to the DL model in predicting
tumor delivery efficiency. Among all the physicochemical properties, the ZP and MAT played a greater role than other
properties, including the type, shape, and TS. These findings are consistent with earlier studies using simple linear
regression models.4,5 Different types of cancers have different cancer cells with different tumor microenvironments (eg,
different stromal cells and extracellular matrix components), resulting in different dynamic interactions of cancer cells
with their local microenvironment and different blood flow rates; these factors can in turn lead to different tumor delivery
efficiencies.46–48 ZP and MAT have been shown to be key factors in tumor delivery.3,49,50 Internalization of NPs into the
tumor cells is an important step in tumor delivery as the process of binding of NPs to cell membrane is mostly affected by

Figure 6 Importance percentage in the deep learning model for each feature variable. (A–D) represent results for the feature variable of DEmax, DE24, DE168 and DETlast,
respectively. Individual importance is represented by colors in the stacked bars.
Abbreviations: ZP, zeta potential; Type, type of nanoparticles; TS, targeting strategy; TM, tumor model; Size, log-transformed value of the hydrodynamic size; Shape, shape
of nanoparticles; MAT, core material of nanoparticles; CT, cancer type; AH, allograft heterotopic; AO, allograft orthotopic; XH, xenograft heterotopic; XO, xenograft
orthotopic.
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ZP.49 Also, different types of NPs have vastly different physicochemical properties, which can all contribute to different
tumor delivery efficiencies.50

This study has several limitations. While the final DL model was evaluated extensively with internal cross-validation
and external validation, the training and testing datasets were necessarily limited to the Nano-Tumor Database published
two years ago.5 The model would be more rigorous if it were evaluated with newer datasets that were not included in this
database at the time of its compilation. We were not able to expand it further because it would have required additional
animal testing and PBPK simulations, which is out of the scope of this study; which was conducted solely to determine if
ML and AI techniques can be integrated with PBPK-derived results to develop a better model to improve predictions
from this data set. To facilitate model applications, in the future it will be beneficial to convert the final model to a web-
based interface. This is similar with several recently published interactive physiologically based pharmacokinetic
(iPBPK) interfaces.51–53 Our results are only based on data from tumor-bearing mice. The implications of these results
to humans remain to be investigated. This can be addressed by extrapolating the PBPK model from tumor-bearing mice
to cancer patients, and a PBPK model is an ideal model to perform this animal-to-human extrapolation.9,13,20 However,
additional data on pharmacokinetics of NPs in human cancer patients are needed in order to validate the human model for
use to generate data to train ML and AI models.

This study substantially advances the field of cancer nanomedicine by integrating ML and AI technologies with
PBPK modeling to study cancer nanomedicine. ML and AI models are useful to predict PBPK-related parameters, such
as in vitro dissolution rate, hepatic clearance, and membrane permeability of small molecular drugs;54,55 and these
parameters are in turn helpful to support PBPK model development. While ML and AI methods have been applied to
support PBPK model development of small molecular drugs,54,55 they have not been applied to develop PBPK models of
nanomedicines. ML and AI models are known to be relatively complex and require a large amount of data to train and
evaluate. There is a challenge to integrate ML and AI models with pharmacokinetic data because pharmacokinetic data
are typically derived from existing animal trials that have different experimental designs, which are usually limited in
terms of time points, matrix, dosing groups, etc. In this regard, once a PBPK model is validated, it can be used to predict
chemical or NP plasma and tissue concentrations, as well as pharmacokinetic parameters (eg, maximum concentration
[Cmax] and area under the concentration curve [AUC]) at different time points in different matrices after different
exposure scenarios; thereby optimizing available datasets which were not designed to have consistent designs amenable
to such a meta-analysis. This was nicely illustrated in our previous study where a PBPK model was used to predict
pharmacokinetic data and tumor delivery efficiencies of different types of NPs, generating the Nano-Tumor Database that
contains 376 datasets.5 This database made it possible to train and evaluate the ML and DL models in the present study.
This study demonstrates that it is possible to use PBPK simulation results to inform ML and AI model development.
Therefore, previous studies and our present study together suggest that ML and AI and PBPK can be well integrated to
support each other. This AI-PBPK integrative approach is new and provides an advancement to the field of nanomedi-
cine. This conclusion has wide implications considering that PBPK modeling has a number of biomedical applications,
including drug discovery and development (both small molecular drugs and nanodrugs),56 environmental Health risk
assessment,57,58 and animal-derived food safety assessment.59

Conclusion
Overall, this study extends our earlier study5 by developing a more robust quantitative model based on DL and PBPK
approaches that can be used to predict tumor delivery efficiency of different NPs based on the physicochemical
properties, cancer type and tumor model. The present study also demonstrates the feasibility of integrating ML/AI
with PBPK models to support cancer nanomedicine research and development. These findings represent
a methodological advancement in the field of cancer nanomedicine. The final DL model can serve as a platform to
help in the future design of new cancer nanomedicines and help scientists to make informed decisions as to which NPs
should enter preclinical trials, thereby, reducing and refining animal studies. This framework can be extended to other
applications of PBPK modeling, including small molecular drug development, environmental health risk assessment, and
animal-derived food safety assessment.
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