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Background and purpose: Adenosine, an endogenous purine nucleoside, is a potent regulator 

of the inflammatory response and stimulus for fibrosis. We have previously demonstrated that 

adenosine, acting at the A2A receptor, plays a central role in hepatic fibrosis via direct promo-

tion of collagen production by hepatic stellate cells. As we have previously demonstrated that 

macrophage A2A receptor function is regulated by interferon-gamma (IFNγ), a noted anti-

fibrotic but pro-inflammatory cytokine, we examined its effect on A2AR-stimulated collagen 

production in the human hepatic stellate cell line LX-2.

Experimental approach: Collagen expression was determined by western blotting and 

realtime reverse transcription polymerase chain reaction (RT-PCR). Receptor desensitization 

was assessed by western blotting for membrane associated GRK2. Receptor signaling was 

determined by western blotting for phosphorylated extracellular signal-related protein kinase 

(ERK) protein and immunoassay for intracellular cyclic AMP (cAMP). siRNA was used to 

knock down expression of adenylyl cyclase and signal transducer and activator of transcription 

(STAT). Adenylyl cyclase expression was assessed by realtime RT-PCR, and STAT expression 

was assessed by western blotting.

Key results: IFNγ diminishes A2A receptor-mediated collagen production at both protein 

and mRNA levels. IFNγ alters signal transduction at A2A receptors by a STAT1 mediated 

mechanism involving the suppression of adenylyl cyclase expression.

Conclusions and implications: IFNγ inhibits the function of the adenosine A2A receptor 

in hepatic stellate cells by downregulating the expression of adenylyl cyclase. This finding 

explains, at least in part, the protective effect of IFNγ in hepatic fibrosis.

Keywords: hepatic fibrosis, collagen-1, interferon-gamma, inflammation, adenylyl cyclase, 

siRNA, hepatic stellate cells

Introduction
Adenosine is a purine nucleoside released during times of cellular stress.1 Adenine 

nucleotide release is the major source of extracellular adenosine,2 which regulates 

inflammation,3,4 cholesterol metabolism,5 wound healing6 and fibrosis,7 etc, via interac-

tion with cell surface receptors. There are 4 known mammalian adenosine receptors: 

A1, A2A, A2B, and A3, all of which belong to the G-protein coupled receptor (GPCR) 

family.8,9 Expression of these receptors varies among cell types and is regulated by 

multiple factors.1 External factors,10 receptor localization,11 and sensitization12 all play 

a role in the functional regulation of adenosine receptors.

Previous work by our laboratory and others has shown that the inflammatory cytok-

ines interferon-gamma (IFNγ), tumor necrosis factor alpha (TNFα), and interleukin-1 

In
te

rn
at

io
na

l J
ou

rn
al

 o
f I

nt
er

fe
ro

n,
 C

yt
ok

in
e 

an
d 

M
ed

ia
to

r 
R

es
ea

rc
h 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

www.dovepress.com
www.dovepress.com
www.dovepress.com
mailto:cronsb01@med.nyu.edu


International Journal of Interferon, Cytokine and Mediator Research 2010:2submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

114

Block and Cronstein

(IL-1) regulate A2A receptor expression and function in 

monocytes.13 IFNγ is a negative regulator of function; 

while TNFα and IL-1 increase A2A receptor expression 

and enhance function by impairing desensitization of the 

A2A receptor.14 TNFα and IL-1 block desensitization by 

preventing G-protein coupled receptor kinase 2 (GRK2) and 

β-arrestin association with the membrane in a sphingomy-

elinase-dependent manner.14 The mechanism by which IFNγ 

inhibits A2A receptor function remains unknown. It is also 

undetermined whether or not IFNγ inhibits A2A receptor 

function in other cell types besides monocytes.

Adenosine plays an important role in the development 

of multiple forms of fibrosis, including hepatic fibrosis. 

Adenosine A2A receptor (A2AR) expression is upregulated 

in liver homogenates from mice and humans with hepatic 

fibrosis, and protection from fibrosis has been observed in 

A2A receptor knockout mice.15,16 Adenosine also regulates 

chemotaxis in hepatic stellate cells,17 and recent work in our 

laboratory has demonstrated that activation of the A2A recep-

tor provides a pro-fibrotic signal to these cells.18 Furthermore, 

we have observed that adenosine, generated extracellularly 

from adenine nucleotides, plays a critical role in the patho-

gensis of hepatic fibrosis in vivo.17

Therefore, we examined the effect of IFNγ on A2A 

receptor function in LX-2 cells, a human hepatic stellate cell 

line.19 We observed that IFNγ has the same negative effect 

on adenosine receptor signaling and function, particularly 

collagen production, in human hepatic stellate cells as it does 

in monocytes.13 We further demonstrated that IFNγ down-

regulates adenylyl cyclase expression, which is required for 

A2A receptor-mediated regulation of collagen production. 

We conclude that IFNγ inhibits the function of the A2AR 

in hepatic stellate cells by downregulating the expression of 

adenylyl cyclase.

Materials and methods
Materials
Materials were as follows: cAMP Biotrak Enzymeimmunoas-

say System (GE Healthcare,  Amersham UK), GRK2 Antibody 

(Santa Cruz Biotechnology, Santa Cruz, CA, USA), Beta-

Actin Antibody (Abcam), Anti-Type 1 Collagen Antibody 

(Southern Biotech, Birmingham, AL, USA), anti-phospho-

ERK1 & 2 (extracellular signal-related protein kinases 1 and 

2) Antibody (Biosource – now Invitrogen, Carlsbad, CA, 

USA), Anti-ERK1 & 2 pan Antibody (Biosource), recombi-

nant human IFNγ (R&D Systems, Minneapolis, MN, USA), 

Recombinant Human TNFα (R & D Systems), recombinant 

human tumor growth factor beta 1 (TGF-β1) (R & D Systems), 

CGS 21680 Hydrochloride  (Tocris Bioscience, Ellisville, MO, 

USA), Stellate Cell Growth Supplement (ScienCell Research 

Laboratories, San Diego, CA, USA), 10× Cell Lysis Buffer 

(Cell Signaling, Beverly, MA, USA),  Brilliant SYBR Green 

QPCR Master Mix (Stratagene), BCA Assay (Pierce, Rock-

ford IL, USA), Mission Transduction Particles NM_003150, 

NM_007315, NM_004036, NM_001114, and NM_001116 

(Sigma-Aldrich, St. Louis, MO, USA). The LX-2 human 

hepatic stellate cell line was characterized and provided by Dr 

SL Friedman from Mount Sinai Medical School, NY, USA.19

Cell culture
LX-2 human hepatic stellate cells were grown in T75 size 

tissue culture flasks in Dulbecco’s modified eagle medium 

(DMEM) supplemented with 10% fetal bovine serum, 1% 

penicillin/streptomycin, and 1% L-glutamine at 37°C in a 

humidified atmosphere containing 5% CO
2
. Trypsin was 

used to re-plate cells into T25 flasks or 6-well or 24-well 

tissue culture plates for experiments. Experiments requiring 

serum-free media were conducted using DMEM supple-

mented with 1% penicillin/streptomycin, 1% L-glutamine, 

and 1% stellate cell growth serum (SteCGS) instead of 10% 

fetal bovine serum.

RnA interference
Viral particles expressing siRNA sequences against AC3, 

AC9, STAT1, and STAT3 were purchased commercially 

from Sigma-Aldrich (see Materials). Viral particles were 

independently verified for efficacy and specificity by Sigma-

Aldrich. 3 × 104 LX-2 cells were plated into 6-well tissue 

culture plates. 24 hours later, cells were treated with 8 µg 

hexadimethrine bromide per mL of medium. Viral particles 

were added immediately at suitable multiplicities of infection 

(MOI) according to manufacturer’s instructions. The follow-

ing day, medium containing viral particles was removed and 

cells were washed 1× with phospho-buffered saline (PBS) 

and incubated in fresh cDMEM. 24 hours later, medium was 

replaced with cDMEM containing 10 µg/mL puromycin for 

selection of transduced cells. Cells were grown in puromycin 

containing medium (replaced every 3–4 days) for 10 days to 

2 weeks until resistant colonies could be identified. Resistant 

colonies were expanded and used in experiments.

Protein extraction
Cells were grown in T25 flasks until 80%–90% confluent. 

Media was removed and cells were washed with PBS. Media 

was replaced with serum-free DMEM. Cytokines were 

added to each flask, and cells were incubated overnight for 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Interferon, Cytokine and Mediator Research 2010:2 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

115

IFng blocks A2AR by repressing adenylyl cyclase

18–24 hours. Following overnight incubation, CGS21680 

(final concentration 1 µM) or 1 ng/mL TGF-β1 (final 

 concentration 1) was added, and cells were incubated again. 

To measure collagen production, cells were incubated 

for 24 hours. To measure GRK2 translocation, cells were 

incubated for 10 minutes. To measure ERK1/2 phosphoryla-

tion, cells were incubated for 5 minutes. To measure STAT 

expression, cells were left untreated in complete DMEM in 

T25 flasks. Each separate experiment consisted of individual 

flasks receiving different combinations of cytokines and 

CGS21680 or TGF-β1. Controls were given DMSO or buffer 

instead of cytokines or CGS21680 or TGF-β1, as appropriate. 

Each flask resulted in a single sample. Each sample was run 

multiple times on SDS-PAGE gels and results were averaged 

to give a result for that experiment. N values in the data reflect 

repetition of each separate experiment.

To prepare whole cell lysates, cells were washed 

once with PBS and incubated on a rocker for 1 hour with 

200–300 µL cell lysis buffer plus protease inhibitors per 

T25 flask at 4°C. After the incubation, plates were scraped 

and the lysates transferred to a microcentrifuge tube on ice. 

Tubes were centrifuged at 10,000 rpm for 10 minutes at 4°C. 

Supernatants containing whole cell extract were transferred to 

a clean microcentrifuge tube on ice. Pellets were discarded. 

Protein concentration in extracts was determined by a 

standard BCA assay according to the manufacturer’s instruc-

tions. Samples were then run on an SDS-PAGE gel or frozen 

at –20°C for later use.

To prepare crude membrane fractions, cells were washed 

once with PBS and incubated with trypsin for 5 minutes. Cells 

were transferred to microcentrifuge tubes and pelleted by a 

30 second pulse in a microcentrifuge, then washed once with 

PBS and pelleted again. Cells were resuspended in 500 µL 

ice-cold PBS with protease inhibitor and left on ice. Each tube 

was sonicated 3 times at maximum level for 8–10 seconds 

each time. Cells were left on ice for 15–20 seconds in between 

each sonication. After sonication, tubes were centrifuged at 

300 × g for 10 minutes at 4°C. Supernatant was transferred 

to another ice-cold tube, and the remaining pellets were dis-

carded. To isolate membrane protein, the tubes were centri-

fuged at maximum speed for 30 minutes at 4°C. Supernatant 

containing the cytosolic fraction of the cells was removed 

and discarded, or saved by freezing at -80°C. The pellet was 

resuspended in 100 µL ice-cold PBS plus protease inhibitors 

and stored at -80°C. Protein concentrations were determined 

by a standard BCA assay according to the manufacturer’s 

instructions. Samples were then run on an SDS-PAGE gel or 

frozen at -20°C for later use.

Western blotting
Equal amounts of protein (8–40 µg/lane) were separated on a 

7.5% or 10% SDS-PAGE gel as appropriate and transferred 

to nitrocellulose membranes. Membranes were stained with 

Ponceau to confirm effective transfer, then blocked for 

2 hours rocking at room temperature in tris-buffered saline 

(TBST) containing either 3% bovine serum albumin (for 

phospho-proteins) or 5% dry milk. Blots were then incubated 

overnight rocking at 4°C with primary antibody diluted in 

blocking buffer to the manufacturer’s recommended con-

centration. Blots were washed 3–4 times with TBST and 

incubated for 2 hours rocking at room temperature with 

alkaline phosphatase or horseradish peroxidase conjugated 

secondary antibody. Blots were again washed 3–4 times with 

TBST and exposed for 5 minutes to either enhanced chemi-

fluorescence (ECF) or enhanced chemiluminescence (ECL) 

substrate. ECF exposed blots were scanned using the Storm 

860 Phosphoimager, while ECL exposed blots were imaged 

using the Gel Logic 2200 Imaging System. Band intensity 

was quantitated using Molecular Imaging or ImageQuant 

software. To screen for another protein, blots were stripped 

after imaging and re-probed.

RnA extraction
Cells were grown in T25 flasks until 80%–90% confluent. 

Media was removed and cells were washed with PBS. Media 

was replaced with serum-free DMEM. IFNγ was added to 

each flask, and cells were incubated for 4, 12, or 24 hours. 

Control cells were not incubated with IFNγ. Each separate 

experiment consisted of individual flasks receiving IFNγ (or 

buffer as control) for a different length of time. Each flask 

resulted in a single sample. Each sample was analyzed by 

realtime reverse transcription polymerase chain reaction (RT-

PCR) in duplicate or triplicate and results were averaged to 

give a result for that experiment. N values in the data reflect 

repetition of each separate experiment.

To isolate total cellular RNA, cells were washed once 

with PBS and incubated in 2 mL Trizol per T25 flask. Trizol 

was added directly to the flasks, and flasks were incubated 

at 37°C for 5 minutes. Supernatant was transferred to 

microcentrifuge tubes (2 tubes per plate, 1 mL per tube) 

and frozen at -80°C or used immediately. If frozen, samples 

were thawed and incubated for at least 5 minutes at room 

temperature to dissociate of nucleoprotein complexes. 

200 µL of chloroform was added to each tube, tubes were 

vortexed briefly and incubated at room temperature for 

3 minutes, and were then centrifuged at 12,000 × g for 

15 minutes at 4°C. Following centrifugation, the mixture 
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was separated into a lower, red organic phase and an upper, 

clear, aqueous phase. RNA remained in the aqueous phase. 

The upper, clear, aqueous phase was transferred by pipet to 

a new tube. 500 µL of isopropanol was added to the tube, 

tubes were vortexed and incubated at room temperature 

for 10 minutes, and were then centrifuged at 12,000 × g 

for 15 minutes at 4°C. Following centrifugation, the RNA 

formed a gel-like pellet on the side/bottom of the tube. 

Supernatant was removed and pellet washed with 1 mL 

of 75% ethanol by vortexing briefly and centrifuging at 

no more than 7,500 × g for 5 minutes at 4°C. Supernatant 

was again removed, and pellet air dried. RNA was redis-

solved in 8 µL of RNase-free water by pipetting, like tubes 

were combined, and RNA was incubated for 10 minutes 

at 55°C–60°C. Following incubation, RNA concentration 

was determined. RNA was stored at -80°C unless used 

immediately in reverse transcriptase reaction.

Realtime RT-PCR
cDNA was reverse transcribed from 3.0 µg mRNA in a 50 µL 

reaction containing MgCl
2
, 10X buffer, dNTPs, RNase inhibi-

tor, reverse transcriptase, and a poly(t) primer to ensure only 

mRNA was transcribed. The reaction occurred over 1 hour at 

45°C. The resultant cDNA was amplified in a spectrofluoro-

metric thermal cycler (Stratagene, Cedar Creek, TX, USA) 

using Brilliant SYBR Green QPCR Master Mix (Stratagene 

cat# 600548) according to the manufacturer’s instructions. 

mRNA levels were standardized using amplification of the 

housekeeping gene glyceraldehyde 3-phosphate dehydro-

genase (GAPDH), whose consistency was confirmed by 

amplification of the housekeeping gene β-actin. PCR primer 

sequences for adenylyl cyclase isoforms were previously 

published by Kolachala et al.20 GAPDH primer sequences 

are: CATCATCCCTGCCTCTAC (sense) and 5’ CCTGT-

TGCTGTAGCCAAAT (antisense).

To quantitate expression of all 9 adenylyl cyclase 

isoforms, mRNA was denatured at 95°C for 15 minutes, 

then amplified using 45 cycles of denaturation (95°C for 

30 seconds), annealing (60°C for 30 seconds), and exten-

sion (72°C for 1 minute). SYBR green fluorescence was 

measured at the end of each extension step, C(t) values were 

calculated for each curve, and relative expression levels quan-

titated using the following formula: fold increase = 2^[(goi 

control - hkg control) - (goi stimulated - hkg stimulated)], 

where ‘goi’ represents the gene of interest and ‘hkg’ rep-

resents the housekeeping gene GAPDH. Specificity of the 

final products was determined by melting curve analysis 

and gel electrophoresis. After amplification, a final melting 

curve was recorded by denaturating the products (95°C for 

1 minute), cooling the PCR mixture to 55°C for 30 seconds, 

and then slowly heating it to 95°C at 30 seconds. SYBR 

green fluorescence was measured continuously during the 

heating step. Products were run on a 2% agarose gel stained 

with ethidium bromide. The size of the products on the gel 

matched the calculated size.

Cyclic AMP (cAMP) quantification
Cells were plated in a 24-well tissue culture plate and treated 

according to manufacturer’s instructions for the Amersham 

cAMP Biotrak Enzymeimmunoassay System (GE Health-

care cat#RPN225). 24 hours after cells were plated, media 

was removed and cells were washed with PBS. Media was 

replaced with serum-free DMEM, cytokines were added to 

each flask, and cells were incubated overnight for 18–24 

hours. Following overnight incubation, CGS21680 (final 

concentration 1 µM) was added, and cells were incubated for 

2, 5, 10, or 20 minutes. Each separate experiment consisted 

of 4 replicate 24-well plates. Each well received a different 

combination of cytokines and CGS21680 (not all wells were 

used in each experiment). Controls were given DMSO or 

buffer instead of cytokines or CGS21680, as appropriate. 

All 4 replicates were run multiple times on SDS-PAGE 

gels, and results were averaged to give a result for that 

experiment. N values in the data reflect repetition of each 

separate experiment.

Immediately following incubation, plates were placed 

on ice. Supernatants were removed, and cells were washed 

with ice-cold PBS. Intracellular cAMP levels were deter-

mined according to the manufacturer’s instructions for the 

Amersham cAMP Biotrak Enzymeimmunoassay System 

(GE Healthcare cat#RPN225), with the following changes: 

samples were frozen after lysis and thawed before application 

to the manufacturer’s 96-well plate, and the final colormet-

ric reaction was stopped after approximately 15 minutes 

acccording to kit instructions. cAMP concentrations were 

normalized to protein content of each sample by performing 

a BCA assay with leftover samples in the manufacturer’s 

lysis buffer.

statistical analysis
Statistical analysis was performed using GraphPad Prism 

and Statmate software (GraphPad Software, Inc., San Diego, 

CA, USA). Data is presented as mean ± standard error of the 

mean where appropriate. ANOVA and t-test were used to 

determine statistical significance; differences with a P value 

under 0.05 were considered significant.
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Results
IFnγ impairs the ability of the A2AR 
specific agonist CGS21680 to induce 
collagen production in hepatic  
stellate cells
We have previously reported that the A2A receptor specific 

agonist CGS21680 induces collagen production in primary 

human hepatic stellate cells as well as the LX-2 human 

hepatic stellate cell line in a concentration-dependent 

manner.18 Since IFNγ has been shown to inhibit A2A 

receptor function in other cell lines,13 we examined the 

ability of IFNγ to inhibit A2A receptor stimulation of 

collagen production in LX-2 cells. CGS21680 increased 

collagen-1 protein production (21% ± 5% increase rela-

tive to control, P , 0.05, n = 7). The presence of TNFα 

enhanced CGS21680-mediated stimulation of collagen-1 

protein production (37% ± 18% increase relative to con-

trol, P , 0.05, n = 5) while in the presence of IFNγ the 

A2A receptor agonist did not stimulate collagen-1 protein 

production (8% ± 4% decrease relative to control, P = n.s., 

n = 7) (Figure 1A).

Since both IFNγ and TNFα affect basal collagen 

production in LX-2 cells, we determined whether the effects 

of IFNγ and TNFα on A2A receptor mediated collagen pro-

duction were specific by measuring the effect of IFNγ and 

TNFα treatment on TGF-β1 induced collagen-1 production. 

As expected, TGF-β1 increased collagen-1 production (44% 

± 3% increase relative to control, P , 0.05, n = 3). The effect 

of TGF-β1 on collagen production was unaffected by TNFα 

(45% ± 21% increase relative to control, P , 0.05, n = 5) 

and IFNγ (52% ± 22% increase relative to control, P , 0.05, 

n = 3) (Figure 1B). Thus, IFNγ specifically inhibits A2A recep-

tor mediated collagen production in LX-2 cells. Both IFNγ 

and TNFα impair basal collagen-1 production in LX-2 cells, 

consistent with previous results in the literature.21

IFnγ impairs the ability of CGS21680  
to induce eRK phosphorylation  
in hepatic stellate cells
Our laboratory recently characterized the downstream signal-

ing pathway that leads to A2A receptor mediated collagen 

production in LX-2 cells18 (Figure 2A). Canonical G-protein 
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Figure 1 IFnγ inhibits A2A receptor mediated collagen 1 production in LX-2 cells. LX-2 cells were cultured overnight in the presence or absence of IFnγ and TnFα and treated 
with the A2AR agonist CGS21680 (A) or TGF-β1 (B) for 24 hours as described in the Materials and methods section. Cellular collagen-1 content was determined by densitometric 
measurements of immunoblots of whole cell lysates and normalized to β-actin content. A) CGS21680 increased collagen-1 protein (21% ± 5% increase relative to control, P , 0.05, 
n = 7) compared with 100% baseline collagen-1 production. This increase was enhanced in the presence of TNFα (37% ± 18% increase relative to control, P , 0.05, n = 5) and 
inhibited in the presence of IFnγ (8% ± 4% decrease relative to control, P = n.s., n = 7). P-values are derived from 2-way AnOVA with Bonferroni posttest performed as post-hoc 
analysis. All instances of statistical significance (P , 0.05) are displayed in the figure. B) TgF-β1 increased collagen-1 production (44% ± 3% increase relative to control, P , 0.05, 
n = 3) by itself and in the presence of TnFα (45% ± 21% increase relative to control, P , 0.05, n = 5) and IFnγ (52% ± 22% increase relative to control, P , 0.05, n = 3). P-values 
are derived from 2-way ANOVA with Bonferroni posttest performed as post-hoc analysis. All instances of statistical significance (P , 0.05) are displayed in the figure. 
Abbreviations: IFnγ, interferon-gamma; TnFα, tumor necrosis factor alpha; A2AR, adenosine A2A receptor; TgF-β1, tumor growth factor beta 1.
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coupled receptor signaling leads to protein kinase A (PKA) 

activation and phosphorylation of extracellular signal-related 

protein kinases 1 and 2 (ERK1/2), which is required for A2A 

receptor mediated collagen-1 production. To determine if A2A 

receptor signal transduction is inhibited by IFNγ, we measured 

the ability of the A2A receptor specific agonist CGS21680 to 

induce ERK1/2 phosphorylation in the  presence and absence 

of cytokines. As expected, CGS21680 increased ERK1/2 phos-

phorylation (94% ± 26% increase relative to control, P , 0.01, 

n = 6). This 2-fold increase was transient and peaked 5 minutes 

after CGS21680 addition. CGS21680-stimulated increases 

on ERK1/2  phosphorylation were unaffected by the presence 
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Figure 2 IFnγ impairs the ability of an A2A receptor specific agonist to induce ERK phosphorylation in LX-2 cells. A) A schematic representation of the A2A receptor 
signaling pathway in LX-2 cells. B) LX-2 cells were cultured overnight in the presence or absence of IFnγ and TnFα and treated with the A2AR agonist CGS21680 for 
5 minutes as described in the Materials and methods section. Phospho-eRK content was determined by densitometric measurements of immunoblots of whole cell lysates 
and normalized to total ERK content. CGS21680 increased ERK1/2 phosphorylation (94% ± 26% increase relative to control, P , 0.01, n = 6) by itself and in the presence of 
TnFα (70% ± 36% increase relative to control, P , 0.05, n = 3) compared with baseline ERK1/2 phosphorylation. This increase was inhibited in the presence of IFNγ (30% ± 
20% increase relative to control, P = n.s. vs control and P , 0.05 vs untreated CGS21680, n = 6). P-values are derived from 2-way AnOVA with Bonferroni posttest performed 
as post-hoc analysis. All instances of statistical significance (P , 0.05) are displayed in the figure.
Abbreviations: IFnγ, interferon-gamma; TnFα, tumor necrosis factor alpha; cAMP, cyclic AMP; PKA, protein kinase A; ERK1/2, extracellular signal-related protein kinases 
1 and 2; A2AR, adenosine A2A receptor.
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of TNFα (70% ± 36% increase relative to control, P , 0.05, 

n = 3). In contrast, IFNγ impaired the ability of CGS21680 

to increase ERK1/2 phosphorylation (30% ± 20% increase 

relative to control, P = n.s. vs 100% control and P , 0.05 

vs CGS21680 no cytokine, n = 6) (Figure 2B). These results 

indicate that IFNγ inhibits A2A receptor signal transduction 

upstream of ERK1/2 phosphorylation IFNγ.

IFnγ impairs the ability of CGS21680  
to induce cAMP formation in hepatic 
stellate cells
cAMP is required for activation of PKA and is located 

upstream of ERK1/2 in the A2A receptor signal transduc-

tion pathway. We have previously demonstrated that IFNγ 

inhibits A2A receptor-mediated cAMP production in THP-1 

cells. In LX-2 cells, CGS21680 increased intracellular cAMP 

levels in a time-dependent manner, with a peak at 5 minutes 

after stimulation (48% ± 20% increase relative to control, 

n = 15). Increased cAMP levels were sustained for at least 

20 minutes. IFNγ inhibited A2A receptor-stimulated cAMP 

production increase (5% ± 21% increase relative to control, 

P , 0.05 vs CGS21680 alone, n = 11) (Figure 3).

IFnγ regulates the expression  
of adenylyl cyclase message  
in an isoform specific manner
Kolachala et al have demonstrated that IFNγ inhibits adenos-

ine A2B receptor function in human intestinal epithelial cells 

by downregulating expression of specific isoforms of adeny-

lyl cyclase.20 We used realtime RT-PCR to examine expression 

of all 9 isoforms of adenylyl cyclase in LX-2 cells. mRNA 

encoding adenylyl cyclase isoform 1 (AC1), normally associ-

ated with neuronal cells, was not expressed in LX-2 cells, and 

message for isoforms AC2, AC4, and AC8 was expressed at 

very low levels. The message for the remaining 5 adenylyl 

cyclase isoforms was expressed at much higher levels (data 

not shown). We measured the effect of IFNγ on adenylyl 

cyclase mRNA levels for the 5 highly expressed isoforms. 

mRNA levels for AC6 and AC7 did not change upon IFNγ 

treatment. mRNA levels for AC5 exhibited a transient 

increase over time upon IFNγ treatment. mRNA levels for 

AC3 (0.73 ± 0.13) and AC9 (0.80 ± 0.90) were significantly 

decreased (P , 0.05, n = 6) 24 hours after IFNγ treatment 

(Figure 4). We conclude that IFNγ downregulates expression 

of AC3 and AC9.

%
 In

cr
ea

se
 in

 in
tr

ac
el

lu
la

r 
cA

M
P

120

140

160

180

100

20

40

60

80

0
Resting 1 µm CGS, 2 m 1 µm CGS, 5 m 1 µm CGS, 10 m 1 µm CGS, 20 m

Untreated P < 0.05 for IFNγ vs
untreated over time100 U/mL IFNγ

Figure 3 IFnγ impairs the ability of an A2A receptor specific agonist to induce cAMP production in LX-2 cells. LX-2 cells were cultured overnight in the presence or absence 
of IFnγ and TnFα and treated with the A2AR agonist CGS21680 as described in the Materials and methods section. Intracellular cAMP content was determined by ELISA 
and normalized to cytosolic protein levels. Basal cAMP levels were 34 pmol/mg intracellular protein. 5 minutes treatment with CGS21680 increased intracellular cAMP levels 
(48% ± 20% increase relative to control, n = 15) and IFnγ inhibited this increase (5% ± 21% increase relative to control, P , 0.05, n = 11). P-values are derived from 2-way 
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IFNγ has no effect on the ability of forskolin, a small 

molecule activator of adenylyl cyclase, to induce cAMP 

production in LX-2 cells (data not shown). This suggests that 

AC9 rather than AC3 is required for A2A receptor signaling 

and function. AC9 is uniquely insensitive to forskolin 

activation.22 Our observation that forsoklin is unable to 

increase collagen-1 production in LX-2 cells supports a 

requirement for AC9 (data not shown). The inability of 

forskolin to increase collagen expression in fibroblasts is 

well established.32,33

Downregulation of adenylyl cyclase 
expression impairs A2A receptor 
signaling and function
We hypothesized that AC3 or AC9 is required for A2A 

receptor function. We used siRNA to reduce expression of 

these 2 isoforms as seen in the Materials and methods section. 

siRNA knockdown of AC3 decreased AC3 expression 

(0.40 ± 0.06, n = 3) but not AC9 expression (1.72 ± 0.13, 

n = 2). siRNA knockdown of AC9 decreased AC9 expression 

(0.59 ± 0.02, n = 3) but not AC3 expression (1.44 ± 0.17, 

n = 2) (Figure 5A). We then examined A2A receptor function 

in these cells. We determined the ability of siRNA to impair 

CGS21680 induced adenylyl cyclase activity by measuring 

cAMP concentration. As seen previously, the A2A receptor 

specific agonist CGS21680 increased intracellular cAMP 

levels in a time-dependent manner, with a peak at 5 minutes 

after stimulation (116% ± 46% increase relative to control, 

n = 4). The knockdown of either AC3 (13% ± 19% increase 

relative to control, P , 0.05 vs CGS21680 alone, n = 4) 

or AC9 (20% ± 19% increase relative to control, P , 0.05 

vs CGS21680 alone, n = 4) blocked CGS21680 induced 

intracellular cAMP production (Figure 5B). Similarly, 

knockdown of either AC3 (6% ± 3% decrease, n = 5) or AC9 

(7% ± 1% decrease, n = 5) abrogated CGS21680-mediated 

collagen-1 protein production in a statistically significant 

manner (P , 0.05) (Figure 5C). Thus, the knockdown of 

either AC3 or AC9 prevents signaling at A2ARs necessary 

for increased collagen production.

IFnγ regulates A2A receptor function  
in a sTAT1 dependent manner
Canonical IFNγ signal transduction is mediated by signal 

transducers and activators of transcription (STATs), a family 

of 7 transcription factors.23,24 To determine whether STATs 

mediate IFNγ regulation of A2A receptor function, we used 

siRNA to knock down STAT1 and STAT3 as seen in the 

Materials and methods section (Figure 6A). Both STAT1 and 
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STAT3 are phosphorylated by IFNγ in LX-2 cells, while the 

other isoforms are unaffected (data not shown). We previously 

demonstrated that ERK1/2 phosphorylation is required for 

A2A receptor mediated collagen-1 production.18 We measured 

A2A receptor mediated ERK1/2 phosphorylation in STAT 

knockdown cells in the presence and absence of IFNγ.

CGS21680 increased ERK phosphorylation (32% ± 8% 

increase relative to control, P , 0.05, n = 3) and the pres-

ence of IFNγ again prevented A2A receptor mediated ERK 

phosphorylation (13% ± 5% increase relative to control, 

P = n.s., n = 3). In LX-2 cells with impaired STAT3 

 expression, CGS21680 increased ERK phosphorylation to 

levels similar to wild type cells (44% ± 19% increase rela-

tive to control, P , 0.01, n = 3) and the presence of IFNγ 

prevented A2A receptor mediated ERK phosphorylation 

(19% ± 18% increase relative to control, P . 0.05, n = 3). 

In LX-2 cells with impaired STAT1 expression, CGS21680 

increased ERK phosphorylation similar to wild type cells 

(46% ± 20% increase relative to control, P , 0.01, n = 3), 

but STAT1 knockdown abrogated IFNγ mediated inhibi-

tion of A2A receptor mediated ERK phosphorylation 

(44% ± 20% increase relative to control, P , 0.01, n = 3) 
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(Figures 6B and 6C). We conclude that STAT1 expression 

is necessary for IFNγ mediated regulation of A2A receptor 

function. The inability of either siRNA to affect A2A receptor 

signal transduction controls for non-specific siRNA effects 

on A2A receptor signaling and function.

Discussion
We report here that IFNγ inhibits the ability of the A2A recep-

tor specific agonist CGS21680 to induce collagen production, 

ERK phosphorylation, and cAMP production in LX-2 cells. 

IFNγ impairs adenylyl cyclase expression, and adenylyl 

cyclase transduces the A2A receptor signal for increased colla-

gen production. Moreover, we have found that the JAK/STAT 

pathway mediates the effect of IFNγ on A2A receptor function. 

We conclude that IFNγ inhibits the function of the A2AR by 

downregulating the expression of AC3 and AC9 in a STAT1 

mediated fashion (Figure 7). While both IFNγ and TNFα 

decrease basal collagen-1 protein levels in LX-2 cells, they 

have opposite effects on hepatic fibrosis in vivo. Increased 

TNFα levels are associated with increased hepatic fibrosis in 

human and animal models.21 This suggests that the clinically 

relevant effect of IFNγ on hepatic fibrosis is one it does not 

share with TNFα, such as an ability to inhibit A2A receptor 

function. In vivo protection from hepatic fibrosis afforded by 

IFNγ may therefore be due, at least in part, to inhibition of 

A2A receptor mediated collagen production.
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Our data suggest a role for multiple adenylyl cyclase 

isoforms in A2A receptor signaling. Cooper and Crossthwaite 

summarize recent evidence demonstrating that oligomeriza-

tion is a key feature in adenylyl cyclase function. Increases 

in cAMP levels are tightly localized to membrane micro-

domains whose organization is determined by the ability of 

molecules including adenylyl cyclase to form higher-order 

structures.25 Oligomerization is necessary to recruit adeny-

lyl cyclase to multimeric signaling assemblies required for 

efficient GPCR signal transduction.26 We speculate that AC3 

and AC9 oligomerization is required for A2A receptor signal 

transduction. Both isoforms may be necessary to localize 

adenylyl cyclase to the A2A signaling module. AC3 and 

A2A are observed in membrane microdomains, while AC9 

is not. Alternatively, oligomerization may increase adenylyl 

cyclase activity to levels needed to achieve sufficiently high 

levels of cAMP for downstream signaling. Adenylyl cyclase 

oligomerization in the presence of Gαs was demonstrated to 

enhance enzymatic function.27 To the best of our knowledge, 

this is the first suggestion that these two particular adenylyl 

cyclase isoforms may oligomerize in vivo.

Further study examining the localization of the molecules 

involved in A2A receptor signal transduction is warranted. We 

are particularly interested in the co-localization of AC3 and 

AC9, as well as changes in localization of both isoforms upon 

AC3 and AC9 knockdown. Knockdown of adenylyl cyclase 

may also disrupt the function of other A2A receptor signaling 

mediators. Expression of different GPCR  signaling molecules 

are all linked. For example, siRNA mediated knockdown of Gβ 

protein alters Gα and adenylyl cyclase protein expression.22 

Adenylyl cyclase isoforms also cross-regulate each other. For 

example, AC6 can regulate Ca2+ influx and Ca2+ influx AC1, 

AC3, and AC8 while inhibiting AC5 and AC6.25,28

It remains possible that IFNγ regulates adenylyl cyclase 

activity in addition to expression. Adenylyl cyclase activity is 

regulated post-transcriptionally by molecules such as regulator 

of G protein signaling (RGS), PKA, PKC, and calmodulin 

kinase, which may be affected by IFNγ treatment.22 IFNγ could 

also increase the activity or expression of phosphodiesterases 

(PDEs). PDEs regulate adenylyl cyclase function by catalyz-

ing the hydrolysis of cAMP into AMP.29,30 Increased PDE 

activity would inhibit A2A receptor signaling by preventing 

cAMP from activation PKA and Epac. PDEs are unlikely to 

mediate the effect of IFNγ on A2A receptor function, how-

ever, since IFNγ was shown to downregulate expression of 

multiple PDEs, as well as RGS2, in pancreatic stellate cells.31 

Decreased expression of regulatory molecules such as PDEs 

would increase A2A function rather than inhibit it.

Previous studies in our lab have demonstrated the ability 

of IFNγ to regulate A2A receptor function in THP-1 human 
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Figure 7 Proposed model for the mechanism by which IFnγ impairs A2A receptor signaling and function. 
Abbreviations: IFnγ, interferon-gamma; A2AR, adenosine A2A receptor; sTAT1, signal transducer and activator of transcription 1; cAMP, cyclic AMP; PKA, protein 
kinase A; ERK1/2, extracellular signal-related protein kinases 1 and 2.
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monocyte cell line.13 It remains to be determined whether 

IFNγ also downregulates adenylyl cyclase expression in these 

cells. It is interesting that while IFNγ has an opposite effect 

from TNFα on A2A receptor function in THP-1 cells, it has a 

completely different mechanism of action. Previous research 

in our laboratory has demonstrated that TNFα enhances A2A 

receptor activity by impairing GRK2 and β-arrestin medi-

ated receptor desensitization in the THP-1 human monocyte 

cell line.14 Treatment with CGS21680 increased membrane 

bound GRK2 in LX-2 cells, but the presence of IFNγ had no 

effect on CGS21680 induced GRK2 translocation (data not 

shown). Consistent with observations in THP-1 cells, TNFα 

blocked A2A receptor-mediated GRK2 translocation to the 

cell membrane (data not shown). Unlike TNFα, IFNγ has no 

effect on GRK2 translocation and A2A receptor desensiti-

zation. While TNFα impairs A2A receptor desensitization, 

IFNγ has no effect on desensitization, but directly impairs 

the A2A receptor signal transduction cascade.

We have shown that the effect of IFNγ on A2A recep-

tor function is mediated by STAT1, but it remains unclear 

whether or not STAT1 directly suppresses adenylyl cyclase 

expression. Sequence analysis of adenylyl cyclase promoter 

regions failed to identify a consensus binding site for STAT1, 

supporting the hypothesis that STAT1 regulates another 

transcription factor with the ability to regulate adenylyl 

cyclase expression. Further analysis is necessary to deter-

mine putative regulatory factor binding sites in the adenylyl 

cyclase promoter region in order to identify this unknown 

intermediary.

Studies in patients with hepatitis B32 and rats with 

CCl4- induced hepatic fibrosis33,34 have shown that IFNγ 

exerts a protective effect on liver fibrosis in vivo, but have not 

considered a potential role for the adenosine receptor.32,35 IFNγ 

prevents activation of hepatic stellate cells both in vitro36 and 

in vivo.37 However, our results demonstrate a novel role for 

IFNγ in regulating hepatic stellate cell activity post- activation. 

This may prove clinically relevant, as the components of the 

adenosine receptor signaling pathway provide new targets for 

drug development to treat hepatic fibrosis.38 Furthermore, a 

role for adenosine receptors in fibrosis is not limited to the 

liver. Our lab has demonstrated a role for the A2A receptor 

in skin fibrosis39 and other adenosine receptors are relevant 

to the progression of cardiac40 and pulmonary fibrosis.7 It is 

important to explore the ability of IFNγ to regulate adenosine 

receptor function in these other tissues. Activation of the IFNγ 

receptor or its signaling pathway could be used to treat fibrosis 

in these tissues as well.

We have identified a novel mechanism for regulation 

of adenosine receptor function by IFNγ in the context of 

hepatic fibrosis. Ultimately, our results identify adenylyl 

cyclase activity and expression as a key point of regulation 

for adenosine receptor function and a potentially valuable 

therapeutic target for disease models involving adenosine 

receptor signaling, such as hepatic fibrosis.
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