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Purpose: Changes in facial appearance are affected by various intrinsic and extrinsic factors, which vary from person to person.
Therefore, each person needs to determine their skin condition accurately to care for their skin accordingly. Recently, genetic
identification by skin-related phenotypes has become possible using genome-wide association studies (GWAS) and machine-
learning algorithms. However, because most GWAS have focused on populations with American or European skin pigmentation,
large-scale GWAS are needed for Asian populations. This study aimed to evaluate the correlation of facial phenotypes with candidate
single-nucleotide polymorphisms (SNPs) to predict phenotype from genotype using machine learning.
Materials and Methods: A total of 749 Korean women aged 30–50 years were enrolled in this study and evaluated for five facial
phenotypes (melanin, gloss, hydration, wrinkle, and elasticity). To find highly related SNPs with each phenotype, GWAS analysis was
used. In addition, phenotype prediction was performed using three machine-learning algorithms (linear, ridge, and linear support
vector regressions) using five-fold cross-validation.
Results: Using GWAS analysis, we found 46 novel highly associated SNPs (p < 1×10−05): 3, 20, 12, 6, and 5 SNPs for melanin, gloss,
hydration, wrinkle, and elasticity, respectively. On comparing the performance of each model based on phenotypes using five-fold
cross-validation, the ridge regression model showed the highest accuracy (r2 = 0.6422–0.7266) in all skin traits. Therefore, the optimal
solution for personal skin diagnosis using GWAS was with the ridge regression model.
Conclusion: The proposed facial phenotype prediction model in this study provided the optimal solution for accurately predicting the
skin condition of an individual by identifying genotype information of target characteristics and machine-learning methods. This
model has potential utility for the development of customized cosmetics.
Keywords: customized cosmetics, single-nucleotide polymorphism, genome-wide association study, machine-learning algorithm,
microarray

Introduction
The skin of Korean women is characterized by decreased moisture, elasticity, and skin gloss, with increased wrinkle depth and
hyperpigmentation spots due to aging and external factors.1 Skin aging and changes are caused by a combination of intrinsic and
extrinsic factors, which include increases in skin aging genes, lifestyle (eg, sleep restrictions and fatigue), and environmental
exposure (eg, seasonal changes, airborne pollutants, and ultraviolet [UV] light). More recently, alongside resident skin micro-
biome diversity, skin irritation and changes from prolonged use of face masks (Korea Filter 94 mask) because of coronavirus
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disease 2019 (COVID-19) have emerged as aging factors.2–11 Because of individual differences in degree of aging and skin
condition, there have been increases in the development of personalized cosmetic technology, such as three-dimensional
parametric facial masks and skin diagnosis methods.12 The skin diagnosis methods for customized cosmetics involve lifestyle
questionnaires, clinical evaluations using noninvasive devices, self-diagnosis equipment that converges technology and artificial
intelligence (AI), and direct-to-customer genetic tests. Of these, skin condition and degree of aging of an individual can only be
predicted using the following three methods: individual genetic analysis, lifestyle questionnaire, and the AI machine-learning
algorithm.

Potential causative genes for specific skin-related phenotypes have been identified using genome-wide association
studies (GWAS) and machine-learning algorithms.13–15 There are millions of single-nucleotide polymorphisms (SNPs) in
each human genome.16 GWAS identify SNPs in a population that mark genomic regions that are strongly associated with
several complex phenotypes.17 These genomic regions must contain the variant that is causally associated with the
phenotype; however, the SNP that is identified by the GWAS is not necessarily directly causal. Therefore, most SNPs are
located in noncoding regions and, thus, are indirectly involved in their phenotype association.18

In several GWAS on skin phenotypes, widely known genes, such as ASIP, MC1R, and TYR, have been shown to be involved
with pigmentation traits, such as hyperpigmentation spots and skin color.19–22 In a recent study, novel genomic loci were shown to
be related to facial pigmented spots in a Korean population.23 However, most large-scale GWAS have been conducted in
individuals with European ancestry, and there are few genetic-based studies that have investigated diverse skin phenotypes,
especially Korean skin phenotypes.

Genotype imputation using haplotype information from a genotyped reference sample from a dense genotype array or
sequencing infers missing genotypes. This strategy is used because throughout the human genome, there is a correlation
structure in the genetic variation of different loci, which is called linkage disequilibrium (LD). The use of this approach
can improve GWAS. Reducing the number of missing genotypes can improve the statistical power to detect associations
and increase the overall number and density of genomic variants available for association testing.24

Before applying machine learning, data preprocessing is an essential component of many classification and regression
models. Appropriate feature selection during the preprocessing process can improve the performance of classification or
regression problems with low time complexity.25

Machine-learning approaches adopt sets of complex statistical and computational algorithms to make predictions by
mathematically mapping complex associations between risk SNPs and phenotypes26 and can be supervised or unsupervised.27

Although the utility of unsupervised machine-learning methods for nongenetic data in phenotype predictions has been
demonstrated,28 our focus was on supervised modeling informed by SNP data. Supervised machine-learning phenotype
prediction models are generated by training preset learning algorithms to map relationships between individual sample genotype
data and the associated phenotype. Optimal predictive power for the target phenotype is achieved by mapping the pattern of
selected features (variables) within the training genotype data.29 At the end of the training stage, models with the maximum
predictive power for the training dataset are selected for validation.30 The validation stage is accomplished by evaluating the
algorithm on an independent dataset. Cross-validation is a commonly used procedure for validatingmodel performance using the
original dataset.We performed five-fold cross-validation. Themethod divides the data into five sets, each of which is analyzed as
a test set, and the data except for the test set are used as a training set to evaluate the model. However, external validation using an
independent dataset is required to confirm the predictive power of a machine-learning model.

The identification of significant genotype–phenotype associations is essential for developing an effective model. The
present study aimed to use machine-learning algorithms to find the optimal solution for personal skin diagnosis by
identifying genetic markers that were associated with skin biophysical parameters, defining skin genotype–phenotype
correlations, and providing the most appropriate machine-learning method for predicting skin phenotype from genotype.
To confirm the feasibility, we performed three types of linear regression analyses as follows: linear regression, ridge
regression using L2-regularization, and regression using a support vector.

We recruited 749 Korean women and generated various clinical and genomic skin data from each woman. These were
merged with array data and used for GWAS and machine learning. Furthermore, we identified significant markers related
to skin phenotype using GWAS level analysis. We built a machine-learning model and used linear regression analysis to
evaluate the model’s performance. We expect that our results may be used as an indicator to provide personal skin traits.
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Materials and Methods
Subjects
This research was approved by the Korean public institutional review board (IRB), and all participants were fully informed about
the study process before obtaining written informed consent. All the study procedures were performed in accordance with the
Korean public IRB. A total of 749 Korean women aged 30–50 years (40.8 ± 5.4 years) participated in this study, which was
conducted from January 2019 to February 2020 in Kolmar Korea Co. There were 309 women aged <40 years and 440 women
aged >40 years. Subjects who had any specific severe skin disease (eg, erythema or infectious disease) or allergy to cosmetics in
the area for clinical measurement were excluded. Before the measurement procedure, subjects were required to remove all
makeup with a cleanser. Subjects waited in a room that was maintained at constant temperature and humidity conditions (24°C ±
2°C and 50% ± 5%, respectively) for 30 min.

For the GWAS, all subjects provided saliva using the AccuSaliva collection kit (ACN11.01, AccuGene, Korea),
which was stored in a preservative solution at room temperature (15°C–25°C) until delivery to the Eone Diagnomics
Genome Center. During the 30 min before saliva collection, eating, brushing teeth, drinking, chewing gum, smoking
were prohibited. Subjects gargled with water, and saliva was collected after 10 min. Lifestyle and current skin condition
information were collected using a questionnaire, which included cosmetic (skin care and makeup products) use, facial
washing habits, use of sunscreen, skin sensitivity, concerns about acne, smoking, and hours of sleep.

Evaluation of Skin Biophysical Parameters
To objectively investigate the skin condition of participants, we quantitatively measured five skin biophysical parameters
using noninvasive clinical equipment: melanin level, gloss, hydration, wrinkle, and elasticity. We measured these
biophysical skin parameters from four distinct facial sites: forehead, cheek, canthus, and chin. Repeated measurements
were not exactly in the same location; however, measurements were obtained using the same pressure. The measurements
were averaged to be used for group statistics.

Melanin
Melanin level, which contributes to skin pigmentation, was measured using Mexameter MX 18 (Courage & Khazaka, Cologne,
Germany), which calculates the amount of light absorbed by the skin.Melanin levelwasmeasured three times on hyperpigmented
areas of the face, and the averaged melanin index value (arbitrary unit [A.U.]) was used for further analysis.31

Gloss
Skin-Glossymeter GL200 (Courage & Khazaka, Cologne, Germany) was used to measure gloss, which is based on light
reflection from the skin surface. The cheek area was measured 10 times in a row and averaged to obtain the gloss diffuse
scattering correction (DSC) value (A.U.).32

Hydration
Skin hydration level of the cheek area was evaluated using Corneometer CM 825 (Courage & Khazaka, Cologne,
Germany) by measuring the electrical capacitance of the stratum corneum, which is the outermost layer of the skin. Skin
capacitance values were converted into A.U. according to the moisture content of skin measured by the device. Five
measurements were acquired and averaged (A.U.).33

Wrinkle
For evaluation of fine wrinkle depth, a replica model was taken according to the method described in previous
studies.34,35 Skin replica images of crow’s feet were obtained using Skin-Visiometer SV 600 (Courage & Khazaka,
Cologne, Germany) to obtain mean wrinkle depth (A.U.).

Skin Elasticity
Cutometer Dual MPA 580 (Courage & Khazaka, Cologne, Germany) was used to assess skin elasticity, which evaluates the
degree of skin resilience from skin deformed by suction of the probe. R2 (gross elasticity) was used as the main parameter to
evaluate overall skin elasticity; the closer the R2 value is to 1 (100%), the better the skin elasticity.36
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Genome-Wide SNP Genotyping and Algorithms
Genotyping and Data Quality Control
The Infinium Global Screening Array (GSA) by Illumina GSA Bead Chip (Illumina Inc., San Diego, CA) was used for
this study. The GSA chip contains multiethnic genome-wide content, curated clinical research variants, and quality
control (QC) markers for precision medicine research. In addition to the 646,824 GSA markers developed by the
consortium, we designed 34,136 additional markers, which included pharmacogenomics and Korean-specific content,
resulting in a total of 680,960 markers.

The variants with more than 0.2 differences in minor allele frequency (MAF) were compared with 1000G37 East
Asian (EAS) and gnomAD38 EAS were removed. For the generic variants, we used the following QC criteria: control for
MAF >1%, Hardy–Weinberg equilibrium (p > 0.00001), genotype call rate >98%, and individual missing rate <2%. Our
final dataset comprised 375,084 SNPs.

For QC of the sample, six samples with an individual missing rate of >2% were excluded from analyses. Next, data
outliers were removed from two analyses. For each phenotype, 10 outliers were removed on the basis of interquartile
range (IQR). IQR represents the 25th–75th percentile of the data, and any differences of more than three times the IQR
were excluded from analyses. Three further samples were removed on the basis of the principal component analysis
(PCA) plot in Supplementary Figure 1.39 PCA is a dimensionality reduction method that is often used to reduce the
dimensionality of large data sets by transforming a large set of variables into a smaller set that still contains most of the
information. PCA reduces data by geometrically projecting them onto lower dimensions called principal components
(PCs) and then uses a limited number of PCs with the goal of finding the best summary of the data. A total of 730
samples were used in the study.

GWAS (Imputation)
Imputation was performed using SHAPEIT v2.r904 and Minimac3 v2.0.1 software. We used 1000G Phase 3 and an
imputed genetic dosage with R-squared statistics >0.8 for the association analysis. The association tests of genotyped
SNPs were performed using a linear regression model in PLINK v1.90b (with the −linear flag) with age as a covariate.
Manhattan plots were generated using the qqman 0.1.4 library in R v3.6 both before and after imputation.40–42

Feature Selection and Machine-Learning Models
a. Feature selection

First, we selected only potentially associated autosomal variants (GWAS p < 0.05) for machine-learning analyses. To
extract the most promising predictors, XGBoost was applied to use the marker chosen with nonzero “gain” coefficients
using the Sklearn v0.20.3 package, Xgboost in Python v3.0.
b. Machine-learning models

Initially, the dataset (N = 730) was randomly divided into training (N = 584, 80%) and test (N = 146, 20%) sets. We
evaluated the model by five-fold cross-validation with the training set. This procedure was used to robustly evaluate the
power of the machine-learning models. All steps of feature selection and training were conducted oLn training sets only,
and testing sets were used only for the final evaluation.

The training set analyzed three algorithms using five-fold cross-validation. We used three well-established machine-learning
algorithms employing linear regression: linear regression, ridge regression, and linear support vector regression (SVR).

1. Linear regression43

The linear regression algorithm fits a linear model by minimizing the residual sum of squares between the observed yi
in the training dataset (i = 1 … N, the sample size) and the values f(xi) predicted by the linear model. The object function
is given as shown in the equation below:

min
β ∑

N

i¼1
ðf xið Þ � yiÞ2
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2. Ridge regression44

Ridge regression is a regularized linear model that minimizes the sum of the squared prediction error in the training data
and an L2-norm regularization, meaning the sum of the squares of regression coefficients. The advantage of ridge regression
over linear regression is that it avoids overfitting the model. Ridge regression still performs well for large multivariate data
with more predictors than observations. The object function is given as shown in the equation below:

min
β ∑

N

i¼1
ðf xið Þ � yiÞ2 þ λ ∑

p

j¼1
β2j

The tuning parameter λ controls the model’s complexity. If λ = 0, ridge regression becomes a traditional linear
regression model.

3. Linear support vector regression45

Linear SVR aims to find a function f(xi) for which the predictive value deviates by no more than a required accuracy
ε from the actual yi for all training data while maximizing the flatness of the function. To implement flatness
maximization, an L2-norm regularization that minimizes the squared sum of the regression coefficients is performed.
The object function is given as follows:

min
β

1
2

∑
p

j¼1
β2j þ C ∑

I

i¼1
�i þ �

�
i

� �
; subjectto

yi � f xið Þ � εþ �i
f xið Þ � yi � εþ ��i

�i; �
�
i � 0

8
<

:

where l is the quantity of “support vectors,” which are the samples that deviate by more than ε from the actual yi used
to fit the model, and C regulates the smoothness of function f(xi).

In all methods applied here, the skin biophysical parameters were used as the phenotype (y), the genotype was used as the
predictor s(x), and no additional covariates were included in the regression analysis. Because the phenotype is a continuous value
and it is difficult to distinguish two or three consecutive values, only linear regression was used. Accuracy was obtained using r2

for the prediction of the subtest set and represented the proportion of variance in the data explained by the respective variables in
the model. The result provides the r2 value of each fold, the average r2 value of five folds, and the r2 value of the test set.

We selected one algorithm with a large value with a small deviation in the value of r2. Training and testing were performed
with the selected algorithms. Correlation was confirmed by plotting the real value and scatter of the prediction value. All
computations were performed using the Sklearn v0.20.3 package in Python 3.0. All processes are outlined in Figure 1.

Results
Phenotype Measurements
The five phenotype measurement data are presented as means and standard deviations in Table 1. Mean values of each
phenotype were (1) melanin level of hyperpigmentation areas (chin and cheek) = 147.02 ± 35.33; (2) skin gloss value of
the cheek = 4.35 ± 2.04; (3) hydration level of the cheek = 63.02 ± 16.94; (4) fine wrinkles of the canthus = 17.35 ± 4.96;
and (4) skin elasticity level of the cheek = 0.67 ± 0.09.

GWAS
Nineteen samples were excluded from 749 samples at QC, which resulted in 730 samples of genotype data for the
primary discovery analysis. All five types of skin measurement data were independently analyzed using GWAS. Results
are shown in Manhattan plots and indicate the presence of multiple loci with modest effects (Figure 2). Figure 2 shows
results before and after imputation to enable comparisons of SNP markers associated with each trait.

For each phenotype, we found the 46 highest association signals (p < 1×10−05). Of which, 3 were related to melanin, 20 to
gloss, 12 to hydration, 6 to wrinkle, and 5 to elasticity (Table 2). Throughout the human genome, a correlation structure exists
across genetic variation of different loci. Owing to the LD in GWAS, the significance marker and surrounding markers are also
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significant. To confirm this, we performed imputation and comparison and indicatedmarkers that were relevant only to one of the
results: one melanin (rs117929211), two hydration (rs138684226 and rs887932), two wrinkle (rs12187267 and rs1991506), and
three elasticity (rs2446092, rs73499013, and rs112251095), which are denoted in Table 2. The imputed results are provided in the
Supplementary Tables 1–5.

The role of 46 novel skin genes (SNPs), which were shown to be associated with five skin phenotypes in this study,
needs further study to determine the underlying mechanism of each phenotype.

Machine Learning
Cross-validation results from the training portion of the model building process showed that the best performing model
for all phenotypes was ridge regression. However, models with poor performance differed depending on phenotype.
Linear regression (r2 = 0.7982) performed poorer for melanin, when compared with ridge regression (r2 = 0.8586) and
linear SVR (r2 = 0.8468). Linear SVR (r2 = 0.5517) performed poorer for gloss, when compared with linear regression (r2

Figure 1 Flowchart for predicting skin phenotype using genome-wide association study (GWAS) analysis and a GWAS-based machine-learning approach.
Abbreviations: GSA, global screening array; QC, quality control.

Table 1 Parameters, Mean Values, and Standard Deviations (SDs) of the Subjects

Parameters Site Mean (± SD)

Age (years) – 40.8 ± 5.4

Melanin index (A.U.) Hyperpigmentation spots 147.02 ± 35.33
Gloss DSC value (A.U.) Cheek 4.35 ± 2.04

Hydration (A.U.) Cheek 63.02 ± 16.94

Wrinkle Depth (A.U.) Crow’s feet 17.35 ± 4.96
Elasticity (R2) Cheek 0.67 ± 0.09

Abbreviations: A.U., arbitrary unit; DSC, diffuse scattering correction.
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Figure 2 Manhattan plot of study results before and after imputation. Manhattan plot of −log10 (p value) for all tested single-nucleotide polymorphisms against genomic
position. Horizontal lines indicate suggestive (blue, p < 1×10−05) and significant (red, p < 1×10−08) thresholds. Skin phenotypes: (A and B) melanin, (C and D) gloss, (E and
F) hydration, (G and H) wrinkle, and (I and J) elasticity (A, C, E, G, and I are raw data, and B, D, F, H, and J are results after imputation).
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= 0.8643) and ridge regression (r2 = 0.8668). The performance of the three models was similar for hydration and wrinkle.
Elasticity showed similar performance with linear regression (r2 = 0.7981) and ridge regression (r2 = 0.8309).

Test results performance was poorer than cross-validation results of the train set. This was confirmed in all
phenotypes and models. The differences between the ridge regression results, which showed the best performance, and
cross-validation results were 0.2164 for melanin, 0.1402 for gloss, 0.1574 for hydration, 0.1962 for wrinkle, and 0.1232
for elasticity.

Table 2 Single-Nucleotide Polymorphisms Showing the Highest Association Signals for Each Phenotype

Phenotype Gene Chr SNP Position Risk Allele BETA p value

Melanin ID2 2 †rs117929211 8,781,831 A 22.55 9.58 × 10−06

Melanin TLR3 4 rs7679967 186,935,500 C −12.69 1.21 × 10−07

Melanin ELSPBP1 19 rs79353338 48,512,607 T 14.17 9.80 × 10−06

Gloss MSL3P1 2 rs498696 234,770,688 A 0.8851 4.05 × 10−06

Gloss MSL3P1 2 rs498790 234,770,722 G 0.9069 2.67 × 10−06

Gloss MSL3P1 2 rs568906 234,773,193 T 0.8817 4.72 × 10−06

Gloss MSL3P1 2 rs570800 234,773,403 G 0.8793 4.57 × 10−06

Gloss MSL3P1 2 rs213543 234,774,025 T 0.8851 4.05 × 10−06

Gloss MSL3P1 2 rs188492 234,774,076 G 0.8825 4.33 × 10−06

Gloss MSL3P1 2 rs213544 234,775,675 T 0.8851 4.05 × 10−06

Gloss MSL3P1 2 rs6727154 234,788,734 A 0.8851 4.05 × 10−06

Gloss MSL3P1 2 rs17862910 234,790,181 A 0.8851 4.05 × 10−06

Gloss MSL3P1 2 rs17862913 234,793,402 T 0.8851 4.05 × 10−06

Gloss MSL3P1 2 rs653844 234,794,286 G 0.8851 4.05 × 10−06

Gloss MSL3P1 2 rs17863831 234,796,001 G 0.8848 4.15 × 10−06

Gloss FGF12 3 rs58496729 192,252,112 C 0.5359 1.86 × 10−06

Gloss TAAR6 6 rs6924201 132,897,029 T 0.5666 1.87 × 10−06

Gloss PODXL 7 rs2909486 131,421,680 A 0.4407 4.11 × 10−06

Gloss PODXL 7 rs2333894 131,454,000 T 0.4281 1.31 × 10−06

Gloss SLC7A1 13 rs9579422 30,176,650 T 0.8917 7.60 × 10−06

Gloss SLC7A1 13 rs7998250 30,181,027 A 0.9144 4.91 × 10−06

Gloss FMN1 15 rs2141438 33,055,904 A 0.417 5.85 × 10−06

Gloss FMN1 15 rs1258726 33,061,916 C 0.4244 3.47 × 10−06

Hydration CRIPT 2 rs79885808 46,886,833 G 4.677 4.73 × 10−08

Hydration DTHD1 4 rs7684936 36,330,976 G 3.831 9.94 × 10−06

Hydration PLEKHG1 6 rs7764084 150,835,885 A −4.265 4.56 × 10−06

Hydration PKD1L1 7 rs75043305 47,970,494 C −9.887 8.16 × 10−07

Hydration CSMD1 8 rs77547856 6,144,013 C −9.153 2.67 × 10−06

Hydration TNKS 8 †rs138684226 9,213,702 T −19.91 9.84 × 10−07

Hydration MYC 8 rs73707295 128,757,836 G 6.187 8.81 × 10−07

Hydration ARHGAP21 10 rs34485271 24,919,321 G −17.45 2.09 × 10−06

Hydration FZD10 12 rs11060760 130,659,526 G −8.512 6.01 × 10−06

Hydration IL34 16 rs6499328 70,666,722 T −3.99 8.68 × 10−06

Hydration MKNK2 19 †rs887932 2,048,598 T −5.585 7.15 × 10−06

Hydration TASP1 20 rs149092789 13,397,517 G −11.58 2.01 × 10−06

Wrinkle TTC34 1 rs10797342 2,797,856 C −1.145 4.58 × 10−06

Wrinkle TAS1R2 1 rs55962532 19,128,884 G 1.905 7.20 × 10−06

Wrinkle CMBL 5 rs13359758 10,301,295 T 1.49 4.87 × 10−06

Wrinkle RETREG1 5 †rs12187267 16,491,052 G 1.324 9.53 × 10−06

Wrinkle GPAM 10 rs77126241 113,967,204 G 1.869 3.82 × 10−06

Wrinkle JPH3 16 †rs1991506 87,683,948 G 1.145 3.42 × 10−06

Elasticity LINC00885 3 rs146095627 195,873,438 G −0.09634 8.20 × 10−06

Elasticity IMPG1 6 †rs2446092 77,358,648 A 0.08258 6.53 × 10−06

Elasticity LOC285889 7 †rs73499013 156,065,946 A 0.02522 7.86 × 10−07

Elasticity ITGA8 10 †rs112251095 15,513,582 G 0.04671 6.16 × 10−06

Elasticity SGMS1 10 rs182035024 52,190,205 T 0.09563 9.41 × 10−06

Note: †SNPs with no significance marker nearby compared with imputed.
Abbreviations: Chr: chromosome; SNP: single-nucleotide polymorphisms.
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Finally, phenotype values predicted using the ridge regression model from the test set and the measured phenotype
values were compared in a scatter plot (Figure 3). An optimal result is represented by data falling on the trend line; the
closer the data are to the trend line, the closer the predicted value is to the measured value. In our study, the results were
close to the trend line, which was confirmed by r2 in Table 3.

Discussion
There are differences in the degree of human skin aging, which depend on individual genes and the environment they
encounter. Specifically, studies on clinical skin aging features based on age group in Asians, particularly Koreans, have
shown that elasticity decreases between 20 and 40 years, wrinkle depth increases between 40 and 60 years, and age-
dependent hyperpigmentation increases occur. Across the world, many cosmetic companies have tried to create products
that include a cosmeceutical ingredient to address these aging factors.46–48 However, the aging process can vary because
of the exposome (external and lifestyle factors).1,9,10,49 Although skin health and aging are affected by both the genome
and exposome, an individual’s intrinsic genes do not change. Thus, predicting the possibility of aging through genetic
analysis is an important research goal to prevent or slow aging effects. Previous trends have shown that people have used
universal cosmetics and functional health foods in the market, but currently, there is a preference for products specifically
suited to an individual’s own characteristics and condition. With the development of various technologies such as GWAS,
various analyses such as the identification of unique SNPs and microbiomes of individuals have become easier and
customized product development has become possible through machine learning and AI prediction. Most GWAS skin
phenotyping studies have focused on Europeans and pigmentation; therefore, such analysis among Koreans (Asian) is
needed. We performed a GWAS on five skin phenotypes among 749 Korean adult women and identified SNPs reaching
genome-wide significant associations.

A recently reported large-scale GWAS study conducted in a Korean population, several genetic markers on pigmented
spots, such as CDKN2B-AS1 and Inc01877, were found, which were different from those identified in other ethnicities.23

Figure 3 Scatter plot of measured values and machine-learning predicted values. Each skin phenotype: (A) Melanin, linear regression showed a best fit of y = 0.51x + 72.95,
r2 = 0.6422; (B) Gloss, linear regression showed a best fit of y = 0.54x + 2.02, r2 = 0.8668; (C) Hydration, linear regression showed a best fit of y = 0.57x + 26.24, r2 =
0.8630; (D) Wrinkle, linear regression showed a best fit of y = 0.52x + 8.21, r2 = 0.8681; and (E) Elasticity, linear regression showed a best fit of y = 0.56x + 0.29, r2 =
0.8309.
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In addition, 21 new genes have been discovered, including the already known genes FCRL5 and OCA2 (pigmentation),
associated with five cosmetic skin properties: wrinkles, moisture content, pigmentation, oil content, and sensitivity.50

In our study, we found 46 novel genetic markers that were significantly correlated with five skin traits of 749 Korean
women. Although our result is based on smaller sample sizes than others reported in recent large-scale GWAS studies,
this is considered scientifically significant because it was obtained from approximately 750 subjects and identified new
related SNPs unique to Koreans. In the case of genes related to hydration and melanin among the identified candidate
SNPs, biological correlations have been found in previous researches. Toll-like receptor 3 (TLR3) is the first sensor for
UV exposure, and its activity is associated with barrier recovery. Moreover, TLR3 stimulation promotes melanogenesis,
transfer of melanosome in melanocytes, and absorption of melanosomes by keratinocytes.51 The Cub and Sushi multiple
domains 1 (CSMD1) gene has been identified as a candidate gene in psoriasis as well as cancer and smoking in numerous
human genetics studies.52–54 The Myc gene has been shown to affect the sebocyte differentiation pathway; overexpres-
sion of the c-Myc gene results in an increase in sebaceous gland size and number.55 Given that maintaining skin health is
associated with parameters such as sebum, acidic pH, and hydration, the Myc gene is thought to interact with skin
hydration.56 The biological role of our other novel candidate genes will be examined in future studies.

Because the present findings were not compared with those of other ethnic groups, further research in larger samples
is needed to gain complete understanding of genomic characteristics. Nevertheless, to the best of our knowledge, this
study is the first to altogether show new candidate genes for five skin traits in a Korean cohort. It may be possible to
accurately diagnose or predict an individual’s skin condition with only genotype information. This application model of
skin trait prediction potentially can be applied to the development of customized cosmetics that are perfect for
individuals based on individual genes. To estimate personal skin condition, DNA analysis and a ridge regression
machine-learning model can be used without the need for noninvasive clinical devices. Although our results are specific
to Asians, they are valuable in regard to the discovery of SNPs unique to Koreans and for comparisons with previous
research results.

Taken together, our study procedures using saliva-derived genetic DNA analysis and machine-learning algorithms can
not only predict an individual’s skin characteristics but also replace clinical noninvasive measurements.

Table 3 Summary of Model Performance (Five-Fold Cross-Validation and Test, R2)

Phenotype Model Five-Fold Cross-Validation Result Test Result

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

Melanin Linear regression 0.8674 0.8864 0.8255 0.5734 0.8383 0.7982 0.4917

Melanin Ridge regression 0.8745 0.8855 0.855 0.8357 0.8422 0.8586 0.6422
Melanin Linear SVR 0.8653 0.8738 0.8377 0.8197 0.8375 0.8468 0.6609

Gloss Linear regression 0.8554 0.8804 0.8757 0.8485 0.8616 0.8643 0.7163
Gloss Ridge regression 0.8555 0.8793 0.8803 0.8524 0.8664 0.8668 0.7266

Gloss Linear SVR 0.5502 0.524 0.5505 0.5619 0.572 0.5517 0.4612

Hydration Linear regression 0.8586 0.8302 0.8569 0.8111 0.8654 0.8445 0.7012

Hydration Ridge regression 0.8601 0.8583 0.853 0.8761 0.8675 0.863 0.7056

Hydration Linear SVR 0.8514 0.8294 0.8433 0.8603 0.8485 0.8466 0.6969

Wrinkle Linear regression 0.8498 0.8558 0.8566 0.7998 0.8604 0.8445 0.6692

Wrinkle Ridge regression 0.8552 0.8567 0.869 0.8822 0.8773 0.8681 0.6719
Wrinkle Linear SVR 0.8222 0.8091 0.8 0.8194 0.8084 0.8118 0.631

Elasticity Linear regression 0.8191 0.6984 0.8258 0.7952 0.8522 0.7981 0.6511
Elasticity Ridge regression 0.8407 0.82 0.8456 0.7976 0.8507 0.8309 0.7077

Elasticity Linear SVR – – – – – – –

Abbreviation: SVR: support vector regression.
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Conclusion
All people have different facial characteristics due to various intrinsic and extrinsic factors such as life style patterns and
genomic factors. Therefore, recently, some technologies such as skin diagnosis and genetic test related to personalized
product that meets individual characteristics have been developed. Given that large-scale GWAS researches are aimed at
Europeans, the discovery of unique SNPs in Korean population is meaningful. However, future studies are needed to
elucidate the role of genes in determining facial phenotypes. Skin aging is mainly affected by age, environmental factors,
and genetic factors. Of these factors, genetic factors of a person do not change; therefore, personalized cosmetics can be
developed by exploiting and studying these factors. In summary, skin types of Korean women can be estimated through
DNA analysis without a clinical device.
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