
OR I G I N A L R E S E A R C H

A Plant-Derived Antioxidant Supplement Prevents
the Loss of Retinal Ganglion Cells in the Retinas
of NMDA-Injured Mice
Shigeto Maekawa1, Kota Sato1,2, Taiki Kokubun1, Noriko Himori 1,3, Takeshi Yabana1, Michiko Ohno-Oishi1,
Ge Shi1, Kazuko Omodaka1,4, Toru Nakazawa1,2,4–6

1Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; 2Department of Advanced Ophthalmic
Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; 3Department of Aging Vision Healthcare, Tohoku University
Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan; 4Department of Ophthalmic Imaging and Information Analytics, Tohoku University
Graduate School of Medicine, Sendai, Miyagi, Japan; 5Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of
Medicine, Sendai, Miyagi, Japan; 6Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan

Correspondence: Toru Nakazawa, Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aoba, Sendai, Miyagi,
980-8574, Japan, Tel +81-22-717-7294, Fax +81-22-717-7298, Email ntoru@oph.med.tohoku.ac.jp

Purpose: To investigate the effect of plant-derived antioxidant compounds, identified with primary culture screening, on retinal
ganglion cell (RGC) survival in mice under excitotoxic conditions. Additionally, to determine the effect of these compounds on the
involvement of calpain inactivation.
Materials and Methods: Plant-derived antioxidant compounds including hesperidin, crocetin, and Tamarindus indica were admini-
strated orally to C57BL/6J mice. The levels of lipid oxidation and calpain activation were assessed with a TBARS assay and western
blotting. RGC survival was evaluated with a TUNEL assay and RBPMS immunostaining after intravitreal injection of NMDA.
Results: Plant-derived antioxidant compounds significantly ameliorated the increase in the level of MDA in the retinas after NMDA
injury. Cleaved α-fodrin fragments were detected in the NMDA-injured retinas, and these fragments were significantly lower in mice
that received the plant-derived antioxidant compounds. The plant-derived antioxidants also ameliorated increases in TUNEL-positive
cells and RGC death after NMDA injection.
Conclusion: These results indicate that oral administration of plant-derived antioxidant compounds such as hesperidin, crocetin, and
Tamarindus indica suppressed RGC death. This oral supplementation decreased lipid oxidation and excessive calpain activation in
NMDA-injured retinas. Thus, our newly developed antioxidant supplement has a potential role in neuroprotective treatment for retinal
diseases, such as glaucoma.
Keywords: plant-derived antioxidant compounds, oxidative stress, retinal ganglion cells, glaucoma

Introduction
Glaucoma is an optic neuropathy that is a common cause of visual impairment and blindness worldwide.1 Glaucoma is
characterized by the progressive death of retinal ganglion cell (RGC) axons and the irreversible loss of vision.2 It is well
known that elevated intraocular pressure (IOP) is the most significant risk factor for glaucoma. However, in some patients the
speed of progression does not depend on IOP, suggesting that IOP-independent factors also influence glaucoma progression.3,4

It was previously reported that oxidative stress-associated compounds increase in the eyes and bodily fluids, such as the
peripheral blood, urine, and aqueous humor of human glaucoma patients.5–8 Studies of various retinal-injury animal models
have shown that oxidative stress is associated with RGC death in mice,9–12 and that treatment to decrease oxidative stress
prevents RGC death after optic nerve injury.13,14 These reports show that oxidative stress plays a significant role in RGC death,
and suggest that antioxidant therapy may be a promising treatment approach.

Oxidative stress is an important factor not only in glaucoma, but also in other neurodegenerative diseases, including
Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis.15 In the retina, oxidative stress is believed to
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be an important risk factor for age-related macular degeneration (ARMD) and diabetic retinopathy (DR).16–18 Therefore,
inhibiting oxidative stress has potential as a neuroprotective treatment in all these diseases, not only glaucoma. Past
studies have found that supplementation with antioxidants has neuroprotective effects. For example, a landmark study,
the Age-Related Eye Disease Study (AREDS), showed that antioxidant supplements had a beneficial effect in these
diseases and could slow progression.

Our previous work demonstrated that several plant-derived compounds enhanced cell viability in retinal primary
cultures under oxidative stress. In particular, hesperidin, a plant-derived bioflavonoid, suppressed oxidative stress and
excessive calpain activation, preventing RGC death after N-methyl-D-aspartate (NMDA) injury in vivo. In the current
study, we investigate the neuroprotective effect of plant-derived compounds that we identified through retinal primary
culture screening.19

Materials and Methods
Animals
Male, 8–12-week-old C57BL/6J mice (SLC Co., Shizuoka, Japan) were used in this study. The mice were treated
according to the principles presented in the guidelines of the Declaration of Helsinki and its guiding principles in the care
and use of animals. The Ethics Committee for Animal Experiments at Tohoku University Graduate School of Medicine
approved all experimental procedures, in accord with the Association for Research in Vision and Ophthalmology
(approval #2017-229).

NMDA-Induced Retinal Injury
NMDA injury in the animals was induced as described in previous publications.19,20 Briefly, a 15 mM solution of NMDA
(Sigma-Aldrich, St. Louis, MO, USA) in phosphate-buffered saline (PBS) was injected intravitreally (2 µL/eye). Animals
were excluded if they had lens injuries or vitreous hemorrhage. Three mice in total were excluded from the experiments
due to lens injury or vitreous hemorrhage. Anesthesia was induced with 10% pentobarbital in PBS (0.77 mg/kg).

Oral Supplementation
In a previous study,19 we reported 12 candidate neuroprotective compounds. Based on these results, we developed a
supplement containing three of these candidate compounds: hesperidin, crocetin, and Tamarindus indica. Low-dose and
high-dose versions of the supplement were prepared, from Wakamoto Pharmaceutical Co., Ltd, with total concentrations
of 16 mg/kg and 160 mg/kg, respectively, in sterilized PBS (the composition in Table 1). The mice received supple-
mentation with either a vehicle control (PBS) or one of the supplements for one week orally via gavage. Intravitreal
injection of NMDA was then performed, and three hours later, the mice received a final dose of the supplement.

2-Thiobarbituric Acid Reactive Substances (TBARS) Assay
To determine lipid peroxidation as an indirect marker of oxidative stress, we measured malondialdehyde (MDA) in
retinas extracted from the mice 6 hours after the intravitreal injection of NMDA, and performed a TBARS assay, as
described previously.19,21 In brief, a retinal homogenate containing 0.5 mM butylated hydroxytoluene was incubated with

Table 1 The Composition of the Oral Supplement. The Units are All in mg. PBS Was Used as
Vehicle, and the Mice of Control Group Were Taken Same Volume of PBS

Structual Component 0.4 mg/ 200 µL 4 mg/ 200 µL

Hesperidin 0.02 0.2
Crocetin 0.004 0.04

Tamarindus indica 0.02 0.2

Reduced maltose starch syrup 0.272 2.72
Partly pregelatinized starch 0.08 0.8

Stearic acid calcium 0.004 0.04
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a reaction mixture (0.81% SDS, 0.36% thiobarbituric acid, and 9% acetic acid). After heating and centrifugation, the
supernatant was collected and its fluorescence was measured at 530 nm excitation and 590 nm emission with a
fluorescence microplate reader (SpectraMax Gemini; Molecular Devices LLC, Sunnyvale, CA). The results were
normalized with protein concentration, which was measured with the bicinchoninic acid protein (BCA) assay kit
(Thermo Fisher Scientific, MA, USA).

Immunoblotting
Retinal protein extraction, SDS-PAGE and an immunoblot analysis were performed as described previously.22 Briefly,
membranes were incubated in a blocking buffer containing rabbit anti-α-fodrin antibody (Abcam 1:2000) at room
temperature for 1 h. The membranes were then incubated with HRP-conjugated anti-rabbit IgG (dilution 1:5000;
Sigma), immunoreactive bands were developed with ECL prime (GE Healthcare, Life Sciences) and the bands were
examined with ChemiDoc XRS+ (Bio-rad). As an internal control, membranes were incubated with rabbit anti-β-actin
antibody (dilution 1:1000; Sigma) at 4° C overnight. The density of the immunoreactive bands was then determined with
a digital scanner and Image J software.

Cell Counting with a TUNEL Assay
Apoptotic cells were identified with TdT-mediated dUTP nick end-labeling (TUNEL) as previously described.23 Briefly,
24 hrs after NMDA injection, the retinas were fixed, cryoprotected, and mounted onto slides. After washes with PBS, the
sections were incubated with TdT enzyme. Then, the sections were incubated with rhodamine-conjugated anti-digox-
igenin antibody. Slides containing the sections were shielded with Vectashield mounting medium with DAPI (Vector
Laboratories). Photomicrographs of whole retinal sections were taken with a microscope (BZ-9000; Keyence). In detail,
we took pictures of four sections from each eye and chose one section that passed through the optic nerve while keeping
the retinal structure. Cell counting of TUNEL-positive cells in the inner nuclear layer (INL) was then performed. The
number of immunopositive cells was normalized and expressed as the average for each 1-mm length as our previous
method.20

Immunohistochemistry and Cell Counting
To identify RGCs, we used an antibody-recognizing RNA-binding protein with multiple splicing (RBPMS), which is a
member of the RNA recognition motif family of RNA-binding proteins and is known as a selective marker of retinal
ganglion cells.24,25 Immunohistochemical analysis was performed as previously described.19 Cryosections were made
and blocked with blocking buffer (10% donkey serum in Tw-PBS) at room temperature for 1 h. The sections were then
incubated with a primary antibody against RBPMS (Abcam, 1:200) at 4° C overnight. The sections were washed with
Tw-PBS and incubated with Alexa Fluor 488 conjugated goat anti-rabbit IgG antibody (Invitrogen, 1:500) in blocking
buffer at room temperature for 1 h. The sections were mounted on Vectashield mounting media with DAPI (Vector
Laboratories, Burlingame, CA) and photographs of whole retinal sections were taken with a microscope (BZ-9000;
Keyence). Cell counting of RPBMS-positive RGCs in the ganglion cell layer (GCL) was performed in whole retinal
sections. The number of immunopositive cells was normalized and expressed as the average for each 1-mm length.

Statistical Analysis
All statistical analyses used JMP Pro 12 software for Windows (SAS Institute Inc.). All continuous variables were
expressed as means ± standard deviation. Comparisons used a one-way ANOVA followed by the Student’s t-test or
Dunnett’s test, with Bonferroni correction for multiple comparisons. P < 0.05 was considered statistically significant (*).

Results
Oral Supplementation Attenuated NMDA-Induced Lipid Peroxidation in the Retina
To determine whether our newly developed antioxidant supplement could ameliorate NMDA-induced oxidative stress,
we performed TBARS assays of retinas extracted from experimental and control mice that had undergone the intravitreal
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administration of NMDA after receiving a diet including or not including our oral supplement. The TBARS assay
allowed us to quantify the amount of MDA in the retinas. We found that the NMDA-injured retinas that received the
high- or low-dose supplemented diet showed a lower level of MDA than the controls (controls: 1.26 ± 0.26 nmol/mg
protein, low-dose supplement: 0.02 ± 0.03 nmol/mg protein, and high-dose supplement: 0.26 ± 0.21 nmol/mg protein;
Figure 1). Thus, oral supplementation attenuated NMDA-induced oxidative stress.

Oral Supplementation Inhibited Calpain Activation After NMDA Injury in the Retina
Previous studies have shown that RGC death after NMDA injury results from excess calpain activation and oxidative
stress, and that the intravitreous injection of hesperidin can suppress these effects.19 To determine whether oral
supplementation could also suppress excess calpain activation, we used an immunoblot analysis to measure the
fragmentation of α-fodrin, an endogenous substrate of calpain, in the retinas of NMDA-injured mice that received a
low- or high-dose supplement or a non-supplemented diet. We found that 6 hours after NMDA injection, the level of
cleaved α-fodrin (both the 145 kDa and 150 kDa fragments) was not significantly lower in the animals that received the
low-dose supplement than in those that received the non-supplemented diet, but was about 20% lower in the animals that
received the high-dose supplement (Figure 2A, and B). These findings show that oral supplementation contributed to the
suppression of calpain activation after NMDA injury in the mouse retinas.

Oral Supplementation Prevented the Loss of RBPMS-Positive Cells After NMDA
Treatment in the Retina
To determine whether oral supplementation prevented apoptosis after NMDA injury in the retina, we performed a
TUNEL assay on retinal sections taken from NMDA-injured mice that received the supplemented diets. We found that 24
hours after NMDA injury, the number of TUNEL-positive cells in the GCL layer was higher in the non-supplemented
diet group than the other groups (non-supplemented group: 46.2 ± 5.2 cells/mm, low-dose supplement group: 33.6 ± 4.2

Figure 1 Oral supplementation reduced lipid peroxidation after NMDA injury. The amount of MDA in the retina was evaluated with a TBARS assay 6 hours after the
intravitreal injection of NMDA without supplementation or with a low- or high-dose supplement (16 mg/kg, 160 mg/kg). The average amount of MDA was calculated and is
shown per mg of retinal protein (each group: n = 6). Data represent mean ± SD. ***p < 0.001.
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cells/mm, high-dose supplement group: 26.1 ± 5.4 cells/mm). Thus, the increase in TUNEL-positive cells after NMDA
injury was attenuated in animals that received the supplemented diet (Figure 3A and B).

To further evaluate the survival of the RGCs, we performed RBPMS immunostaining. The number of RBPMS-
positive RGCs was lower in the non-supplemented diet group and low-dose supplement group than the high-dose
supplement group (10.7 ± 3.4, 12.2 ± 2.3, and 15.6 ± 4.0 cells/mm, respectively) (Figure 4A and B). This finding
suggests that oral supplementation prevented RGC death after NMDA-induced retinal injury.

Discussion
In the present study, we show that NMDA-induced lipid peroxidation and the number of TUNEL-positive cells in the
retina decreased in mice that received a low-dose or high-dose oral supplement containing three plant-derived com-
pounds with a strong antioxidant effect: hesperidin, crocetin, and Tamarindus indica. Furthermore, animals that received
a high dose of the supplement also showed an increase in the number of RBPMS-positive cells. These results suggest that
our novel oral supplement was effective in suppressing cell death in the retina of mice under conditions of experimentally
induced high oxidative stress.

We found that lowering lipid peroxide in retinal cells with our supplement was associated with a neuroprotective
effect in these cells. This reinforces other recent studies of the role of oxidative stress in RGC damage, which have shown

Figure 2 Oral supplementation reduced the cleavage of α-fodrin in the retina after NMDA injury. (A) Immunoblot analysis of α-fodrin in retinas without supplementation or
with a low- or high-dose supplement 6 hours after NMDA injury. Representative immunoreaction image with anti-α-fodrin showing intact α-fodrin (280 kDa) and calpain-
cleaved fragmented α-fodrin (145 and 150 kDa). β-actin was used as an internal control. (B) The relative density of the cleaved-fodrin immunoreactive band. Relative density
was based on the cleaved-fodrin immunoreactive band 6 hours after NMDA injection. Data represent mean ± SD (each group: n = 6). *p <0.05.
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that oxidative stress-associated damage causes RGC death,26 and is associated with RGC death in mice that were
subjected to IOP-dependent retinal injury,27 excitotoxicity-induced retinal injury,10 and axonal degeneration.11 Human
trials have also suggested that oxidative stress plays a role in glaucoma pathogenesis. For example, relationships have
been observed between the level of oxidative DNA damage, IOP increases, and the severity of visual field defects in
glaucoma patients.28 Systemic levels of oxidative stress, represented by skin autofluorescence (SAF), have been shown to
be associated with mean deviation in patients with open-angle glaucoma.29 Systemic oxidative stress is also associated
with glaucomatous damage in relatively young male patients.30 These results suggest that antioxidants should have a
neuroprotective effect. Indeed, in mice with ocular hypertension, Tempol, a multifunctional antioxidant, had anti-
inflammatory effects in the retina and optic nerve.31 Additionally, coenzyme Q10 has been shown to inhibit oxidative
stress and confer neuroprotection in DBA/2J mice.32 Human trials have shown an association between glaucoma risk and
a low intake of green vegetables,33 and extract of Ginkgo biloba, a nitric oxide scavenger, has a neuroprotective effect in
some glaucoma patients.34 Therefore, many previous reports suggest that antioxidants may have potential as a therapeutic
treatment for glaucoma. Our current study also demonstrates that oral supplementation with antioxidants can reduce

Figure 3 Decrease in TUNEL-positive cells after NMDA injury and supplementation. (A) Representative overlay photographs of retinal sections in mice with or without
supplementation 24 hrs after NMDA injection. Red: TUNEL assay; blue: DAPI nuclear staining. Scale bar: 100 µm. (B) Histograms showing the TUNEL-positive cell count in
the GCL of mice (non-supplementation group: n = 7, other groups: n = 8). Data represent mean ± SD, **P < 0.01, ***P < 0.001.
Abbreviations: GCL, ganglion cell layer; INL, inner nuclear layer.
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retinal lipid oxidation and prevent retinal apoptotic cell death, so we consider that our supplement may also have
potential as a therapeutic drug in clinical practice.

In the present study, we found that a reduction in RBPMS-positive cells and excessive calpain activation were not
suppressed by a low-dose antioxidant supplement, but were suppressed by a high-dose supplement. Thus, for RGCs, the
neuroprotective effect of the high-dose supplement might have acted by suppressing the activation of calpain. Calpain is
a member of the Ca2+-activated cysteine protease family, and calpain activation increases the level of intracellular
calcium via the Ca2+-gated ion channels. Calpain is associated with fundamental cellular events, including cell motility,
differentiation, proliferation, and apoptosis.35 Previous studies have demonstrated that the overactivation of calpain
occurs in RGC death.36–40 Therefore, inhibiting calpain overactivation might contribute to protecting the RGCs. In the
current study, a low dose of the supplement appeared to produce a greater antioxidant effect than a high dose, but only
the high dose induced a protective effect in the RGCs. This finding suggests that antioxidant activity is not the main
neuroprotective mechanism. One possibility is that inflammation and endoplasmic reticulum (ER) stress may be
involved. In our past study, we found that anti-inflammation and ER-stress blockade had a synergistic neuroprotective

Figure 4 Increase in RBPMS-positive cells after NMDA injury and supplementation. (A) Representative images of RBPMS-positive RGCs 24 hours after the intravitreal
injection of NMDA without supplementation or with a low- or high-dose supplement. GCL, ganglion cell layer; INL, inner nuclear layer. Scale bar: 100 µm. (B) Histogram
showing the average number of RBPMS-positive cells in each group. Data represent mean ± SD (PBS, n = 8; low-dose supplement, n = 6; high-dose supplement, n = 8). *p
<0.05.
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effect against NMDA injury in mice.20 Hesperidin suppressed the expression of inflammatory cytokines, such as TNFα,
IL-1b, and IL-6, and MCP-1 after NMDA-induced excitotoxicity in the retinas of mice.20 Crocetin also suppressed ER-
stress related proteins and prevented retinal cell damage.41 These studies suggest that our antioxidant supplement may
also have a neuroprotective effect that acts via anti-neuroinflammatory and anti-ER stress signaling. In addition, recent
studies have demonstrated that NMDA-induced injury is associated with nitrosative stress42 and that hesperidin can
ameliorate aluminum-induced neurotoxicity by suppressing nitrosative stress.43 This neuroprotective mechanism may
also have contributed to the effects we observed with our supplement treatment. Moreover, hesperidin shows an affinity
for the NMDA receptor and prevents pentylenetetrazole-induced convulsions.44 Citrus aurantium extracts, including
hesperidin, reduce glutamate binding with NMDA receptors.45 These findings suggest that hesperidin acts as an
antagonist to the NMDA receptors and directly blocks the downstream signal. These neuroprotective mechanisms may
also have contributed to RGC protection in our model.

Past studies have shown that the number of RGCs and amacrine cells declines in the ganglion cell layer after NMDA
injury.46 Here, we chose to examine the effects of oral supplementation with three compounds (hesperidin, crocetin, and
Tamarindus indica) that have been found to improve cell viability in retinal cells in vitro.19 Each of these compounds has
been reported to have distinct pharmacological activities. First, hesperidin acts as an antioxidant,47 and has been shown to
lower intracellular calcium (II) and reduce ROS level.48 Our previous work also showed that intravitreal injection of
hesperidin attenuated lipid peroxidation after NMDA injury.19 Second, crocetin has been shown to possess the pharma-
cological action of countering oxidative stress by directly scavenging ROS,49 and can suppress atherosclerosis.50 Finally,
Tamarindus indica has also been reported to have antioxidant potential, and to enhance antioxidant enzyme activities in
HepG2 cells.51 Thus, past studies suggest that each compound acts as an antioxidant via different pathways. In the
current study, we only investigated the effect of supplementation against oxidative stress by measuring MDA, and
obtained results that we have previously shown for hesperidin alone.19 Determining if the three compounds in our new
supplement have a synergistic neuroprotective effect will require further experiments.

In conclusion, the results of this study indicate that our newly developed oral supplement can prevent the death of
retinal cells, including the RGCs, after the induction of excitotoxicity with NMDA in mice. We obtained evidence that
the mechanism of this protective effect involves the suppression of ROS generation and the inhibition of calpain
activation. Excitotoxic damage is believed to be one of the causes of glaucomatous neuropathy. In fact, elevated
glutamate levels have been found in the vitreous body of eyes with glaucoma in humans and monkeys.52 Moreover,
glutamate metabolism is involved with several ocular pathologies, such as diabetic retinopathy.53 Recently, we performed
a clinical study that revealed that an antioxidant supplement including hesperidin, crocetin, and Tamarindus indica
improved antioxidant levels in the blood of glaucoma patients with high oxidative stress.54 Therefore, dietary supple-
mentation with plant containing hesperidin, crocetin, or Tamarindus indica has potential as a new therapeutic approach to
protect against retinal damage associated with excitotoxic injury in diseases such as glaucoma and diabetic retinopathy.
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